supercapacitÉs Électrochimiques daniel bélanger université du québec à montréal...

Post on 03-Apr-2015

102 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

SUPERCAPACITÉS ÉLECTROCHIMIQUES

Daniel BélangerUniversité du Québec à Montréal

belanger.daniel@uqam.ca

15 mars 2013

NUMBER OF PAPERS AND CITATIONS

Search on Web of Science with : Electrochemical capacitor 

PLAN DU COURS• CONTEXTE ÉNERGÉTIQUE-STOCKAGE• ACCUMULATEURS & SUPERCAPACITÉ ÉLECTROCHIMIQUE

– CONCEPTS IMPORTANTS D’ÉLECTROCHIMIE

• STRUCTURE ET CAPACITÉ DE LA DOUBLE COUCHE• MÉTHODES DE CARACTÉRISATION

– Evaluation de la performance

• MATÉRIAUX– Carbon, Conducting polymers, metal oxides– Concept of pseudocapacitance

• FONCTIONNEMENT– Systèmes symétrique et asymétrique

http://www.hbcpnetbase.com//articles/14_15_91.pdf

Electricity and heating

Transportation

Manuf. ind and construction

CO2 emission by sectors

How can we reduce them ?How can we reduce them ?

ENERGY STORAGE SYSTEMS

Poizot, Dolhem, Energy Environ. Sci. 2011, 4, 2003.

PSA Peugeot Citroën Start-Stop System

Reduce fuel consumption by up to 15%

7

City Bus-Volvo-Simplified system for a city bus, 220kW

NiMH-battery + EC

Battery310 kgEC 280 kgDC/DC 90 kg

Total weight 680 kg

Battery 1150 kgDC/DC 45 kg

Total weight 1195 kg

NiMH-battery

Weight reduction:43 %

AVANTAGES DES CONDENSATEURS ÉLECTROCHIMIQUES

ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND

BATTERY

Simon, Gogotsi, Nature Materials, 2008, 7, 845.

ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND

BATTERY

Simon, Gogotsi, Nature Materials, 2008, 7, 845.

Chuck Norris

70 kJ of Energy

2 MT vehicle moving 19 mph2 MT mass lifted to 12 ft height1 tsp sugar 4 g1 D-cell alkali battery 140 g22 kF / 2.5 V capacitor 4.6 kg

JME

From John Miller, JME Capacitor

ENERGY STORAGE WITH ELECTRICAL DOUBLE LAYER CAPACITOR AND

BATTERY

Simon, Gogotsi, Nature Materials, 2008, 7, 845.

E = 0.5 C V2

E= EnergyC= CapacitanceV= Voltage

CAPACITOR• VACUUM

• DIELECTRIC

• OXIDE ELECTROLYTIC– Ta2O5, Al2O3

C =A / d

Accumulateur au plombAccumulateur au plomb

Accumulateur au plombAccumulateur au plomb

Pb + PbOPb + PbO22 + H + H22SOSO44

Pb + carbonePb + carbone+ expandeurs+ expandeurs

Importance du « curing » ou mûrissage plaques positives empilées dans une étuve 72h avec fort taux d’humidité

Importance de la « formation » charge (formation Pb et PbO2)

Chemistry of Lead Acid Batteries

When the battery is discharged:

• Lead (-) combines with the sulfuric acid to create lead sulfate (PbSO4),

Pb + SO42- PbSO4 + 2e-

• Lead oxide (+) combines with hydrogen and sulfuric acid to create lead sulfate and water (H2O).

PbO2 + SO42- + 4H+ + 2e- PbSO4 + 2H2O

• lead sulfate builds up on the electrodes, and the water builds up in the sulfuric acid solution.

• Global reaction:• Pb + PbO2 + 2 H2SO4 2 PbSO4 + 2 H2O

– Concentration of H2SO4 changes from 5.5 M to 2 M

Lead Acid Batteries Consist of:

Lead (Pb) electrode (-) Lead oxide (PbO2) electrode (+) Water and sulfuric acid (H2SO4) electrolyte.

Chemistry of Lead Acid Batteries

When the battery is charged:

• The process reverses; lead sulfate combining with water to build up lead and lead oxide on the electrodes.

Lead Acid Batteries Consist of:

Lead (Pb) electrode (-) Lead oxide (PbO2) electrode (+) Water and sulfuric acid (H2SO4) electrolyte.

