successes in rf cmos circuit design - es.lth.se · some successes 1st success: transmitter...

Post on 10-Apr-2018

219 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Successes in RF CMOS Circuit Design

Henrik Sjöland

2007-09-06

Some Successes

1st Success: Transmitter Linearization2nd Success: CMOS VCO’s3rd Success: CMOS Receivers4th Success: CMOS at High Frequencies5th Success: Adaptive Antenna Matching

…and the PhD:s

1st Success: Transmitter Linearization

• Major project in first 2 stages• Led by Dr. Lars Sundström• Important then – Even more important now!• Required for spectrally efficient systems (3G,LTE, ..)• Both in terminals and base stations• Analog & Digital Pre-Distortion• Power Feedback• LINC

Power Amplifier Characteristics

Principle ofPredistortion

PA

PAPD

Analog Predistortion

• 5th order complex polynomial• 3.3V, 20mA (only 30% in polynomial)• Bandwidth (3dB) 120MHz• Differential 200Ω interface• Hand-tuning of coefficients• Standard 0.8um CMOS process• ISCAS ’99• Improved circuit at ESSCIRC ’01

Eric Westesson

Saturated Class A PA without and with Predistortion

35dB

Eric Westesson

Power Feedback

Power FeedbackBo Shi

• 3.3V, 19mA• RF input bandwidth ~1GHz• Differential 200Ω interface• Standard 0.6um CMOS process• Presented at ISCAS ’99

Power Feedback –Spectrum and Efficiency

10dB

Bo Shi

Direct Synthesis with LINC

• Generate constant envelope phasors at high power levels to be combined prior to the antenna

LINC Signal Vector

SCS withBiCMOSCircuit

Bo Shi

• 5V, 100mW• Operates with IF at 200MHz• Standard 0.8um BiCMOS process• Presented at ESSCIRC ’99, JSSC 2000

SCS withTranslinearBiCMOSCircuit

Bo Shi

• 5V, 70mW• Operates with IF at 200MHz• Standard 0.8um BiCMOS process• Presented at VLSI Symp. 2000

Experimental Results

55dB

Bo Shi

• PHS signalπ/4 shifted DQPSK

• 384 Kbps

SCS withTranslinearCMOS Circuit

Bo Shi

• 5V, 80mW• Operates with IF at 100MHz• Standard 0.35um CMOS process• Presented at CICC ’01

Experimental Results

48dB

Bo Shi

• IS-95 signalOQPSK

• 1.2288 Mbps

2nd Success: CMOS VCO:s• Varactors: Continuous and switched• Phase noise improvements• Low voltage VCO:s• Quadrature VCO:s• High frequencies (presented tomorrow)

CMOS VaractorsPietro Andreani

• MOS device versus ”standard” diode varactor• Strong/weak inversion MOS versus

accumulation/depletion MOS • Embedded in VCO’s with bond wire inductors• ESSCIRC ’98, ISCAS ’99 and 2000, JSSC 2000

A-MOS Varactor

Pietro Andreani

• S. Mattisson ’97• Lee et al., Castello et al.,

VSLI Symposium ’98

Differential Switched Tuning

• Digital coarse frequency tuning• High linearity• Flexibility• Doubled Q compared to

single-ended scheme• IEEE TCAS-II, 2002

b0 b0 b0

C W Cb1 b1 b1

2C 2W 2C

b2 b2 b2

4C 4W 4C

To differentialresonator

Henrik Sjöland

Monolithic CMOS VCO’s with Low Phase Noise (I)

Henrik Sjöland

• High frequency noisefrom tail current is eliminated

• L and C uncritical• designed when he

was at UCLA in Prof. Abidi's group

Phase Noise and Layout

• Better performance than commercial modules• 0.35μm BiCMOS6M process (one thick metal)• ISSCC 01, JSSC December 2001

Henrik Sjöland

Monolithic CMOS VCO’swith Low Phase Noise (II)

