seismic monitoring of a small scale supercritical co2/ch4 ... · pdf file4 injection: co2crc...

Post on 18-Mar-2018

219 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Seismic Monitoring of a Small‐Scale Supercritical CO2/CH4 Injection:CO2CRC Otway project Case Study

R. Pevzner1,2, M. Urosevic1,2, K. Tertyshnikov1,2, B. Gurevich1,2 , S. V. Shulakova2,4, S. Glubokovskikh1,2, D. Popik1,2, J. Correa1,2, A. Egorov1,2, H. AlNasser1,2, A. Kepic1,2 , B.M. Freifeld3, M. Robertson3, T. Wood3, T.M. Daley3 and R. Singh11CO2CRC, 2Curtin University, 3Lawrence Berkeley National Lab,4CSIRO

11th IEAGHG Monitoring Network MeetingTraverse City, Michigan  June 13th – 15th, 2017

ACKNOWLEDGEMENTS

We would like to acknowledge the funding provided by the Australian government to support this CO2CRC research project. 

We also acknowledge funding from ANLEC R&D and the Victorian Government for the Stage 2C project. 

Funding for LBNL was provided through the Carbon Storage Program, U.S. DOE, Assistant Secretary for Fossil Energy, Office of Clean Coal and Carbon Management through the NETL. 

We thank the National Geosequestration Laboratory (NGL) for providing the seismic sources (INOVA Vibrators) for this project. Funding for NGL was provided by the Australian Federal Government.

Paaratte

Stage Iinjection

Stage IIinjection

STAGE I: An 80/20 % of CO2/CH4 stream produced from Buttress, transported and injected into CRC‐1 well (previous CH4 production well) ‐65 Kt.

STAGE II: CO2/CH4 stream injected into CRC‐2 well – 15 Kt.

Otway Basin Pilot Project (Victoria, Australia)

Stage 2C Project goals

• Detect injected Buttress gas in the subsurface: ascertain minimum seismic detection limit

• Observe the gas plume development using time‐lapse seismic

• Verify stabilisation of the plume in the saline formation using time lapse seismic

Otway site aerial photo

CRC‐1

Naylor‐1

CRC‐2

Seismic surveys @ Otway site2000 2006 2007 2008 2009 2010 2012 2013 2015 2016 2017

2D seismic Sodas Ln, 7 surveys, various sources and seasons

PROTECT, SH, several lines

3D&4D seismic

CurdieVale

Baseline, Otw 4D Otw 4D, M1

Otw 4D, M2

Shallow3D/3C survey

4D with buried receivers

Test array,Soda RdGeophones + iDAS

Stage 2C, baseline

Stage 2C, 3xMonitor surveys, M1‐M3)

Stage 2C, M4

Zero‐offsetand offset VSP

Naylor 1, Z, O, WA

CRC‐1(Z, O, 4DBaseline)

CRC‐2 (Z)

CRC‐1(Z, O, 4D Monitor)

CRC‐1 (Z, O, Hydrophones)CRC2 (iDAS)

CRC‐1 4xOffsets

CRC‐2(iDAS)

CRC‐1 4xOffsets

CRC‐2(iDAS)

CRC‐1 4xOffsets

CRC‐2(iDAS)

Walk‐away and 3D/4D VSP

CRC2 (iDAS)

CRC‐1 (4D/3CBaseline)CRC‐2 (iDAS)

CRC‐1 (4D/3CMonitor)CRC‐2 (iDAS)

CRC‐1 (4D/3CMonitor)CRC‐2 (iDAS)

Near surface Various refraction and micro‐VSP surveys

Site characterization

Source tests

Stage 1Stage 2 prepar

Stage 2C

Stage 2C monitoring strategy

Full 4D finite‐difference time domain (FDTD) synthetic dataset was generated prior commencement of the first monitor survey and used to pre‐define and validate processing flows (Glubokovskikh et al., IJGGC 49, 2016)

