spatio-temporal chirped pulse amplification for avoiding spectral modifications in ultra- short...

Post on 30-Dec-2015

224 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral

Modifications in Ultra-Short Petawatt Lasers

C. Radier1,2, F. Giambruno1,3, C. Simon-Boisson2, V. Moro2, G. Chériaux1

1 LOA, Chemin de la Hunière, 91761 Palaiseau Cedex, France2 TOSA-DSL, 2 Avenue Gay Lussac, 78995 Elancourt, France

3 ILE, CNRS, Ecole Polytechnique, ENSTA, Institut d’optique, 91761 Palaiseau Cedex, France

christophe.radier@fr.thalesgroup.com

Palaiseau - FRANCE

Context (1/2)

http://loa.ensta.fr/ UMR 7639

• Generation of multi-tens of joules energy and several tens of femtoseconds duration pulses leading to petawatt peak power levels

• Extremely high peak power pulses (10 PW) :=> Vulcan laser 300 J / 30 fs (OPCPA) in LBO and KDP => Apollon-10P 150 J / 15 fs (CPA) in Ti:Sa

• Management of the spectral energy distribution in terms of shape and bandwidth during their amplification process :

=> Temporal profile adapted to the high intensity interaction

1,20

1,40

1,60

1,80

2,00

2,20

2,40

650 700 750 800 850 900 950

Wavelength (nm)

No

rmal

ized

sp

ectr

al g

ain

(u

.a.)

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

650 700 750 800 850 900 950

Wavelength (nm)

No

rmal

ized

sp

ectr

al in

ten

sity

(u

.a.)

Context (2/2)

http://loa.ensta.fr/ UMR 7639

• OPCPA configuration in LBO / BBO / KDP :Control of the spectrum (width and shape) by the angles in the non-linear crystal and by the pump (temporal profile and intensity)

• CPA configuration in Ti:Sa :Amplification of temporally chirped pulses

=> Gain narrowing (inhomogeneous spectral gain )

Input : Δλ½ = 85 nm

Pass 6 : Δλ½ = 62 nm

Frantz et Nodvik model : « Gain regime : J0(t) ~ Jsat / 1000 & G = 100 » 

Context (2/2)

http://loa.ensta.fr/ UMR 7639

• OPCPA configuration in LBO / BBO / KDP :Control of the spectrum (width and shape) by the angles in the non-linear crystal and by the pump (temporal profile and intensity)

• CPA configuration in Ti:Sa :Amplification of temporally chirped pulses

= Gain shifting (amplification saturation )

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

650 700 750 800 850 900 950

Wavelength (nm)

No

rmal

ized

sp

ectr

al in

ten

sity

(u

.a.)

0,90

1,10

1,30

1,50

1,70

1,90

-1500 -1000 -500 0 500 1000 1500

Wavelength (nm)

No

rmal

ized

sp

ectr

al g

ain

(u

.a.) Input : λc = 794 nm

Pass 6 : λc = 808 nm

Frantz et Nodvik model : « Saturation regime : J0(t) ~ Jsat / G = 1,8 » 

Duration (ps)

Existing solutions

http://loa.ensta.fr/ UMR 7639

• Different relevant active and passive solutions to overcome the gain narrowing issue (mJ-level pulses in the 10 fs regime)

Acousto-optic programmable dispersive filter1

Multilayer Gain Narrowing compensators2,3,4

Negatively and Positively Chirped Pulsed Amplification5

• No solution to suppress the spectral shape modifications due to saturation effects at moderate or high level energy (> 1J). 1. F. Verluise et al., “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping”, Opt. Lett. 25, 575–577 (2000). 2. A. Amani Eilanlou et al., “Direct amplification of terawatt sub-10-fs pulses in a CPA system of Ti:sapphire laser,” Opt. Express 16, 13431–13438 (2008).3. H. Takada, et al., “High-repetition-rate 12fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006).4. L. Antonucci, et al., “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379 (2009). 5.  M. P. Kalashnikov et al., “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059 (2005).

Spatio-Temporal Chirped Pulse Amplification(STCPA) (1/2)

http://loa.ensta.fr/ UMR 7639

• Principle : Combination of temporal and spatial

dispersion enable amplified spectra to be unaffected by saturation effect.

i.e. spatially spreading spectral components to separately amplify them and thus deleting the gain competition

• Principle : Combination of temporal and spatial

dispersion enable amplified spectra to be unaffected by saturation effect.

Spatio-Temporal Chirped Pulse Amplification(STCPA) (1/2)

http://loa.ensta.fr/ UMR 7639

Oscillator Stretcher Power amplifier Compressor

Classical CPA scheme

Ti:Sa Crystal

Pump Beam

IR Beam

Spatio-Temporal Chirped Pulse Amplification(STCPA) (1/2)

http://loa.ensta.fr/ UMR 7639

• Principle : Combination of temporal and spatial

dispersion enable amplified spectra to be unaffected by saturation effect.

