si draft 2s2 1. experimental methods 1.1. ztc synthesis: the zeolite nay template 2 g, hsz 320naa,...

Post on 09-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

s1

SupportingInformation

AtomisticStructuresofZeolite‐TemplatedCarbon

ErinE.Taylor,KaitlinGarman,andNicholasP.Stadie*

DepartmentofChemistry&Biochemistry,MontanaStateUniversity,Bozeman,Montana,

59717,UnitedStates

*Correspondingauthor:nstadie@montana.edu

Contents:

1. ExperimentalMethods s2

2. ExperimentalStructuralPackingDensity s4

3. TheoreticalX‐RayDiffractionPatternSimulation s5

4. TheoreticalSurfaceAreaandPoreSizeDistribution s6

5. TheoreticalStructuralPackingDensity s7

6. ManipulationoftheAtomisticModels s8

7. ExaminationofClaimsofBraunandCoworkers s17

8. SupportingReferences s20

s2

1.ExperimentalMethods

1.1.ZTCSynthesis:ThezeoliteNaYtemplate 2g,HSZ320NAA,TosohCorp. wasde‐

gassedina2‐neckround‐bottomflaskat300°Cfor24hunderoil‐freevacuum 2

10‐3mbar .Thedriedzeolitewasthencombinedwith20mLoffurfurylalcohol FA,

99%,Aldrich viasyringeandthemixturewasstirredatroomtemperaturefor24h.The

impregnatedsolidwasthencollectedbyvacuumfiltrationinair,washedthreetimes

with10mLaliquotsofmesitylene 97%,Aldrich ,anddriedundersuctiononthefilter

fritfor15min.Theimpregnatedandrinsedzeolitewasthenplacedinanaluminaboat

10 30 107mm whichwasinsertedintoaquartztube ø45mm installedinahor‐

izontaltubefurnace HST12/600,CarboliteGero .Thetubewaspurgedunderdryar‐

gonflow 200sccm atambientpressure.TheFAwithinthezeoliteporeswasfirstpol‐

ymerizedbyheatingupto80°Cviaa10minrampandheldfor24h.Thepoly‐FAwas

thencarbonizedbyheatingupto700°Cviaa2hrampandheldfor30min.Furthercar‐

bonimpregnationwasaccomplishedviapropyleneCVDat700°C;thegasflowwas

switchedto7mol%propyleneinargon 99.99%propylenein99.999%argon at200

sccm.Afterambient‐pressureCVDfor5h,thegasflowwasreturnedtodryargonat200

sccm.Anannealingstepwasperformedbyheatingthezeolite‐carboncompositeupto

900°Cviaa1hramp,andheldforanadditional1h.Thesystemwasthencooledover‐

night,thegasflowwasstopped,andtheannealedzeolite‐carboncompositewascol‐

lected.Removalofthezeolitetemplatewasaccomplishedbythreesequentialdissolu‐

tionsin35mLofaqueoushydrofluoricacid HF,40%,Sigma‐Aldrich .ThefinalZTC

productwascollectedbycentrifugation,washedthreetimeswith35mLaliquotsofdis‐

tilledwater,andthendriedinairat40°Ctoobtain“archetypicalFAU‐ZTC.”

1.2.PowderX‐RayDiffraction:PowderX‐raydiffraction XRD measurementswere

performedonaRigakuUltimaIVdiffractometerusingCuKαradiation λ 1.54Å ,gen‐

eratedat40kVand40mA,inBragg‐Brentanogeometry.Thepowderwasthinlydis‐

persedona“zero‐background”sampleholdercomprisedoforientedcrystallinesilicon.

Thedatawereanalyzedbydirectsubtractionofthecontributionfromthesampleholder

determinedbyperforminganidenticalexperimentwithoutanysample.TheXRDpat‐

ternofarchetypicalFAU‐ZTCisshowninFigureS1.

s3

FigureS1.XRDpatternofarchetypicalFAU‐ZTC.