4D seismic with buried receiver array acquired concurrently with 4D VSPBaseline: March 2015Monitor surveys: 5 kt, 10kt, 15 kt of injection (January‐April 2016), 1&2 years post injection (January 2017&2018)

Offset VSPs

Passive seismic using buried receiver array

LBNL group lead: Trialing 4D seismic with buried DAS array, 4D VSP in CRC‐2 (optical fiber on the tubing) and continuous seismic sources

TimelineFebruary 2015 – Receiver array installedMarch 2015 – Baseline data acquiredSeptember 2015• LBNL installs permanent vibroseis sources on site, baseline acquired;• passive seismic acquisition testedNovember 2015• Passive seismic data acquisition commences, including iDAS (8000 s / day)January 2016 – Monitor 1 (5122 t CO2) acquired, new foundations for permanent vibes builtFebruary 2016 • Both permanent vibes became operational• Monitor 2 (10000 t) acquiredApril 2016 – Monitor 3 (15000 t) acquiredJanuary 2017 – Monitor 4 (1 year post‐injection) acquired

Acquisition geometry

1 km

General Survey ParametersTotal Number of Source 

Lines

26+1 Lines

Total Number of Sources 3003 

Points

Source Line Spacing from 50 m 

to 100 m

Source Point Spacing 15 m

Total Number of 

Receiver Lines

11 Lines

Total Number of 

Receivers

909  Points

Receiver Line Spacing 100 m

Receiver Point Spacing 15 m

Max Offset 2480 m

Sample Interval 1 ms

Receivers 

RECEIVER PARAMETERSReceiver Type Sercel SG‐5Recording Pattern

Orthogonal cross‐spread pattern 

Receiver Line Spacing

100 m

Receiver Point Spacing

15 m

Receiver Depth

4 m 

Cables Depth 0.8 m 

geophone

Receivers 

trench

crosslineunit

FDU

6 wireless stations above the buried geophones on line 5

SOURCE PARAMETERS

Source Type INOVA UniVibe

26000 lbs

Sweep frequency 6‐150 Hz

Tapers 0.5 s

Sweep Length 24 s

Listening Time 5 s

Source

Line 5, receiver 46, common receiver gatherBuried Surface

Noise floor reduction ~ 25 dB

Fast‐track processing flowchartProcedure Parameters

Data Input SEG‐D data inputCorrelation with sweep signal Linear sweep 6‐150 Hz, length of sweep 24 s, output trace length 5 sBinning Bin size 7.5 m x 7.5 mTrace Editing Kill bad traces/seismogramsElevation Statics Final datum elevation – 30 m (MSL),Replacement Velocity – 1800 m/sRadon Filtering Number of P‐values – 700, Modelled noise subtraction, Applied in cone windowAutomatic Gain Control 500 ms, applied before radon filter and removed afterStatics 500 ms shift, applied before radon filter and removed afterAir Blast Attenuation Energy with velocity of 330 m/s was attenuatedSurface Waves Noise Attenuation 900 m/s, 6‐35 HzSpiking Deconvolution Zero‐phase spiking, Decon Operator length – 200 ms, Operator ‘white noise’ level – 0.1 %Automatic Gain Control 500 ms, applied before deconvolution and removed afterInteractive Velocity Analysis 2 iterations, VA Grid – 100 m x 100 m, 30% ‐ NMO mutingResidual Static Correction 2 iterations, Max Power AutostaticsAutomatic Gain Control and NMO AGC window ‐500 ms, NMO muting – 30%CDP stacking Stacking method – Mean, Power scalar for stack normalization 0.5Pad 3D Stack Volume INLINES 1‐219, XLINES 1‐ 266FXY‐deconvolution Wiener Levinson filter, 4‐180 HzFK Filter Applied in polygonMigration Phase shift Time Migration / Explicit FD Time Migration

