sujetadores y tornillos de potencia engineers need to be continually reminded that nearly all...

Post on 02-Apr-2015

105 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Sujetadores y Tornillos de Potencia

Engineers need to be continually reminded that nearly all engineering failures result from faulty judgments rather than faulty calculations.Eugene S. Ferguson, Engineering and the Mind’s Eye.

Perfile roscado

Parámetros empleados para definir un perfil roscadoDiámetro mayor, d. Paso por pulgada p=1/n, nº roscas por pulgada

Diámetro de cresta, dc

Diámetro de paso, dp

Diámetro de raiz, dr

Text Reference: Figure 15.1, page 667

Roscado

(a) Simple, (b) doble, y (c) triple.

Text Reference: Figure 15.2, page 667

AVANCEl = tipo roscado x p

Perfiles de rosca

M;

C-basto

F-Fino

Ej.MF8X2-G6

dc/roscas/pulg/ajuste

UN; 8 series de rosca de paso

constante

C-basto

F-Fino

EF-Extra Fino

UN -- M

ACME

Uso: potencia, máquina - herramienta

Ej.UNF1/2X16-1B

dc/roscas/pulg/ajuste

Buttress

Perfil M y UN

Detalle dimensiones de perfiles M y UN.

ht= 0.5p / tan 30º

Text Reference: Figure 15.4, page 668

Ajuste

Serie pulgadas Serie métrica Tornillo Tuerca Tornillo Tuerca

1A 2A 3A

1B (suelto) 2B (normal)

3B (justo)

8g 6g 8h

7H 6H 5H

Equivalencias entre roscas

Text Reference: Table 15.1, page 669

Calidad 3(apretado)-9(Suelto)

Tornillos de potencia: Perfil ACME

Detalle del perfil - Dimensiones. (valores en pulgadas)

Text Reference: Figure 15.5, page 670

Buscamos: mayor ventaja mecánica - posicionamiento.

diametro Cresta, dc, in.

Numero rosca por pulgada, n

Area a tensión, At, in2

Shear stress area, As, in

2 1/4

5/16 3/8

7/16 1/2 5/8 3/4 7/8 1

1 1/8 1 1/4 1 3/8 1 1/2 1 3/4

2 2 1/4 2 1/2 2 3/4

3 3 1/2

4 4 1/2

5

16 14 12 12 10 8 6 6 5 5 5 4 4 4 4 3 3 3 2 2 2 2 2

0.02663 0.04438 0.06589 0.09720 0.1225 0.1955 0.2732 0.4003 0.5175 0.6881 0.8831 1.030 1.266 1.811 2.454 2.982 3.802 4.711 5.181 7.338 9.985

12.972 16.351

0.3355 0.4344 0.5276 0.6396 0.7278 0.9180 1.084 1.313 1.493 1.722 1.952 2.110 2.341 2.803 3.262 3.610 4.075 4.538 4.757 5.700 6.640 7.577 8.511

Text Reference: Table 15.2, page 671

Perfil ACME

Datos cortante para una longitud de roscado de 1 pulg

dp=dc-0.5p-0.01

Tornillo de potencia con collarín

Text Reference: Figure 15.6, page 672

, Ángulo de avance=ArcTan [l/πdp]

Collarín de empuje

Tornillo de potencia con collarín y husillos de bolas

Text Reference: Figure 15.6, page 672

Fuerzas sobre el tornillo de potencia

Fuerzas actuando sobre. (a) paralelepípedo ; (b) sección axial; (c) plano tangencial.

Text Reference: Figure 15.7, page 673

∑Fv=0∑Fh x r =0

DC=OE θn

Tipos de sujetadores roscados

(a) Tornillo y tuerca. (c) Tornillo de cabeza. (c) Birlo.

Nota:Arandela o roldana

Text Reference: Figure 15.8, page 679

Par torsor el tornillo de potencia∑Fv=0∑Fh x r =0

DESCENSOASCENSO

Ejercicios

1. Determine los pares de torsión, de elevación y de descenso, así coma la eficiencia del tornillo de potencia manufacturado con rosca ACME. ¿es autobloqueante? ¿cual es la contribución de la fricción del collarín, en comparación con la fricción del tornillo, si el collarín tiene, a) deslizamiento, m=0,15 b) rodamiento, m=0,02 ambos en aceite. W=1000lb. Rosca Acme 1,25-5 y Omedio collarín =1,75 in.

2. Mismo ejercicio con W=1000lb. Rosca Acme 1-5 roscado doble y Omc=1,5 in. m=0,16 rosca y 0,12 collarín.

3. Igual que el ejercicio dos, pero con roscado simple.

Equivalencia de la conexión: Sistema de resortes

Bolt-and-nut assembly simulated as bolt-and-joint spring.