PbSO4 + 2e- Pb + SO42-

PbSO4 + 2H2O PbO2 + SO42- + 4 H+ + 2e-

Global reaction:2 PbSO4 + 2 H2O Pb + PbO2 + 2 H2SO4

Accumulateur au Pb acide

-

+

- 0.36 V

1.69 V

Pb/PbSO4

PbSO4/PbO2

Accumulateur au Pb acide

-

+

- 0.36 V

1.69 V

Pb/PbSO4

H2O /O2

PbSO4/PbO2

1.23 V

0 V H2 /H+

vs. ENH

Pt/H2SO4(aq)/Pt vs Pb/H2SO4(aq)/PbO2

Platinum

Platinum

H2SO4 solution H2SO4 solution

O2H2

Pt/H2SO4(aq)/Pt vs Pb/H2SO4(aq)/PbO2

Platinum

Platinum

H2SO4 solutionH2SO4 solution H2SO4

solutionH2SO4 solution

PbO2Pb

O2H2

ACCUMULATEUR

STRUCTURE D’UN SUPERCONDENSATEUR ÉLECTROCHIMIQUE

CAPACITÉ ÉLECTROCHIMIQUE

CAPACITÉ ÉLECTROCHIMIQUE

DOUBLE LAYER MODELS

Helmholtz Gouy-Chapman

Cdl = dq/d()

STRUCTURE OF THE DOUBLE LAYERModels of Grahame and Bockris

STRUCTURE DE LA DOUBLE COUCHE

• 1/C = 1/CI + 1/CO

• 1/C = 1/CI

• 1/C = dH2O/

• C= 5 x 8.85 x 10-12 F/m2.8 x 10-10 m= 16 F/cm2

CAPACITY FOR CARBON

CAPACITYCDL = 20 µF/cm2 with S = 1000 m2/g

C = 20 x 10-6 F/cm2 x 1000 m2/g x 104

cm2/m2

= 200 F/g

ACCUMULATEUR/CAPACITÉ ÉLECTROCHIMIQUE

ENERGY STORAGE DEVICESENERGY STORAGE DEVICES

• BATTERIES

• FaradaicFaradaic charge

• Chemical reaction

• SlowSlow charge/discharge process

• Shorter operational life

• High energy density

– 50-15050-150 Wh/kg

• SUPERCAPACITORS

• CapacitiveCapacitive or pseudocapacitive charge

• FastFast charge/discharge

• Long operational life

– > 1 000 0001 000 000 cycles• High power density

– > 11 kW/kg

MÉTHODES DE CARACTÉRISATION

• CELLULE ÉLECTROCHIMIQUE• VOLTAMÉTRIE CYCLIQUE• CHARGE/DÉCHARGE À COURANT CONSTANT• PERFORMANCES

– ÉNERGIE, PUISSANCE

CelluleCellule

VOLTAMETRIE CYCLIQUE

VOLTAMÉTRIE CYCLIQUE- Électrode capacitive

CALCUL DE LA CAPACITÉ

C = QCV/V

C= CapacitéQcv = ChargeV= Voltage

UNITÉSFarad = Coulombs/Volt

Imoyen = 45 mAV = 2.25 VVitesse de balayage = 225 mV/sMasse = 10 mgC = 20 F/g

CHARGE/DÉCHARGE À COURANT CONSTANT

COURBE CHARGE/DÉCHARGE

CAPACITÉ => Inverse de la pente

CHARGE ET CAPACITÉ

COULOMBIC EFFICIENCY, CE

CE (%) =

Qdischarge x 100

Qcharge

COULOMBIC EFFICIENCY, CE

CE (%) =

Qdischarge x 100

Qcharge

PERFORMANCEDensité d’énergie et de puissance

Densité d’énergie, Wh kg-1 Densité de puissance, W kg-1

ELECTROCHEMICAL CAPACITOR

Electrolyte

Current collector

ACTIVE ELECTRODE MATERIAL

Current collector

Equivalent Series Resistance (ESR)

CONTRIBUTION TO ESR-ELECTRONIC RESISTANCE OF THE ELECTRODE MATERIAL

-INTERFACIAL RESISTANCE – ELECTRODE/CURRENT COLLECTOR

-IONIC DIFFUSION RESISTANCE OF IONS MOVING IS SMALL PORES

-ELECTROLYTE RESISTANCE

-IONIC RESISTANCE OF IONS MOVING THROUGH THE SEPARATOR

COMPOSANTS D’UN SUPERCONDENSATEUR ÉLECTROCHIMIQUE

• MATÉRIAUX D’ÉLECTRODES– Carbones, Oxydes, Polymères conducteurs– Fabrication de l’électrode (additifs)