2010 2015

Buried receiver array – preliminary results

Buried array higher resolution~25 dB ambient noise floor reductionVirtually all‐weather acquisitionLower impact on the land occupiers with no cables on the ground  

Overall higher quality of the datahigher resolution – better source + sensitivity of the geophonesmore energy compared to 2009/2010 surveys

Time shifts computed between B and (top‐left to bottom‐right): M1, M2, M3, M4  

Histograms of the time shifts

Histograms of NRMS values computed between the baseline image and each of monitor images: M1 (red), M2 (blue), M3 (green), and M4 (black). Computations: 200 ms window centred at 1000 ms

Distribution density of NRMS values computed in (from left to right): 60 ms windowcentred at 1136 ms, 200 ms window centred at 1000 ms and 400 ms window centred at 900 ms.

Survey area map

Intersection along the arbitrary line

Intersection along the arbitrary line

RMS amplitudes of the differences computed in 24 ms window centred at the plume level (1210 ms). The differences are computed between B and (top‐left to bottom‐right): M1, M2, M3, M4  

VSP in CRC‐1Sercel SlimWave 3C VSP tool (10 levels, 15 m spacing)3D VSP with tool @ 760‐880 m MD4 offset VSPs

Comparison of baseline 4D VSP and surface seismic data

3D surface seismic 3D surface seismic 3D VSP

CRC‐1

Target intervalT (m

s)

Stage 2C 4D VSP results, xline 122

B M2 M3 M2‐B M3‐B

Offset VSP, SP1, M2‐B

Baseline Monitor 2 Difference

~1500 m MD

30 © Copyright Silixa Ltd 2016

• Standard optical fibre acts as the 

sensor array

– Typical sampling at 10kHz on 

10,000m fibre

– Standard gauge length of 10m

– Spatial sampling of 25cm

– DAS measures change in average 

elongation per 10m gauge length 

per 0.1ms acoustic time sample, 

sampled every 0.25 m in distance

Distributed Acoustic Sensing

z, t Parker et al., Distributed Acoustic Sensing – a 

new tool for seismic applications,  first break (32), February 2014

FAT Helical Wound Cable• Anderson and Shapiro – HWC on soft mandrel 1980 US Patent 4375313 • Hornman et al. (2013 75th EAGE) introduced a helical wound FO cable • LBNL trialed multiple designs with varying physical properties• Line 5 installed one length of HWC for comparison to straight fiber

30° spiral wound on 58 Shore A rubber mandrel.

Normal Telecom Cable used in all trenches

Lessons learned – acoustic impedance of cable and surrounding soil is important

Surface Orbital Vibrator – VFD Controlled AC Induction Motor

Max Frequency  80 Hz, Force (@80Hz) 10 T‐fPhase stability is not maintained. Operate 2.5 hr/d

Force is adjustable

F=mω2r

Deconvolved SOV Data

• Helical Cable shows good sensitivity to reflected P. • Straight telecom less sensitivity

DAS after Post Stack

Time Migration

Strong reflection at

500 ms (related to a

carbonate layer)

Far offsets were

included in the stack

(due to directionality)

DAS 3D cube

DAS Monitor 2

Geophone Monitor 2

Stage 2C of the Otway project ‐ Conclusions

15,000 t were injected into the subsurface and an extensive seismic monitoring program was rolled out to detect itThe data is likely to be sufficient to claim detection & observation of the plume evolutionBuried receiver array‐ Better S/N, higher repeatability‐ Lower impact on landowners‐ Passive recording capability + ability to pair it with permanent 

sourcesVSP data is inline with the surface seismic dataiDAS (in trenches) can be used to image subhorizontal reflectorsPermanent vibes ‐ operational

Next steps for DAS – Improving sensitivity

Stage 3: Comparison Carina DAS cable vs standard telcom in CRC‐3, SP0, 700 m offset, 5 sweeps

Geophones, Z component

iDAS v2 Carina

Government, Industry and Research Partners

top related