Text Reference: Figure 15.9, page 680

Force vs. Deflection of Bolt and Member

Force versus deflection of bolt and member.

(a) Seperated bolt and joint.

(b) assembled bolt and joint.

Text Reference: Figure 15.10, page 680

Fueza vs. Deflexión

Text Reference: Figure 15.11, page 681

0)( kbikji ekPekPP

Bolt and Nut

Figure 15.12 Bolt and nut. (a) Assembled; (b) stepped-shaft representation of shank and threaded section.

Text Reference: Figure 15.12, page 682

Bolt and Nut Assembly

))(tan(

))(tan(ln2

tan

cicifi

cicifi

fciji

ddddL

ddddL

dEk

Figure 15.13 Bolt-and-nut assembly with conical fustrum stress representation of joint.

di=dw= diámetro menor del cono de presión

)5,2577,0()5,0577,0(

5ln2

577,0

ci

ci

ciji

dLdL

dEk

))(tan(

))(tan(ln2

tan

cicifi

cicifi

fciji

ddddL

ddddL

dEk

Simplificación tal que el diámetro de la cara de arandela es aproximadamente 50% mayor que el diámetro de la espiga del sujetador en el caso de tornillos de maquinaria y pernos con cabeza hexagonal de tipo estandar

(dw=1,5dc y α=30º)

Constants for Joint Stiffness Formula

Poiss on’sModulus of

Elasticity, E, Numerical ConstantsMaterial ratio, GPa Ai B iSteelAluminumCopperGray cast iron

0.2910.3340.3260.211

206.871.0

118.6100.0

0.787150.796700.795680.77871

0.628730.638160.635530.61616

Table 15.3 Constants used in joint stiffness formula [Eq. (15.26)] [From Wileman et al (1991)]

Text Reference: Table 15.3, page 684

)(, i

ciL

dB

iii

im eAdEk

Gasketed Joint

63 Nd

Db

Figure 15.17 Threaded fastener with unconfined gasket and two other members.

Text Reference: Figure 15.17, page 694

63 Nd

Db

))(tan(

))(tan(ln2

tan

cicifi

cicifi

fciji

ddddL

ddddL

dEk

)(

, i

ciL

dB

iii

im eAdEk

Strength of Bolts (Inches)

SAE grade

Range ofcres t

diameters,in.

Ultimatetensile

s trength, Sut,ksi

Yieldstrength, S y,

ksi

Proofs trength, S p,

ks i12

45

78

1/4 - 1 1/21/4 - 3/43/4-1 1/2

1/4 - 1 1/21/4 - 1

1 - 1 1/21/4 - 1 1/21/4 - 1 1/2

607460115120105133150

3657361009281115130

335533658574

105120

Table 15.4

Strength of steel bolts for various sizes in inches.

Text Reference: Table 15.4, page 687

Strength of Bolts (Millimeters)

Table 15.5

Strength of steel bolts for various sizes in millimeters.

Text Reference: Table 15.5, page 687

Metric grade

Crestdiameter, dc,

mm

Ultimatetensile

strength, Sut,MPa

Yieldstrength, Sy,

MPa

Proofstrength, Sp,

MPa4.64.85.88.89.8

10.912.9

M5-M36M1.6-M16M5-M24M17-M36M1.6-M16M6-M36

M1.6-M36

400420520830900

10401220

240340a

415a

660720a

9401100

225310380600650830970

aYield strength approximate and not included in standard.

Coarse and Fine Thread DimensionsCoarse Threads (UNC) Fine Threads (UNF)

Crestdiameter,d c, in.

Number ofthreads per

inch, n

Tensiles tress area,A t, in. 2

Number ofthreads per

inch, n

Tensiles tress area,A t, in. 2

0.06000.07300.08600.09900.11200.12500.13800.16400.19000.21600.35000.31250.37500.47350.50000.56250.62500.75000.87501.0001.1251.2501.3751.5001.7502.000

-64564840403232242420181614131211109877665

4 1/2

-0.002630.003700.004870.006040.007960.009090.01400.01750.02420.03180.05240.07750.10630.14190.1820.2260.3340.4620.6060.7630.9691.1551.4051.902.50

807264564844403632282824242020181816141212121212--

0.001800.002780.003940.005230.006610.008300.010150.014740.02000.02580.03640.05800.08780.11870.15990.2030.2560.3730.5090.6630.8561.0731.3151.581

--

Table 15.6 Dimensions and tensile stress areas for UN coarse and fine threads.