1.3.NitrogenAdsorption:Nitrogenadsorption/desorptionisothermsweremeasured

at77Kbetween10‐4and100kPausinganautomatedvolumetricinstrument 3Flex,Mi‐

cromeriticsInstrumentCorp. .SpecificsurfaceareaswerecalculatedbytheBrunauer‐

Emmett‐Teller BET methodbetweenP/P0 0.000004‐0.11.Pore‐sizedistributions

weredeterminedbynonlocaldensityfunctionaltheory NLDFT calculationsusinga

dedicatedsoftwarepackage MicroActiveShare,MicromeriticsInstrumentCorp. using

acarbonslit‐poremodel.Thenitrogenadsorption/desorptionisothermonarchetypical

FAU‐ZTCisshowninFigureS2.

FigureS2.EquilibriumN2adsorption/desorptionisothermofarchetypicalFAU‐ZTCat77K filled/unfilled,respectively .

s4

1.4.ThermalGravimetricAnalysis:Thermalgravimetrywasperformedusingamicro‐

balance DiscoveryTGA,TAInstruments underflowingdryair GradeDbreathingair

withmoisturetrap .Zeolite‐carboncompositecollectedpriortoHFtreatmentwassus‐

pendedinthesampleenclosure,andthetypicalstartingsampleweightwas~5mg.The

balanceflowratewas1.0mLmin‐1andthetemperatureprogramwasspecifiedasfol‐

lows:thesamplewasfirstheldat50°Cfor15minunderdryairtopurge,waterremoval

wasperformedbyheatingupto300°Cviaa20°Cmin‐1ramp.Theweightattheendof

thisdehydrationstepwastakentobetheinitialmass,mi.Thecarbonwasthenoxidized

byheatingupto800°Cviaa5°Cmin‐1rampandheldfor120min,andfinallythere‐

mainingsamplewascooledto300°Ctodeterminethefinalweightdifference.The

weightchangecorrespondingtotheoxidation/removalofarchetypicalFAU‐ZTC within

itsnativezeoliteNaYtemplate isshowninFigureS3.

FigureS3.ThermalgravimetricanalysisofarchetypicalFAU‐ZTC.Threeregionsof

weightlossareobserved:waterlossat50°Cduringpurge 0‐12min ,waterlossbe‐

tween50‐300°C 12‐42min ,andoxidationofZTCabove300°C 87‐158min .

2.ExperimentalStructuralPackingDensity SPD

Equations1‐3inthemaintextdefinethreemetricsofevaluationforthecomparison

ofZTCstructuredensity includingcarbonalongwithhydrogenandoxygen packing

withinthezeolitetemplate,akeyindicatorofboththetemplatefidelityandstructureof

thefinalZTCproductafterremovalofthetemplate.Analysisoftherawthermalgravim‐

etrymeasuredforarchetypicalFAU‐ZTCisshowninFigureS3.Theweightlosscorre‐

spondingtotheweightofthecarbonaceousZTCoccursabove300°C,afteraclearplat‐

eauisachievedfollowingthelow‐temperatureweightlossassociatedwithadsorbed

water.

s5

ThecalculationsofSPD ,SPD ,andSPD , forarchetypicalFAU‐ZTC corre‐

spondingtothemeasurementinFigureS3 areasfollows:

SPD . .

. 0.355g g EquationS1

SPD 0.355g g .

. 0.39g g EquationS2

SPD , 0.389g g 1.327gSiO cm 0.52g cm EquationS3

3.TheoreticalX‐RayDiffractionPatternSimulation

PowderXRDpatternsweresimulatedforeachoftheperiodicatomisticmodelsof

FAU‐ZTCusingopenlyaccessiblesoftware Mercury,v4.1.3,CambridgeCrystallographic

DataCentre usingasimulatedwavelengthof1.54056Å,astepsizeof2θ 0.02°,anda

full‐widthhalf‐maximum FWHM of2θ 0.1°.S1TheresultsareshowninFigure12in

themaintext.Theanglescorrespondingtothe 111 and 220 reflectionsaretabulated

inTableS1.

