solar and interplanetary sources of g eomagnetic disturbances

Post on 25-Feb-2016

38 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Solar and Interplanetary Sources of G eomagnetic disturbances. Yu.I. Yermolaev , N. S. Nikolaeva, I. G. Lodkina, and M . Yu . Yermolaev Space Research Institute (IKI - ) , RAS, Moscow, Russia - PowerPoint PPT Presentation

TRANSCRIPT

Solar and Interplanetary Sources of Geomagnetic disturbances

Yu.I. Yermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev

Space Research Institute (IKI - ), RAS, Moscow, Russia

Several results have been published and may be found in http://www.iki.rssi.ru/people/yyermol_inf.html

yermol@iki.rssi.ru

Space Weather Effects on Humans:in Space and on EarthInternational Conference

IKI, Moscow, June 4-8, 2012

History• After Richard Carrington’s observation of strong

solar flare on 1 September 1859 and strong magnetic storm in 18 hours after flare there was point of view that solar flares are sources of magnetic storms.

• Modern observations showed that after most part of flares there is no magnetic storms and

• many storms are observed without any solar activity.

Solar flares and magnetic storms during 1976-2000

Main reason of magnetospheric disturbances is negative (southward) component of Interplanetary Magnetic

Field (IMF Bz < 0)• Non-disturbed solar wind contains IMF

which lies in ecliptic plane => Bz =0 ! • Only disturbed types of solar wind may be

geoeffective.

Large-scale types of solar wind

(From Yermolaev, Cos.Res.,1990; Planet. Space Sci., 1991)

General concept of storm effectiveness

of solar and interplanetary events

Fast stream

Slow stream

Aims of research• Occurrence rate of different types of solar

wind• Geoeffectiveness (number of selected

type of solar wind resulted in magnetic storm with Dst < - 50 nT divided by total number of this type)

• Efficiency (with `output/input` criteria) in generation of magnetic storms by different types of solar wind

Example of OMNI data and calculated

parameters in our database ftp://ftp.iki.rssi.ru/pub/omni

(left)and identification of solar wind

typesftp://ftp.iki.rssi.ru/pub/omni/catalog/

( bottom)

Yearly number of different types of large-scale solar wind phenomena

• Heliospheric current sheet HCS ~ 124±81per year (maximum near

solar minimum)

• Corotating interaction region CIR ~ 63±15 (at decrease of cycle)

• Interplanetary СМЕ or Ejecta ~ 99±38 (at increase and decrease of cycle)

• Magnetic cloud МС ~ 8±7 (at decrease of cycle)

• Sheath before Ejecta and МС are observed at half of Ejecta и МС (near maximum of cycle)

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

2 04 06 08 0

1 0 01 2 0

CIR

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 0 02 0 03 0 0

HC

S

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

4 08 0

1 2 01 6 0

RS

un n

umbe

r

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 02 03 0

SH

MC

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

5 01 0 01 5 02 0 02 5 0

EJE

CTA

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 02 03 0

MC

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 02 0

RA

RE

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 0 02 0 03 0 04 0 0

FAS

T

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 1ðèñ2. í î ð ì èðî âàí í û å çí à÷åí èÿ ñ î ø èá êàì è

0100200300400

SLO

W

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

4 08 0

1 2 0

SH

Ej

ñð-124,36î ò-81,16

ñð-63,23î ò-15,03

ñð-6,28î ò-5 ,57

ñð-48,30î ò-20,71

ñð-99,3î ò-38,37

ñð-8,09î ò-6,73

ñð-1,47î ò-4,42

ñð-150,87î ò-65,5

ñð-174,8î ò-74,8

à)

á )

â)

ã)

ä )

å)

æ)

ç)

è )

ê)

Durations of different types of large-scale solar wind phenomena

• ~ 29±5 h for IСМЕ (Ejecta),

• ~ 24±11 for magnetic cloud МС,

• ~ 20±4 for CIR,

• ~16±3 for Sheath before ICME (Ejecta),

• ~ 9±5 for Sheath before MC,

• ~5±2 for HCS.

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 1

51 52 53 54 5

dTC

IR

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 1

01 02 03 0

dTH

CS

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

4 08 0

1 2 01 6 0

èñë

î ïÿ

òåí

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 02 03 04 0

dTS

h MC

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

2 04 06 0

dTE

ject

a

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

2 04 06 0

dT M

C

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

2 04 06 0

dTR

are

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 1

1 02 03 04 0

dT S

h E

<dT H C S>4.982.29

<dTC IR>20.174.05

<dT ShE>

16.103.71

<dT Sh M C>

9.485.69

<dTE je cta>29.125.2

<dTM C>24.611.67

<dT Rare>4.4911.48

à)

á )

â)

ã)

ä )

å)

æ)

ç)

Distribution of different types of solar wind during 1976-2000

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

5 0

1 0 0

1 5 0

R(S

unsp

ot n

umbe

r)

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

H C SC IR

SHE e j

EJEC TA

M C

FAS T

SLO W

SH E M C

Distribution of interplanetary sources of magnetic storms

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

5 0

1 0 0

1 5 0R

(Sun

spot

num

ber)