• ÉLECTROLYTE– Aqueux, Non-aqueux, Liquide ionique

• COLLECTEUR DE COURANT• SÉPARATEUR

EC-Areas of research

Electrolyte-Aqueous-Non-aqueous-Ionic liquid

Current collector: Surface treatment

Electrode materials:CarbonConducting polymersMetal oxides

PERFORMANCE

COST STABILITY/SAFETY

TECHNOLOGY

MATÉRIAUX D’ÉLECTRODES

MATERIALS-CAPACITANCE

K. Naoi, P. Simon, Interface, 2008, 17, 34

E = 0.5 CV2

CARBONE

• SURFACE SPÉCIFIQUE

• ACTIVATION– Température élevée

• COÛT

ELECTROCHEMICAL CAPACITOR

Symmetrical cell with 2 identical electrodes

PROPERTIES OF ACTIVATED CARBONS

Pore of activated carbon

Larger than 500Å

Smaller than 20Å

20Å ~ 500Å

Most surface area is composed of micropores ( more than 90%)

Carbon ElectrolyteDouble-layerCapacitance (F/g)

Specificcapacitance?F/cm2

Remarks

Activatedcarbon

10% NaCl 228 19 1200 m2/g

Activatedcarbon

1MEt4NBF4/PC

112 5.4 2000 m2/g

Carbon fibercloth

0.5MEt4NBF4 /PC

130 6.9 1630 m2/g

Graphite :basal: edge

0.9 N NaF 3 50-70

Highly orientedpyrolyticgraphite

Carbonaerogel

4M KOH 23 650 m2/g

Et4NBF4: tetraethylammonium tetrafluoroboratePC : propylene carbonate

Double-layer capacitance of some carbons

Micropores are likely to contribute the most to the energy storage

CAPACITANCE – SURFACE AREA

EFFECT OF PORE SIZE OF THE CARBON ELECTRODE

(CH3CH2)4N+

DiameterDesolvated: 0.68 nmSolvated; 1.33 nm

BF4-

Desolvated: 0.48 nm Solvated: 1.16 nm

FARADAIC PROCESS => Electron transfer

[Fe(CN)6]3- + e- <==> [Fe(CN)6]4-

PbSO4 + 2 H2O <==> PbO2 + 4 H+ + SO42- + 2 e-

CAPACITÉ ET PSEUDOCAPACITÉ

Cpseudo = 10 to 100 Cdl

Transfert d’électron à l’interface électrode/électrolyte

PSEUDOCAPACITÉ

PSEUDOCAPACITÉ

MANGANESE DIOXIDE, MnO2

0.1 M Na2SO4/H2O @ 5 mV/s

Thin film

Composite

CHARGE STORAGE MECHANSIM FOR MANGANESE DIOXIDE

•Mn4+/3+

– MnO2 + H+ + e- <=====> MnOOH

– MnO2 + C+ + e- <=====> MnOOC

•Mn = no change

– (MnO2)surface + C+ + e- <=====> (MnO2-C+) surface

CHARGE STORAGE-CRISTALINITY

THIN ‘’FILM’’ ELECTRODE XPS-Mn 3s

Toupin, Brousse and Bélanger, Chem. Mat. 2004, 16, 3184.

0,0 0,2 0,4 0,6 0,8 1,0-0,00015

-0,00010

-0,00005

0,00000

0,00005

0,00010

0,00015

I(A

)

E(V) vs Ag/AgCl

Na2SO4 0.1 M

Mn(IV)

Mn(III)

Pt/MnO2

STRUCTURE-CAPACITANCE RELATIONSHIP

Brousse et al. J. Electrochem. Soc. 2006, 153, A2171.