TableS1.ExperimentalandTheoreticalXRDReflectionsofFAU‐ZTC.

Model/Material 111 220

RousselModel2006 6.16 10.06

NishiharaModel0a2009 6.31 10.32

NishiharaModel0b2009 5.80 9.48

NishiharaModelI2009 6.36 8.99

KimModel2016 6.11 9.98

NishiharaModelII2018 6.36 10.39

BraunModelNR2018 6.11 9.98

BraunModelR2018 5.98‐6.09 11.42‐11.68

TanakaModelIV2018 6.36 10.39

ArchetypicalFAU‐ZTC 6.32 10.40

TosohZeoliteNaY 6.28 10.26

s6

4.TheoreticalSurfaceAreaandPoreSizeDistribution

Nitrogenaccessiblesurfaceareacalculationswereperformedusingopenlyaccessible

software Zeo ,v.0.3,http://www.zeoplusplus.org/ assumingachannelradiusand

proberadiusof2.27Å correspondingtoN2 with2000MonteCarlosamplesper

atom.S2TheresultsareshowninTable2inthemaintext.Likewise,pore‐sizedistribu‐

tionsweresimulatedusingthesameassumptionsexceptwith50000MonteCarlosam‐

plesperatom.Thepore‐sizedistributionsforeachmodelcomparedtoarchetypical

FAU‐ZTC determinedusingNLDFTanalysisofN2adsorptionmeasurementsat77K

areshowninFigureS4.

FigureS4.ExperimentalandtheoreticalN2‐accessiblepore‐sizedistributionsforallperi‐odicFAU‐ZTCmodelsandarchetypicalFAU‐ZTC.

s7

5.TheoreticalStructuralPackingDensity

Structuralpackingdensitieswerecalculatedforalloftheperiodicatomisticmodelsof

FAU‐ZTCbydeterminingthenumber andmass ofallatomswithintheunitcellper

unitcellvolumeusingthereportedcrystallographicinformationfile CIF ormolecular

coordinatefileforeachstructure.Then,basedonthedensityofidealSiO2faujasite

frameworktypeFAU,InternationalZeoliteAssociation of1.327gmL‐1,thevolumetric

SPDcell,volwasconvertedtoagravimetricquantity,SPDcell,inunitsofg g .Asnotedin

themaintext,theseunitsnominallyimplythatthemassofFAU‐ZTCiscomprisedsolely

of“carbon”despitethatsomeofthemodelsaswellastherealZTCmaterialsareactually

comprisedofC,H,andO.Weemphasizethatinthecaseofthemodels,valuesforSPDcell

andSPDcell,volincludecontributionsfromallatomsintheunitcellofthatmodel.

TableS2.TheoreticalStructuralPackingDensities.

perUnitCell

ModelCarbon

Atoms

Mass

Da

Volume

nm3

SPDcell,vol

SPDcell

RousselModel2006 630 7569 15.34 0.82 0.62

NishiharaModel0a2009 728 8746 14.23 1.02 0.77

NishiharaModel0b2009 272 3268 9.16 0.59 0.45

NishiharaModelI2009*** 288 3460 13.95 0.41 0.32

NueangnorajModel2013 970 11654 27.00 0.54 0.72

KimModel2016* 217 2535 15.71 0.28 0.21

KimModel2016** 1202 14008 15.71 1.53 1.15

NishiharaModelII2018*** 2351 28245 111.56 0.94 0.33

BraunModelNR2018 186 2235 3.93 0.91 0.71

BraunModelR2018 186 2235 4.09 0.83 0.68

TanakaModelIV2018 8937 107369 376.40 0.47 0.36

BoonyoungModel2019 200 2403 25.60 1.60 1.21

*partialoccupationoflatticesites**fulloccupationoflatticesites***hydrogenincluded

s8

ArepresentativecalculationofSPD andSPD , foracarbon‐onlymodel inthis

case,theRousselModel isshownbelow:

SPD ,.