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

C IR

S H E e j

EJE C TA

M C

IN D

SH E M C

Distribution of interplanetary sources of magnetic storms

(taking data gaps into account)

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

5 0

1 0 0

1 5 0R

(Sun

spot

num

ber)

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

C IR

SH E ej

EJEC TA

M C

SHE M C

Distribution of interplanetary sources of magnetic storms

Geoeffectiveness of different types of large-scale solar wind phenomena

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

2 0

4 0

6 0

×èñ

ëî ì

àãíè

òíû

õ áó

ðü ñ

Dst

<-50

íÒ 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 1

02 55 07 5

1 0 01 2 51 5 01 7 5

èñëî

ïÿò

åí

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

0 . 10 . 20 . 30 . 4

Ãåîý

ôô

åêòè

âíîñ

òüC

IR

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

0 . 20 . 40 . 60 . 8

1

Ãåîý

ôô

åêòè

âíîñ

òüS

h ÌÑ ,

Sh E

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

0 . 20 . 40 . 60 . 8

1Ãå

îýô

ôåê

òèâí

îñòü

MC

ñ S

H, M

C á

åç S

H

7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 0 0 0 10

0 . 10 . 20 . 30 . 4

Ãåîý

ôô

åêòè

âíîñ

òüE

ject

a ñ

She

ath,

E

ject

a áå

ç S

heat

h

C IR =0,202

Ñóì ì àðí àÿ ãåî ýô ô åêòèâí î ñòü:Sh Ì Ñ= 0,152Sh E= 0,155

MC(c Sh)=0,633M C (áåç Sh)=0,545

Ejecta(ñ Sh)=0,212Ejecta(áåç Sh)=0,08

(à)

(á )

(â)

(ã)

(ä )

(å)

21 öèêë 22 öèêë 23 öèêë

Geoeffectiveness

sola

r win

d ph

enom

ena

Duration of main phases of magnetic storms and

double superposed epoch method

-12 -6 0 6 12 18 24

-80

-40

0

40D

st, n

T

9 :00 15:00 21:00 3:00 9:00 15:00

-80

-40

0

40

Dst

, nT

E poch tim e, hours____

20:00 2:00 8:00 14:00 20:00 2:00

-80

-40

0

40

Dst

, nT

1 :00 7:00 13:00 19:00 1:00 7:00 13:00

-80

-40

0

40

Dst

, nT

26 .04.1984

30.06 .1982

26.11.1977

Behavior of parameters obtained by double superposed epoch method

Variations of parameters obtained by double superposed epoch method

Behavior of solar wind parameters in various types of streams during

magnetic storms with Dst ≤ –50 nT

Connection of magnetospheric indexes with Bz component of IMF

Connection of magnetospheric indexes with Ey component of electric field

Efficiency of various types of solar wind streams

Number of events N, geoeffectiveness (probability) P and efficiency Ef=Dst/Ey

Conclusions On the basis of our «Catalog of large-scale solar wind phenomena during 1976-2000» (see data on site ftp://ftp.iki.rssi.ru/omni/ and paper by Yermolaev et al., Cosmic Research, 2009, №2) we obtained:

1. Occurrence rate of different types of solar wind:

average number: 124±81 events per year for HCS, 8±6 for МС, 99±38 for Ejecta, 46±19 for Sheath before Ejecta, 6±5 for Sheath before МС, и 63±15 for CIR;

duration of events: ~ 29±5h for Ejecta, ~ 24±11 for МС, ~ 20±4 for CIR, ~16±3 for Sheath before Ejecta, ~ 9±5 for Sheath before MC, ~5±2 for HCS;

Time distribution: steadt types of solar wind (FAST+ SLOW + HCS) 60%, CIR 10%, MC 2%, EJECTA 20%, Sheath 9%.

2. Geoeffectiveness of events: 0.613 for MC, 0.142 for Ejecta, 0.202 for CIR, 0.633 for MC with Sheath, 0.545 for MC without Sheath, 0.212 for Ejecta with Sheath, 0.08 for Ejecta without Sheath.

These results are published in Cosmic Research. 2009, № 5 and 2010, № 1http://www.iki.rssi.ru/people/yyermol_inf.html yermol@iki.rssi.ru

Conclusions(2) 3. Efficiency• Dependencies of Dst (or Dst*) on the integral of Bz (or Ey) over time are almost

linear and parallel for different types of drivers (time evolution of main phase of storms depends not only on current values of Bz and Ey but also on their prehistory).

• We estimated efficiency of storm generation as “output/input”= Dst/integated Ey(Bz) ratio.

• Efficiency of storm generation by MC is the lowest one (i.e. at equal values of integrated Bz or Ey the storm is smaller than for another drivers) and

• Efficiency for Sheath is the highest one.

Several results have been published in Ann.Geophys. 2010 and Journal Geophys. Res., 2012 may be found in http://www.iki.rssi.ru/people/yyermol_inf.html

yermol@iki.rssi.ru

top related