subway particles: what do we breathe on platforms … · p3 p2 p1 p4 p3 p2 p1 av. pm 10 =181 µg/m...

Post on 02-Aug-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

SUBWAY PARTICLES: WHAT DO WE BREATHE

ON PLATFORMS AND IN TRAINS?

T. Moreno, V. Martins, MC. Minguillón, C. Reche, F. Amato, E. de Miguel, M. Capdevila, S. Centelles,

X. Querol, W. Gibbons

teresa.moreno@idaea.csic.es

Underground subway systems worldwide transport > 100 million people daily

Ambient PM10 concentrations on platforms can be >> 50 µg/m3.

Subway PM is extremely metalliferous and very different in chemistry from outside ambient air.

THE QUESTION OF AIR QUALITY IN UNDERGROUND SYSTEMS IS NOT TRIVIAL

Inside train PM10 PM2.5 Reference Barcelona 36-100 11-32 Querol et al. 2012 Barcelona 19-75 Martins et al. 2015 Los Angeles 31 24 Kam et al. 2011 Taipei 41 32 Cheng et al. 2008

On platforms PM10 (µg/m3) PM2.5 (µg/m3) Reference Barcelona 87-325 21-186 Querol et al. 2012 Barcelona 133 13-154 Moreno et al. 2014; Martins et al. 2015

Budapest 155 51 Salma et al. 2007 London 1000–1500 270–480 Seaton et al. 2005 Los Angeles 78 57 Kam et al. 2011 Paris 200 61 Raut et al. 2009 Seoul 359 129 Kim et al. 2008 Stockholm 357 199 Johansson & Johansson 2003 Taipei 51 35 Cheng et al. 2008

PM SOURCES IN UNDERGROUND SYSTEMS

Ruedas, railes Fe, Mn, Cr

Frenos Ba, Cu, Sb, As, C, Fe

Catenaria Cu, Zn, C

escobillas motor

Wheels, rails Fe, Mn, Cr

Brakes Ba, Cu, Sb, As

Catenary Cu, Zn, Pb, C

+ resuspension

Outdoor Na, K, NO3, SO4, V, C, etc

Electric brushes Carbon

Ballast, cement Al, Si, Ca, etc

L9: Closed platform system L3: Open platform system

1.25 million passengers per weekday 50% of public transport loading

Average journey time (inside train) 12 minutes

BCN Metro

Continuous aerosol monitoring at 4 platforms during one whole month (twice a year).

Inside trains (6 lines)

24 platforms (6 lines)

BARCELONA METRO AIR QUALITY PROJECT (2013-2015) METHODOLOGY AND WORK PLAN

METHODOLOGY AND WORK PLAN

METHODOLOGY AND WORK PLAN

• ASAP: PM10 samples for microscopy (Cardiff Univ.-UK)

• Coriolis: Bacteria (DNA, RNA) in trains and at platforms – 10 min (CEAB/CSIC, Univ. Laval- Canada & Queensland Univ. of Technology- Australia)

Moreno et al 2014, Atmos Environ 92, 461-68

0

40

80

120

160

11

:55

11

:56

11

:57

11

:59

12

:00

12

:02

12

:03

12

:05

12

:06

12

:07

12

:09

12

:10

12

:12

12

:13

12

:14

12

:16

12

:17

12

:19

12

:20

12

:22

12

:23

12

:24

12

:26

12

:27

12

:29

12

:30

12

:31

12

:33

12

:34

12

:36

12

:37

12

:39

12

:40

12

:41

12

:43

12

:44

12

:46

12

:47

12

:48

12

:50

12

:51

12

:53

12

:54

12

:56

12

:57

12

:58

13

:00

13

:01

13

:03

13

:04

13

:05

La Sagrera PM10 PM2.5 PM1

µg

/m3

VARIABLES: TRAIN FREQUENCY & PASSENGER NUMBERS

425

450

475

500

CO2

Passenger build-up and exchange

425

450

475

500

CO2

pp

m

time

10:10 10:25

time

9:20 09:35

Train IN Train OUT

VARIABLES: PLATFORM VENTILATION

0

40

80

120

160

200

12:04 12:11 12:18 12:26 12:33 12:40 12:47 12:54 13:02 13:09

PM

x (

µg

/m3)

Time (hh:mm)

Joanic WINTER PM10 PM2.5 PM1 Arrival Departure

0

40

80

120

160

200

12:03 12:10 12:17 12:24 12:31 12:39 12:46 12:53 13:00

PM

x (

µg

/m3)

Joanic SUMMER PM10 PM2.5 PM1 Arrival Departure

1 2 3 4

VARIABLES: TUNNEL AND TRAIN VENTILATION

0

40

80

120

160

200

10:33 10:40 10:47 10:55 11:02 11:09 11:16 11:23 11:31

PM

x (

µg

/m3)

Time (hh:mm)

INSIDE TRAINS PM10 PM2.5 PM1 Open Close

With Air Conditioning Without Air Conditioning

WITH FORCED TUNNEL VENTILATION WITHOUT FORCED TUNNEL VENTILATION

µg

/m3

700

175

350

525

700

175

350

525

1h 1h

Martins et al 2015, Sci. Total Env. 511, 711-722

0

20

40

60

80

100

120

140

160

9:27 9:35 9:43 9:52 10:00 10:08 10:17 10:25

Without PSD PM10 PM2.5 PM1

0

20

40

60

80

100

120

140

160

10:21 10:28 10:35 10:42 10:49 10:57 11:04 11:11 11:18 11:25

PM

x (µ

g/m

3)

Time (hh:mm)