. 0.82g cm EquationS4

SPD 0.82g cm 0.753cm g 0.62g g EquationS5

Likewise,arepresentativecalculationofSPD andSPD , foracarbon‐andhy‐

drogen‐bearingmodel inthiscase,NishiharaModelII isshownbelow:

SPD ,. .

. 0.42g cm EquationS6

SPD 0.42g cm 0.753cm g 0.32g g EquationS7

6.ManipulationoftheAtomisticModels

Forcomparisonoftheatomisticmodelsreportedbyseveraldifferentresearchgroups

overthetimeperiodbetween2007‐2019,itwasnecessarytoobtainorcreateacrystal‐

lographicinformationfile CIF foreachmodelthatcouldbeusedforXRDpatternsimu‐

lationandsurfaceareaandpore‐sizedistributioncalculations.Ofthetenmodelsre‐

viewedherein,onemolecularcoordinatefile XYZfile andthreeCIFswereobtained

directlyfromthepublishedliterature theBoonyoung,Kim,andBraunModels,respec‐

tively ,andthreemolecularcoordinatefiles XYZandPBDfiles andfiveCIFswereob‐

taineddirectlyfromtheirauthorsandusedwiththeauthors’permission the

Nueangnoraj,Roussel,Nishihara,andTanakaModels .SincetheRoussel,Nueangnoraj,

andBoonyoungmodelsonlyexistedasmolecularcoordinatefiles,aneffortwasmade

hereintogenerateCIFsfromtheoriginalfiles.ACIFwasgeneratedfromthemolecular

coordinatefileprovidedfortheRousselmodel.However,itwasdeterminedthatthe

NueangnorajModelandBoonyoungModelweretoodistortedandtoosmall,respec‐

tively,togenerateaCIFthatwouldaccuratelyreplicatethereportedmodel’sstructure.

AllofthemodelsreviewedinthisworkareshownindetailinFiguresS5‐S20.Several

ofthemodelshavemultiplevariants,asexplainedinthemaintext.Thefiguresdepict

a a sectionofconnectivitybetweentwo“nodes”oftheFAU‐ZTCstruc‐

ture,formedwithinandbetweentwosupercagesoftheoriginalFAUzeoliteframework,

and b anextendedmulti‐celldepictionoftheFAU‐ZTCstructureshowingpore‐to‐pore

regularitywitharepeatdistanceof~1.4nm correspondingtothedominant 111 re‐

flectiongiveninTableS1 .Structuralfilesofallmodelsareavailableasadditionalsup‐

portinginformationinthiswork.

s9

FigureS5.RousselModel 2006 : a atwo‐cellclosed‐strutsubunitand b anextendedmulti‐cellstructure.

FigureS6.NishiharaModel0a 2009 : a atwo‐cellclosed‐strutsubunitand b anex‐tendedmulti‐cellstructure.

s10

FigureS7.NishiharaModel0b 2009 : a atwo‐cellclosed‐strutsubunitand b anex‐tendedmulti‐cellstructure.

FigureS8.NishiharaModelI 2009 : a atwo‐cellopen‐blade"buckybowl"subunitandb anextendedmulti‐cellstructure.Hydrogenisexcludedforclarity.

s11

FigureS9.NishiharaModelI 2009 : a atwo‐cellopen‐blade"buckybowl"subunitandb anextendedmulti‐cellstructure.Hydrogenisshowninwhite.

FigureS10.NueangnorajModel 2013 : a atwo‐cellclosed‐strutfullerene‐likesubunitand b anextendedmulti‐cellstructure.

s12

FigureS11.NueangnorajModel 2013 :atwo‐cellclosed‐strutfullerene‐likesubunitwithoxygenshowninredandhydrogenshowninwhite.