Text Reference: Table 15.6, page 687

Coarse and Fine Thread Dimensions - Metric

Table 15.7 Dimensions and tensile stress areas for metric coarse and fine threads.

Text Reference: Table 15.7, page 69

Coarse Threads (MC) Fine Threads (MF)Crest

diameter,d c, mm

Pitch, p ,mm

Tensiles tress area,A t, mm2

Pitch, p ,mm

Tensiles tress area,A t, mm2

11.62

2.534568

101216202430364248

0.250.350.40.450.50.70.81

1.251.51.75

22.53

3.54

4.55

0.4601.272.073.395.038.7814.220.136.658.084.315724535356181711211473

-0.20.25.35.35.5.5.751

1.251.251.51.5223--

-1.572.453.705.619.7916.122

39.261.292.1167272384621865

--

Ejercicio – Cilindro hidraúlico

Un cilindro hidráulico de do=150mm y e=2mm sometido a Pi= 250 Kg/cm2 se ha de diseñar con n=1(mínimo). Se embridan las piezas de acero, con una junta elástica. Determinar: tornillo a colocar, calidad, pretensado considerando un 5% de relajación y espesor de juntas. Atornillos=7% At,junta

Roscas finas MF

MétricaÁrea

esfuerzo, mm2

Material disponible:calidades

10 61.2 5.8,8.8, 9.8 y 10.9

12 92.1 L= 4 mm

16 167 0.5-1-2-3-4

20 272 Junta de Cobre

Separation of Joint

Figure 15.15 Separation of joint.

Text Reference: Figure 15.15, page 690

Pretensado

Unión permanente: 0,9FpUnión desmontable: 0,75Fp

Fp, carga límite

Cyclic Load

Figure 15.16 Forces versus deflection of bolt and joint as function of time.

Text Reference: Figure 15.16, page 691

Cyclic Load

ma

y

e

u

iua

e

aumima

eaa

a

Snfluenciaa

SS

SS

S

SSSGoodmanSS

PSADS

n

/__1

)1(:

0// min,

Gráfica – Líneas/puntos

•L de carga: (si,0) (sm sa)•L de rendimiento: (Sy,0) (0, Sy)•L de Goodman: (Se,0) (0, Su)

Factor Concentración Fatiga

SAE gradeMetricgrade

Rolledthreads

Cutthreads

Fillet

0-24-8

3.6-5.86.6-10.9

2.23.0

2.83.8

2.12.3

Factor de concentración de esfuerzos, incluye el factor acabado superficial

Text Reference: Table 15.8, page 692

Kb y Kc,axial=1

Ejercicio Fatiga

Diseñar la junta atornillada que se situaría al extremo de un recipiente tal que su presión varia de 75 a 150 kg/cm2.

a) Pi y n, tal que a 160kg/cm2 actúe como válvula (suponiendo que no hay fatiga).

b) causa de rotura con el Pi y tornillo anterior.c) Diámetro de tornillo para evitar fatiga y n fatiga.

Datos: k1=0,153.Tornillo: Calidad 8.8 y 9.8. relajación 5%.,Nt(15:25)

Failure Modes of Riveted Fasteners

Figure 15.18 Failure modes due to shear loading of riveted fasteners. (a) Bending of member; (b) shear of rivet; (c) tensile failure of member; (e) bearing of rivet on member or bearing of member on rivet.

Text Reference: Figure 15.18, page 695

Text Reference: Figure 15.19, page 697

Group of riveted fasteners used in Example 15.9. (a) centroid of rivet group Assembly; (b) radii from centroid to center of rivets; (c) resulting triangles; (d) direct and torsional shear acting on each rivet; (e) security beding factor (side view of member). (All dimensions are in inches.)

Example 15.9

ØA=5/8 ØB=7/8

Text Reference: Figure 15.19, page 697

Text Reference: Figure 15.19, page 697

Cortante debido a la torsión

03000225,075,00 BA PPM

DATOS Un paso para peatones se remacha a un puente de acero como se indica en la figura. La carga máxima sobre el paso es equivalente a una carga de 3 000 N, localizada a 2 m del costado del puente de acero por cada par de remaches. Se supone un factor de seguridad de 5.

HALLAR: El diámetro del remache que se necesita si los remaches estan hechos de acero AISI 1040.

Text Reference: Figure 15.20, page 699

25,075,0BA PP

Nota: las fuerzas de tensión que actúan sobre los dos remaches son proporcionales a la distancia desde el extremo inferior de la ménsula

Cylinder End Cap Section

Figure 15.28 End cap of hydraulic cylinder for baler application.

Text Reference: Figure 15.28, page 717

top related