• All noise from the tailcurrent is eliminated

• Off-chip inductor is uncritical

Piero AndreaniHenrik Sjöland

Phase Noise and Layout

Piero AndreaniHenrik Sjöland

• 1.4 V, 9 mA• Digital 0.35um CMOS process• CICC ’01, VLSI Symp. ’01, JSSC ’02

Low Voltage 2.4GHz CMOS VCO

• 1V, 5.5mA, 2.4GHz,15% tuning, -136dBc/Hz @ 3MHz offset, Asia-Pacific ‘02

• 0.7V, 2.8mA, 2.4GHz,13% tuning,-130dBc/Hz @ 3MHz offset, Rawcon ‘02

0.9mm

1.0 mm

Niklas Troedsson

Low Voltage Quadrature VCO + Buffer

• 1.3V, 5.4mA,1.8GHz (DCS)• 0.25um• -138dBc/Hz @ 3MHz offset • Norchip ’03• Springer Journal ‘05

I− I+

Vctrl

OI+

Vctrl

Q− Q+

Vctrl

OQ−OQ+

VctrlI− I+ Q− Q+

OI−

1700 1750 1800 1850 1900 1950−145

−140

−135

−130

−125

−120

Oscillation Frequency (MHz)

Pha

se N

oise

@ O

ffset

Fre

quen

cy

600kHz offset

3MHz offset

Niklas Troedsson

CAD tool for integrated inductors

Homepage:www.indentro.com

Niklas Troedsson

3rd Success: CMOS Receivers

• Linear Frontend• Low Voltage Frontends• Dual Band Frontend• Gm-C Filters

Merged LNA and Mixer forWCDMA Front End

2.7 V, 8 mA, 2.1 GHz3.2 dB NF, -1.5 dBm IIP3< -71 dBm LO @ antennaVLSI Symp. ’01, JSSC ’03 Henrik Sjöland

1V CMOS Bluetooth Front-End

0.25um CMOS 1V, 2.5mA, 2.4GHz14dB Conversion Gain5dB NF-5dBm IIP3, -15dBm CP1ESSCIRC ‘02

Fredrik Tillman

Linearized 1V CMOS front-end

-28 -24 -20 -16 -12

RF input power (dBm)

(dB

m)

-60

-40

-20

0

VLSI Symposium ‘03 Fredrik Tillman

Low Voltage Quadrature Front-End

CMOS chip featuring:• QVCO• VCO Buffers• LNA• Novel Quadrature Passive Mixers

VLSI symposium 2004

Problem of Quadrature Passive Mixers

New Quadrature Passive Mixer

LNA and Mixer Schematic

Fredrik Tillman

Low Voltage Quadrature VCO + Buffer

• 1.3V, 5.4mA,1.8GHz (DCS)• 0.25um• -138dBc/Hz @ 3MHz offset • Norchip ’03• Springer Journal ‘05

I− I+

Vctrl

OI+

Vctrl

Q− Q+

Vctrl

OQ−OQ+

VctrlI− I+ Q− Q+

OI−

1700 1750 1800 1850 1900 1950−145

−140

−135

−130

−125

−120

Oscillation Frequency (MHz)

Pha

se N

oise

@ O

ffset

Fre

quen

cy

600kHz offset

3MHz offset

Niklas Troedsson

Die Photo and Measured Results

LNA+mixer QVCO+buffer

0.83mm

1.98mm

Fredrik Tillman Niklas Troedsson

RF bandwidth 1.7-1.86GHzConversion gain 16dB

Noise figure 6dBCP1 -18dBmIIP2 27dBm

IIP3 -6dBmIF phase error < 1.8o

Power consumption 9.6mW

Supply voltage 1.2V

Dual Band Front-End

Kittichai Phansathitwong

Chip Photo and Experimental Results

• Chip area of 1.4 mm2

• 0.18um CMOS• 2 GSSG pads

1V 1.8V

2.2GHz 4.0GHz 2.2GHz 4.0GHz

Noise Figure (dB) 3.5 3.0

15

-17

-6

-26

2.4

3.0

Conv. Gain (dB) 10

3.2

11.5

-11

0

-17

15

1-dB comp. (dBm) -11 -17

IIP3 (dBm) 0 -6

S11 (dB) -18 -23

Power Consumption(mW)