FigureS12.KimModel 2016 : a tetrahedrally‐coordinated“closed‐strut”subunitwithpartialoccupancyoneachlatticesite probabilityofoccupationindicatedbyshadingfromdarkgrey,22%,towhite,10% and b anextendedmulti‐cellstructure.

s13

FigureS13.KimModel 2016 : a arepresentativesubunitwithpartialoccupancyoneachlatticesiteand b anextendedmulti‐cellstructure.

FigureS14.NishiharaModelII 2018 : a arepresentativetwo‐cellopen‐bladesubunitoutof36differentsubunitswithinthe2 2 2supercell and b anextendedmulti‐cellstructure.Hydrogenisexcludedforclarity.

s14

FigureS15.NishiharaModelII 2018 : a arepresentativetwo‐cellopen‐bladesubunitoutof36differentsubunitswithinthe2 2 2supercell and b anextendedmulti‐cellstructure.Hydrogenisshowninwhite.

FigureS16.NishiharaModelII 2018 : a arepresentativetwo‐cellopen‐bladesubunitoutof36differentsubunitswithinthe2 2 2supercell and b anextendedmulti‐cellstructure.Oxygenandhydrogenareshowninredandwhite,respectively.

s15

FigureS17.BraunModelNR 2018 : a tetrahedrally‐coordinated,negativelycurved“closed‐strut”subunitand b anextendedmulti‐cellstructure.

FigureS18.BraunModelR 2018 : a tetrahedrally‐coordinated,negativelycurved“closed‐strut”subunitand b anextendedmulti‐cellstructure,afterstructuralrelaxa‐tion.

s16

FigureS19.TanakaModelIV 2018 : a arepresentativetwo‐cellopen‐bladesubunitoutof100differentsubunitswithinthe3 3 3supercell and b anextendedmulti‐cellstructure.

FigureS20.BoonyoungModel 2019 :tetrahedrally‐coordinated“closed‐strut”subunit.

s17

7.ExaminationofClaimsofBraunandCoworkers

Inrecentwork,Braunandcoworkersclaimedto“establish”thatcurrentlysynthe‐

sizedZTCscanbemodeledandunderstoodasaformofschwarzite.S3Severaloftheir

keyclaimsarereproducedbelow:

“Aswewillshow,thesimilaritybetweenZTCsandschwarzitesis

striking,andweexplorethissimilaritytoestablishthatthetheoryof

schwarzites/TPMSsisausefulconcepttounderstandZTCs.” page

1 S3

“Inthiswork,wedevelopanimprovedmoleculardescriptionofZTCs,

showthattheyareequivalenttoschwartzites sic ,andthusmakethe

experimentaldiscoveryofschwarzitesexpostfacto.” page1 S3

“Althoughschwarziteshavebeenapurelyhypotheticalconcept,our

worksuggeststhatZTCsareschwarzitesincarnate.” page6 S3

Intheanalysisperformedinthisreview,ithasbeenclearlyshownthatnoneofthe

modelsproposedbyBraunandcoworkersrepresentarchetypicalFAU‐ZTC.Thesimu‐

latedXRDpatternoftheBraunModelexhibitsmultiplepeaksabove12°whichhavenot

beenobservedforarchetypicalFAU‐ZTCoranyothercarbonsynthesizedinsideazeo‐

litetemplate.Furthermore,thesimulatedsurfaceareaoftheBraunModelis1440‐1480

m2g‐1,closertothatofaone‐sidedgraphenesheetthanthatofarchetypicalFAU‐ZTC.