STCPA scheme Spatial spreading Spatial compression

Oscillator Stretcher Power amplifier Compressor

Gain zone shape adaptation

Ti:Sa Crystal

Pump Beam

IR Beam

Spatio-Temporal Chirped Pulse Amplification(STCPA) (2/2)

http://loa.ensta.fr/ UMR 7639

• Advantages : No spectral shifting while preserving energy extraction in saturation regime i.e. saturation effect is equally distributed on all the spectral range instead of only the infrared edge.

• Conditions :Input pulse has to be collimatedSpatial spreading law has to be inverse of that of spatial compressionPump beam has to be matched to the oblong seeded beam

• Inconvenient :Gain narrowing not avoided in this configuration

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Ti:Sa Oscillator

Frequency doubledNd:YVO4

3,8 nJ / 80 MHz

3,7 W

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Öffner triplet Stretcher

Ti:Sa Oscillator

Frequency doubledNd:YVO4

3,8 nJ / 80 MHz250 ps

3,7 W

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Regenerative Amplifier

Öffner triplet Stretcher

Ti:Sa Oscillator

Frequency doubledNd:YVO4

3,8 nJ / 80 MHz250 psQ-switched

Nd:YLF

3,7 W1,5 mJ1 kHz

7,1 mJ / 1 kHz

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Regenerative Amplifier

Öffner triplet Stretcher

Ti:Sa Oscillator

Frequency doubledNd:YVO4

3,8 nJ / 80 MHz250 psQ-switched

Nd:YLF

3,7 W500 µJ1 kHz

7,1 mJ / 1 kHz

+ Birefringent Plate

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Nd:YAG

LaK8 Prisms

Cylindric lenses

Multipass amplifier6 passes

Regenerative Amplifier

Öffner triplet Stretcher

Ti:Sa Oscillator

Frequency doubledNd:YVO4

Output

3,8 nJ / 80 MHz250 psQ-switched

Nd:YLF

180 mJ / 10 Hz

3,7 W500 µJ1 kHz

Pockels Cell

40 µJ10 Hz

Ti:Sa Absorption : 90%

7,1 mJ / 1 kHz

+ Birefringent Plate

Ø = 15 mm

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

40 µJ10 Hz

Nd:YAG

Cylindric lenses

Multipass amplifier6 passes

180 mJ / 10 Hz

Ti:Sa Absorption : 90%

OutputØ = 15 mm

Aspect Ratio of 1,6

IR Beam Before Prisms

Øx,y,FWHM = 1900 µm

IR Beam After Prisms

Øy,FWHM = 1900 µmØx,FWHM = 3000 µm

LaK8 Prisms

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Nd:YAG

Cylindric lenses

Multipass amplifier6 passes

180 mJ / 10 Hz

40 µJ10 Hz

Ti:Sa Absorption : 90%

Wavelength spreading 19 nm/mm

OutputØ = 15 mm

LaK8 Prisms

IR Beam After Prisms

Øy,FWHM = 1900 µmØx,FWHM = 3000 µm

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Nd:YAG

Cylindric lenses

Multipass amplifier6 passes

180 mJ / 10 Hz

40 µJ10 Hz

Ti:Sa Absorption : 90%

Output Beam Pump

Øx,y,FWHM = 10 mm

Right Side

Øy,FWHM = 600 µmØx,FWHM = 4000 µm

Left Side

Øy,FWHM = 600 µmØx,FWHM = 4000 µm

OutputØ = 15 mm

LaK8 Prisms

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Experiment STCPA

0,0

0,2

0,4

0,6

0,8

1,0

720 745 770 795 820 845 870

Wavelength (nm)

Nor

mal

ized

Inte

nsit

y (a

.u.)

Simulation CPA

0,0

0,2

0,4

0,6

0,8

1,0

720 745 770 795 820 845 870

Wavelength (nm)

Nor

mal

ized

Inte

nsit

y (a

.u.)

Nd:YAG

Cylindric lenses

Multipass amplifier6 passes

Output28 mJ~ 1,8 J/cm²

180 mJ / 10 Hz

40 µJ10 Hz

Ti:Sa Absorption : 90%Ø = 15 mm

LaK8 Prisms

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

-100 -50 0 50 100

Nor

mal

ized

Inte

nsit

y (a

.u.)

Duration (fs)

FFT Calculation

Experiment Set Up

http://loa.ensta.fr/ UMR 7639

Far field Near field

Nd:YAG

Cylindric lenses

Multipass amplifier6 passes

Output28 mJ~ 1,8 J/cm²

180 mJ / 10 Hz

40 µJ10 Hz

Ti:Sa Absorption : 90%Ø = 15 mm

LaK8 Prisms

No angular and transverse chirp

Conclusion

http://loa.ensta.fr/ UMR 7639

• First amplification scheme in Ti:Sa using a combination of spatial and temporal chirp

• STCPA concept avoids effects of saturation / enables a control of the amplified spectrum at high energy

• Using appropriate chirp tool : output beam free of angular and transverse chirp

• Fully relevant technique for obtaining very intense and short laser pulses (energy in excess of 10’s of Joules) with good temporal quality

http://loa.ensta.fr/ UMR 7639

Thank you !

top related