semiconductor equations: ii...bermel ece 305 f16 2 outline 1. semiconductor equations 2. equilibrium...

Post on 10-Oct-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ECE-305: Spring 2016

Semiconductor Equations: II

Professor Peter BermelElectrical and Computer Engineering

Purdue University, West Lafayette, IN USApbermel@purdue.edu

Pierret, Semiconductor Device Fundamentals (SDF)pp. 104-124

9/19/2016 1

Bermel ECE 305 F16 2

outline

1. Semiconductor equations

2. Equilibrium versus non-equilibrium

3. Minority carrier diffusion equation

9/19/2016

drift- diffusion equation

3

current = drift current + diffusion current

total current = electron current + hole current

D

p

p D

n

n k

BT q

9/19/2016 Bermel ECE 305 F16

continuity equation for holes

4

in-flow

out-flow

p t

recombinationgeneration

in-flow - out-flow + G - Rp

t

9/19/2016 Bermel ECE 305 F16

Continuity Equations for Electron/Holes

Bermel ECE 305 F16

Continuity Equations for Electron/Holes

1n N N

nJ g r

t q

+ -

1 - + -

P P P

pJ g r

t q

( )J x

( )J x dx+

Ng

n

Nr

p

( )pJ x

( )pJ x dx+

rp

gp

5

Bermel ECE 305 F166

outline

1. Semiconductor equations

2. Equilibrium versus non-equilibrium

3. Minority carrier diffusion equation

equilibrium (no G-R)

7

in-flow

out-flow

p t

9/19/2016 Bermel ECE 305 F16

current and QFL’s

8

p nieEi-Fp kBT

dp

dx nie

Ei-Fp kBT´1

kBT

dEi

dx-

dFp

dx

p

kBT

dEi

dx-

dFp

dx

dEi

dx qE x

n nieFn-Ei kBT

9/19/2016 Bermel ECE 305 F16

Direct Band-to-band Recombination

Bermel ECE 305 F16

Photon(light)

GaAs, InP, InSb (3D)

Lasers, LEDs, etc.

In real space … In energy space …

Photon

9

Indirect Recombination (Trap-assisted)

Bermel ECE 305 F16

Phonon (Thermal Energy)

Ge, Si, ….

Transistors, Solar cells, etc.

10

Auger Recombination

Bermel ECE 305 F16

Phonon (Thermal Energy)

InP, GaAs, …

Lasers, etc.

12

3

1 2

4

3

4

11

Bermel ECE 305 F1612

outline

1. Semiconductor equations

2. Equilibrium versus non-equilibrium

3. Minority carrier diffusion equation

Minority Carrier Equation

Bermel ECE 305 F16

0 0 0

D A

D A

D q p n N N

q p p n p N N

+ -

+ -

- + -

® + D - - D + - ®

0

20

2

1 1p pNN N N N

n

p p p p

N p

n

n n nnr g g

t q t q x

n n n n nD g

t t x

+ D D - + ® - +

+ D D D D - +

JJ

t

t

( ~0)

N N N

N

qn qD n

nqD

x

+

®

J E

E

13

Various approximations …

Bermel ECE 305 F16

2

2

p p p

N p

n

n n nD g

t x

D D D - +

t

Time dependence

density gradient

recombination

generation

14

Summary: Equation of State

Bermel ECE 305 F16

0 0 0D A D AD q p n N N q p p n p N N+ - + - - + - ® + D - - D + - ®

2

2

1 1 p n nP P P p P p

n n

p p p pr g g D g

t q q x x

- D D D - + ® - - + ® - - +

JJ

t t

( ~0)P P P P

pqp qD p qD

x

- ® -

J E E

2

2

1 1 p pNN N N N N p

n n

n nn nr g g D g

t q q x x

D D D - + ® - + ® - - +

JJ

t t

( ~0)N N N N

nqn qD n qD

x

+ ®

J E E

15

when is the electric field zero?

17

x

n x ND x

1017 cm-3

1018 cm-3

n x » ND x

9/19/2016 Bermel ECE 305 F16

e-band diagram

18

EF

EC x

EV x

Ei x

x

E qE x

dEC

dx

Dp

t¹ Dp

d 2Dp

dx2-Dp

t p

+GL

9/19/2016 Bermel ECE 305 F16

example #1: N-type sample in ll injection

19

Steady-state, uniform generation, no spatial variation

Solve for Δp and for the QFL’s.