Theveryhighsurfaceareaofwell‐replicateZTCssynthesizedinthelaboratoryareindic‐

ativeofopen‐bladestructuresasopposedtoclosed‐tubestructuresliketheBraun

Model.Lastly,thecalculatedSPDoftheBraunModelisroughlytwicethatofarchetypi‐

calFAU‐ZTCwhencarefulconsiderationofthenatureofthezeolitetemplateistaken.It

shouldalsobenotedthattheBraunModelandallothercarbon‐onlymodelsarehighly

misrepresentativeoftheactualchemicalcompositionoflaboratory‐synthesizedZTCs

whichcontainaveryhighcontentofhydrogen afactorthatdistinguishesZTCsfromac‐

tivatedcarbons aswellasoxygen.

Braunandcoworkersincorrectlyclaim:

“WehavedevelopedatheoreticalframeworktogenerateaZTCmodel

fromanygivenzeolitestructure,whichweshowcansuccessfullypre‐

dictthestructureofknownZTCs.” abstract S3

“OurmethodcorrectlydescribesthestructuresoftheknownZTCs…”

page6

s18

“ T hislibraryshouldserveto…providecomputationalscientists

withrealisticatomisticmodels.” page6 S3

“Indeed,theexperimentalpropertiesofZTCsareexactlythosewhich

havebeenpredictedforschwarzites…” page1 S3

Weemphasizethatwhiletheaboveclaimsarefactuallyincorrect,allofthemodelsre‐

portedintheirworkareinterestingpurelyforfundamentalreasons;theyrepresenthy‐

potheticalschwarzitematerialsthat besynthesizedwithinazeolitetemplateun‐

derthecorrectsyntheticconditions.

ItisimportanttonotethatBraunandcoworkerswerenotthefirsttoestablishahy‐

potheticallinkbetweenZTCsandschwarzites.ThislinkisattributedbothtoKyotaniand

coworkersovermanyyearsintheirresearch,aswellasRousselandcoworkerswho

firstpublishedthisideain2007.S4Furthermore,themodelsreportedbyBraunand

coworkersshouldbemoreaccuratelydefinedas“non‐balanced”schwarzitessincethey

donotseparatespaceintotwoidenticalvolumes.Twoexamplesoffalseclaimsastothe

noveltyofthelinkbetweenZTCsandschwarzitesaspresentedin2019arereproduced

below:

“ O urresultsestablishtherelationshipbetweenZTCsand

schwarzites—carbonmaterialswithnegativeGaussiancurvaturethat

resembleTPMSs—linkingtheresearchtopicsanddemonstratingthat

schwarzitesshouldnolongerbethoughtofaspurelyhypotheticalma‐

terials.” page1 S3

“ W ehaveshownhowZTCscanbeassociatedwithTPMSs,linking

theresearchtopicsofZTCsandschwarzites.” page6 S3

WhiletheBraunmodelsretainimportanceasidealizedhypotheticalschwarzitesthat

mayeventuallybesynthesizedinthelaboratoryunderconditionsstillunknowntothe

experimentalcommunity,theabovefalseclaimsarealreadyleadingtoveryimportant,

erroneousmisrepresentationsofZTCsinrecentreportsbyotherresearchers.Thefol‐

lowingareseveralexamplesofmistakendepictionsoftheBraunmodelsasaccuraterep‐

resentationsofexperimentalZTCs,orofthegeneralconclusionthatZTCsarenowtobe

classifiedasschwarzites.