With PSD PM10 PM2.5 PM1 Arrival Departure

µg

/m3

VARIABLES: STATION DESIGN AND PISTON EFFECT

TRAIN

TRAIN

0

40

80

120

160

single tunnel with onerail track separated

from the platform by awall with PSDs

one wide tunnel withtwo rail tracks

separated by a middlewall

single narrowtunnel with

one rail track

one wide tunnel with two rail tracks without middle wall

NEW SYSTEM CONVENTIONAL SYSTEM

PM

2.5

(µg

m-3

)

Colder Warmer

VARIABLES CONTROLLING PLATFORM AIR QUALITY

Martins et al 2015, Sci. Total Env. 511, 711-722

Frontal brake pad

Lateral brake pad

2cm

Cu catenary

1cm

Wheels

PM sources in underground systems

1,00

10,00

100,00

NO3- SO42- NH4+ Na Cl PM2.5 TC Al2O3 Ca Mg Fe Pb V Cd Bi Se Sn Ni Rb P U Zn As Li Ti La Ce Co Cr Cu Mn Sb Ba

Subway/Barcelona outdoor

Pb, Ni, As, La, Ce, Co, Cu, Sb

NO3, Na, Cl, PM2.5, Ca, Fe, Rb, Cr, Mn

TC, Al, Mg, V, Bi, Se, Sn, P, Zn, Li, Ti, Ba

SUBWAY PM CHEMISTRY

Llefià Joanic Tetuan Sta Coloma

RAIL/WHEEL BRAKE PADS

Station design: single/double track, access points, depth, ventilation systems, platform door systems

Train frequency and piston effect Passenger numbers Train design: braking systems, wheels, air conditioning, etc. Contamination by outside city air Ferruginous environment influenced by brake pad chemistry

CONCLUSIONS

Implementing Methodologies and Practices to Reduce air pollution Of the subway enVironmEnt 01/10/2014 - 31/03/2018

The objective of the project is to provide to the local and national transport authorities of European countries the appropriate measures and strategies to reduce concentrations of inhalable particulate matter (PM1, PM2.5 and PM10) and identify toxic chemical components in underground rail air.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Al2

O3

Ca K

Na

Mg

Fe P

SO

4

NO

3 Cl

NH

4 Li Ti V Cr

Mn

Co Ni

Cu

Zn As

Se

Rb Sr

Mo

Cd

Sn

Sb

Ba La Ce Pr

Nd W Pb

TC

µg

/µg

Joanic Santa Coloma Tetuan Llefià Source profile of the subway source

Martins et al . Under review

0

20

40

60

80

100

Al2

O3

Ca K

Na

Mg

Fe P

SO

4

NO

3 Cl

NH

4 Li Ti V Cr

Mn

Co Ni

Cu

Zn As

Se

Rb Sr

Mo

Cd Sn

Sb

Ba La Ce Pr

Nd W Pb

TC

% o

f sp

eci

es

con

cen

tra

tio

n

Joanic Santa Coloma Tetuan Llefià

Moreno et al 2014, Atmos Environ 92, 461-68

WITH forced tunnel ventilation WITHOUT forced tunnel ventilation

PM 1 PM 3 PM 10 CO 2 CO PM 1 PM 3 PM 10 CO 2 CO Artigues (1985)

104 38 52 29

314 109 147 80

332 126 163 93

426 417 407 398

<0.1 <0.1 <0.1 0.1

68 33 30 37

200 103 84 92

218 130 104 101

427 421 413 418

<0.1 <0.1 <0.1 0.1

Clot (1997)

52 51 39 38

119 115 83 80

153 157 113 108

528 527 514 509

0.6 0.7 0.7 0.8

72 59 57 111

152 127 130 262

167 152 149 268

470 457 460 470

0.3 0.1 0.2 0.3

P4 P3 P2 P1

P4 P3 P2 P1

Av. PM 10 =181 µg/m 3 > Av. PM 10 =137 µg/m 3

Av. PM 10 =130 µg/m 3 << Av. PM 10 =184 µg/m 3

8.8 m

16.5 m

Universitat (1995)

34 37 39 44

94 98 102 109

115 122 124 135

487 493 479 490

0.8 0.9 0.9 1.0

63 69 80 84

171 183 204 225

221 238 256 282

471 469 468 491

0.6 0.6 0.6 0.6

16.8 m P4 P3 P2 P1

Av. PM 10 =126 µg/m 3

<< Av. PM 10 =250 µg/m 3

P1 P2 P3 P4

SIZE DISTRIBUTION (ELPI)

0

5

10

15

20

25

0

20

40

60

80

100

120

<0,056 0,094 0,156 0,263 0,384 0,616 0,953 1,61 2,4 4,01

Cu

0

1

2

3

4

5

0

2

4

6

8

10

12

<0,056 0,094 0,156 0,263 0,384 0,616 0,953 1,61 2,4 4,01

Fe JOANIC

TETUAN

0,00

0,05

0,10

0,15

0,20

<0,056 0,094 0,156 0,263 0,384 0,616 0,953 1,61 2,4 4,01

Al2O3

0

10

20

30

40

50

0

20

40

60

80

100

<0,056 0,094 0,156 0,263 0,384 0,616 0,953 1,61 2,4 4,01

Mn

0,0

0,1

0,2

0,3

0,4

0,5

0,00

0,10

0,20

0,30

0,40

0,50

<0,056 0,094 0,156 0,263 0,384 0,616 0,953 1,61 2,4 4,01

V

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

140

160

<0,056 0,094 0,156 0,263 0,384 0,616 0,953 1,61 2,4 4,01

Ba

Hematite Magnetite Native Fe

top related