1) Simplify the MCDE2) Solve the MCDE3) Deduce Fp from Δp

Dp

t Dp

d2Dp

dx2-Dp

t p

+GL

9/19/2016 Bermel ECE 305 F16

example #1: solution

20

x

Dp x

Dp x GLt p

x L 200 mx 0

Steady-state, uniform generation, no spatial variation9/19/2016 Bermel ECE 305 F16

Example 2A: Transient, No Illumination

Bermel ECE 305 F16

1N N N

nr g

t q

- +

J J + N N Nqn E qD n

(uniform)

0( )

n

n n nG

t t

+ D D - +

Acceptor doped

1 - - +

J p P p

pr g

t q - J p p Pqp E qD p

(uniform)

0( )

t

+ D D - +

p

p p pG

tMajority carrier

0 0 0+ - + - - + - + D- - + - DD A D AD q p n N N q p n N Npn21

Dn

time

Example 2A: Transient, No Illumination

Bermel ECE 305 F16

( )

n

n nG

t

D D - +

t

( , ) ntn x t A Be-D + tAcceptor doped

22

000,

00,

nBnxn

Axn

DDD

¥D

ntt

entxn-

DD 0,

Dn

time

Example 2B: Transient, Uniform Illumination

Bermel ECE 305 F16

1N N N

nr g

t q

- +

J

1

J + N N Nqn E qD n

(uniform)

0( )

n

n n nG

t t

+ D D - +

Acceptor doped

1 - - +

J p P p

pr g

t q - J p p Pqp E qD p

(uniform)

0( )

t

+ D D - +

p

p p pG

tMajority carrier

0 0 0+ - + - - + - + D- - + - DD A D AD q p n N N q p n N Npn23

Example 2B: Transient, Uniform Illumination

Bermel ECE 305 F16

1

( )

n

n nG

t

D D - +

t

( , ) ntn x t A Be-D + t

( , ) 1 ntnn x t G e tt -D -

Acceptor doped

0, ( ,0) 0

, ( , ) n

t n x A B

t n x G A

D -

®¥ D ¥ t

time

24

example #3

25

Solve for Δp and for the QFL’s.

1) Simplify the MCDE2) Solve the MCDE3) Deduce Fp from Δp

Dp

t Dp

d2Dp

dx2-Dp

t p

+GL

Transient, no generation, no spatial variation

9/19/2016 Bermel ECE 305 F16

example #3

26

x

Dp x

Dp t 0 GLt p

x L 200 mx 0

transient, no generation, no spatial variation

Dp t Dp t 0 e-t /t p

9/19/2016 Bermel ECE 305 F16

example #4

27

Steady-state, sample long compared to the diffusion length.i.e., a short diffusion length

fixedDp x 0

1) Simplify the MCDE2) Solve the MCDE3) Deduce Fp from Δp

Dp

t Dp

d2Dp

dx2-Dp

t p

+GL

9/19/2016 Bermel ECE 305 F16

example #4

28

x

Dp x

Dp x ®¥ 0

Dp 0

Dp x Dp 0 e-x/Lp

x L 200 mx 0

Lp Dpt p << L

Steady-state, sample long compared to the diffusion length.9/19/2016 Bermel ECE 305 F16

Continuity Equations…

Bermel ECE 305 F16 29

1 - - +

JP P P

pr g

t q

D AD q p n N N+ - - + -

P P Pqp qD p - J E

1N N N

nr g

t q

- +

J

N N Nqn qD n + J E

1

time

Dn

time

Analytic solutions

ntt

entxn-

DD 0,

( , ) 1 ntnn x t G e tt -D -

Dn

Example 5: One sided Minority Diffusion

Bermel ECE 305 F16

1 nN N

n dJr g

t q dx

- +

N N N

dnqn E qD

dx +J

2

20 N

d nD

dx

Steady state, no generation/recombination, acceptor dopedLong diffusion length

30

1

0,' D txn

a 0x’

Metal contact

Example: One sided Minority Diffusion

Bermel ECE 305 F16

, ( ' ) 0 D -x a n x a C Da

'( , ) ( 0 ') 1

D D -

xn x t n x

a

2

20 N

d nD

dx

( , ) 'n x t C DxD +

x’

a

Metal contact

0 ', ( ' 0 ') D x n x C

0x’

31

0,' D txn

Conclusions

1) We will often be using minority carrier diffusion equation to understand the mechanics of carrier transport in electronic devices. Review the problem carefully to see if the assumption of minority carrier transport is satisfied.

2) Divide all complex problems into solvable parts, solve the parts sequentially and then put the partial solutions back by using proper boundary conditions to arrive at the complete solution.

3) Explore analytical solution whenever possible, however numerical solutions are also of great value.

Bermel ECE 305 F16 32

top related