“UCBerkeleychemistshaveprovedthatthreecarbonstructuresre‐

centlycreatedbyscientistsinSouthKoreaandJapanareinfactthe

long‐soughtschwarzites…” paragraph2 S5

s19

“... zeolite‐templatedcarbons werebeinginvestigatedforpossible

interestingproperties,thoughthecreatorswereunawareoftheir

identityasschwarzites,whichtheoreticalchemistshaveworkedon

fordecades.” paragraph3 S5

“Theteamdeterminedthat,oftheapproximately200zeolitescreated

todate,only15canbeusedasatemplatetomakeschwarzites,and

onlythreeofthemhavebeenusedtodatetoproduceschwarzite

ZTCs.” paragraph17 S5

“Ithasbeenrecentlyreportedthatthegrowthofcarboninsidethe

hardporousmaterials,so‐calledtemplatecarbonization,hassuccess‐

fullysynthesizedcarbonswithstructuresthatfitsthedescriptionof

schwarzites.” page1 S6

“Recently,Braunetal.developedatheoreticalframeworktogenerate

aZTCmodelfromanygivenzeolitestructure,predictingthestructure

ofknownZTCs...” page93 S7

“...a3Dgraphenethatmaintainstheuniqueelectronicpropertiesof

planargraphene...canbeachievedviatemplatingstrategies...assug‐

gestedcomputationallyviazeolitetemplating.” page5 S8

“ R ecently,Braunetal.developedanefficientcomputationalap‐

proachtogenerateanaccurateZTCstructureatatomiclevelsin

agreementwithexperimentdata.” page2 S9

“InZTCwhichisrecognizedasschwarzite,sp2carbonsurfacedivides

astructureintotwodisjointspaceswhichdon'texchangemolecules.”

page4 S9

s20

8.SupportingReferences

S1. Macrae,C.F.;Edgington,P.R.;McCabe,P.;Pidcock,E.;Shields,G.P.;Taylor,R.;

Towler,M.;Streek,J.V.D.,Mercury:visualizationandanalysisofcrystalstructures.J.

Appl.Crystallogr.2006,39 3 ,453‐457.

S2. Willems,T.F.;Rycroft,C.H.;Kazi,M.;Meza,J.C.;Haranczyk,M.,Algorithmsand

toolsforhigh‐throughputgeometry‐basedanalysisofcrystallineporousmaterials.Mi‐

cropor.Mesopor.Mat.2012,149 1 ,134‐141.

S3. Braun,E.;Lee,Y.;Moosavi,S.M.;Barthel,S.;Mercado,R.;Baburin,I.A.;Proser‐

pio,D.M.;Smit,B.,Generatingcarbonschwarzitesviazeolite‐templating.Proc.Natl.

Acad.Sci.U.S.A.2018,115 35 ,E8116‐E8124.

S4. Roussel,T.;Didion,A.;Pellenq,R.J.‐M.;Gadiou,R.;Bichara,C.;Vix‐Guterl,C.,Ex‐

perimentalandAtomisticSimulationStudyoftheStructuralandAdsorptionProperties

ofFaujasiteZeolite‐TemplatedNanostructuredCarbonMaterials.J.Phys.Chem.C2007,

111,15863‐15876.

S5. Sanders,R. 2018,August13 .Long‐soughtcarbonstructurejoinsgraphene,full‐

erenefamily.Retrievedfromhttps://news.berkeley.edu/2018/08/13/long‐sought‐car‐

bon‐structure‐joins‐graphene‐fullerene‐family/

S6. Boonyoung,P.;Kasukabe,T.;Hoshikawa,Y.;Berenguer‐Murcia,Á.;Cazorla‐

Amorós,D.;Boekfa,B.;Nishihara,H.;Kyotani,T.;Nueangnoraj,K.,ASimple“Nano‐

Templating”MethodUsingZeoliteYTowardtheFormationofCarbonSchwarzites.

Front.Mater.2019,6,104.

S7. Nicolaea,S.A.;Wangb,X.;Hedinb,N.;Titiricia,M.‐M.,Refinedbiocarbonsforgas

adsorptionandseparation.GreenCarbonEuropeanTrainingNetwork2019,83.

S8. Martin,J.W.;deTomas,C.;Suarez‐Martinez,I.;Kraft,M.;Marks,N.A.,Topology

ofdisordered3Dgraphenenetworks.Phys.Rev.Lett.2019,123 11 ,116105.

S9. Cui,J.;Zhang,K.;Zhang,X.;Lee,Y.,Acomputationalstudytodesignzeolite‐tem‐

platedcarbonmaterialswithhighperformanceforCO2/N2separation.Micropor.Meso‐

por.Mat.2019,109947.

top related