2.4 4.7 4.7

Kittichai Phansathitwong

CMOS gm-C IF Filter for Bluetooth

Specifications• 1MHz pass band• 3MHz center frequency• Out-of-band rejection > 40 dB, falling

asymptotically with 60 dB/dec• Group delay ripple less than 1μs• 2.5V, 2.4mA• CICC 2000

Pietro Andreani

Polyphase gm-C ArchitecturePiero Andreani

Lowpass passive stage

Polyphase activegm-C stage

Lowpass activegm-C stage

Transconductor

CMOS gm-C Polyphase IF Filter

Specifications• Bluetooth application

• 5th order Butterworth

• B = 1MHz, fc= 3MHz

• Notch stage at fc ± 1MHz

• ESSCIRC 2000Pietro Andreani

Transfer Function and Image Band without and with Bias Adjustment

Piero Andreani

59dB 69dB

Summary of Results

Pietro Andreani

Parameter ValueVdd 2.4 V

Idd 3.2 mAOrder 5th + 2nd (10th + 4th bp.)

Center frequency (fc) 3 MHz

Suppression @ fc ± 1MHz > 40 dB

Noise (BN=2MHz) 170 µVrms

SFDR > 53 dB

Image band rejection > 59 dB out-of-band

Dimensions 680 µm x 550 µm

Bandwidth 1 MHz

Group delay variation 0.5 µs

4th Success: CMOS at High Frequencies

Measured:• 23GHz QVCO (presented tomorrow)• 8GHz beamforming transmitter

Under fabrication/measurement:• 10GHz quadrature receiver• 60GHz VCO:s• 24GHz beamforming receiver• 23GHz homodyne receiver• 24GHz beamforming transmitter• 60GHz frequency-doubling PA

8GHz beamforming transmitter

Schematics

PA

QVCO and Buffer

Board and Die

Measurement results

103 104 105 106

-140

-120

-100

-80

-60

-40

-20

Phase noise measurement of three chips and simulation

Phas

e no

ise

(dB

c/H

z)

f (Hz)

chip 1, FOM=180 dBchip 2, FOM=182 dBchip 3, FOM=181 dBSimulation, FOM=181 dB

7.7 7.8 7.9 8 8.1 8.2-7

-6

-5

-4

-3

-2

-1

Maximum output power

f (GHz)

Out

put p

ower

(dB

m)

chip 1, tuning range: 4.5%chip 2, tuning range: 4.9%chip 3, tuning range: 4.6%

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

Theoretical phase offset

Mea

sure

d ph

ase

offs

et

chip 1chip 2chip 3

5th Success: Adaptive Antenna Interfaces

• Antenna impedances seldom 50Ω due to e.g.- Small antennas- Wide bands- Different surroundings

In cooperation with Perlos

AntennaInterface

PA

LNAf

control

Peter Sjöblom

Matching Networks for DVB-H

• TV in your PDA/Phone• 470-702MHz, wide band, low frequency• Reconfigurable matching• 130nm UMC CMOS

Peter Sjöblom

Q and Range of Switched C

• Probe measurements• To appear in TCAS-II

Peter Sjöblom

Mismatch and Matching Domain

• Measured data:- Two mismatch networks, HighZ and LowZ- Impedance Tuing Unit

Peter Sjöblom

Measured Noise Improvement

Low Z High Z

Peter Sjöblom Fredrik Ahlberg

PhD students in Analog/RF

Currently active in industry at LU

(+2 missing)

Conclusions• Many successful RF projects• Lots of RF CMOS circuits designed

(Not all mentioned today)• Skilled researchers produced• Made possible by cooperation in the Centre• Hope to continue this success!

top related