CAPACITANCE vs. SURFACE AREA for Manganese Dioxide

•MnOMnO22/PTFE/AB/graphite (forte polarisation en absence de carbone)/PTFE/AB/graphite (forte polarisation en absence de carbone)

•Fenêtre électrochimique Fenêtre électrochimique 0,9-1V 0,9-1V

• Capacité ~ 150 F/gCapacité ~ 150 F/g

• qqchargecharge/q/qdéchargedécharge100 % (bonne réversibilité des processus électrochimiques)100 % (bonne réversibilité des processus électrochimiques)

0.1M Na2SO4 - 2 mV/s

Capacitive behaviour of MnO2

MAXIMIZE UTILIZATION

Mn4+

Mn3+

MnO2

CBinder

Mn4+

Mn3+

MnO2

CBinder

Low electronic conductivity

Low ionic conductivity

e-C+= Li+, Na+, K+, H+

Carbon

MnO2Binder

Increase electronic conductivity

Increase ionic conductivity

Mass of MnO2

(mg/cm2)

Electrode thickness

(µm)Qcv/Qtheo

3 281 12.9

15-16 290 13.0

30-34 555 12.2

45 596 12.5

ELECTROCHEMICAL UTILIZATION OF MnO2

POLYMÈRES CONDUCTEURS

Electrochemistry of conducting polymersElectrochemistry of conducting polymers

Solution

Polymer

p-doping

p-dedoping

- +

+ ++

++-e-

-

+

-

+

-

+

-

+

-

+

-

+

+

++

++

- -

--

--

-

- - -

-

-

+

- +

-

+

-

+

-

+

-

+

-

+

-

+

+

+

p-dedoping

n-doping

- --

--

- - - --

+e-

+ ++

+ + +

+

+

+++

+

+++

- +

-

+

-

+

-

+

-

+

+

-

+

+

+

- +

-

+

-

+

-

+

-

+

-

+

-

+

+

+

POLYTHIOPHENE DERIVATIVEPOLYTHIOPHENE DERIVATIVE

P-n-doping

n-undoping+Et4N+ P Et4N+

p-doping

p-undopingBF4

- P+ P+BF4

-

V

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Cur

rent

(A

)

Potential (V/(Ag/Ag+))

GALVANOSTATIC GALVANOSTATIC CHARGE/DISCHARGE CYCLINGCHARGE/DISCHARGE CYCLING

PFPT/PFPTCut-off voltages: 1.6 to 2.8 ; 3.0 and 3.2 V

ICh = IDch = 2 mA/cm2 in 1 M Et4NBF4/ACN

E’

E

Cou

rant

(A

)

Potentiel (V vs. Ag/Ag+)Temps (s)

Pote

nti e

l de

cell

ule

(V)

MODE DE FONCTIONNEMENT

Cellule symétriqueCellule asymétrique

SYSTÈME SYMÉTRIQUE

NÉGATIVE POSITIVE

CARBON-BASED ELECTROCHEMICAL CAPACITORS

Potential

Current

Charge

CARBON-BASED ELECTROCHEMICAL CAPACITORS

Potential

Current

Discharge

VoltammetricCharge = QCV

CARBON-BASED ELECTROCHEMICAL CAPACITORS

Potential

Current

Voltammetric charge = QCV

QCV (ox)

QCV (red)

50% of the carbon is unemployed!

50% of the carbon is unemployed!

Qdischarge (-) = 0.5 QCV (ox)

Qdischarge (+) = 0.5 QCV (red)

CAPACITANCE OF A CELL

Single electrode capacitanceC+ = C- = 100 F/g

Capacitance of a cell(weight of both electrodes)

25 F/g

CARBON/CARBON

• NON-AQUEOUS ELECTROLYTE– CELL VOLTAGE = 3 V

• AQUEOUS ELECTROLYTE-CELL VOLTAGE = 1 V

Can an electrochemical capacitor have a cell potential > 1 V?

SYSTÈME HYBRIDE

CARBON/MnO2

J. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. CrosnierAsymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytesMRS Bulletin, 2011, 36, 523

SYSTÈME HYBRIDE

MnO2/MnO2

Carbone/MnO2

CARBON/MnO2

CHARGE/DISCHARGE CURVES

MnO2/MnO2

Carbon/MnO2

0 50 100 150 200 2500,0

0,5

1,0

1,5

2,0

2,5

(a)0.53 A/g

(c)0.55 A/g

(b)0.45 A/g

E c

ell (

V)

time (s)

Symétrique vs Asymétrique- Effet du potentiel de Symétrique vs Asymétrique- Effet du potentiel de cellule cellule

SYSTÈME CARBONE/OXYDE DE PLOMBÉLECTROLYTE: ACIDE SULFURIQUE

C/H2SO4/PbO2

top related