superstring theory and integration over the moduli space

Post on 15-Jun-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Superstring theory and integration over

the moduli space

Kantaro Ohmori

Hongo,The University of Tokyo

June, 24th, 2013@Nagoya

arXiv:1303.7299 [KO,Yuji Tachikawa]

Section 1

introduction

Simplified history of the superstring theory

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’87 “Multiloop calculations in covariant superstring

theory” [E.Verlinde, H.Verlinde ’87]

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’87 “Multiloop calculations in covariant superstring

theory” [E.Verlinde, H.Verlinde ’87]

’94∼:2nd superstring revolution

⇒ nonperturbative perspective

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’87 “Multiloop calculations in covariant superstring

theory” [E.Verlinde, H.Verlinde ’87]

’94∼:2nd superstring revolution

⇒ nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

The work of [KO,Tachikawa]

The work of [KO,Tachikawa]

FMS:ambiguity

Formulation using supergeometry

⇒ 2 examples where ambiguity does not appear

The work of [KO,Tachikawa]

FMS:ambiguity

Formulation using supergeometry

⇒ 2 examples where ambiguity does not appear

N = 0 ⊂ N = 1 embedding [N. Berkovits,C. Vafa

’94]

The work of [KO,Tachikawa]

FMS:ambiguity

Formulation using supergeometry

⇒ 2 examples where ambiguity does not appear

N = 0 ⊂ N = 1 embedding [N. Berkovits,C. Vafa

’94]

Topological amplitudes

[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

1 introduction

2 Supergeometry and Superstring

3 Reduction to integration over moduli

Section 2

Supergeometry and Superstring

Bosonic string theory

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

⇒ Riemann Surface = 2d surface + complex

structure

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

⇒ Riemann Surface = 2d surface + complex

structure

Conformal symmetry⇒ bc ghost

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

⇒ Riemann Surface = 2d surface + complex

structure

Conformal symmetry⇒ bc ghost

⇒ A =∫Mbos,g

dmdmF(m, m)

Superstring theory

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

⇒ BC(bcβγ) superghost

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

⇒ BC(bcβγ) superghost

⇒ A =∫Msuper,g

dmdηdmdηF(m, m, η, η)

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

⇒ BC(bcβγ) superghost

⇒ A =∫Msuper,g

dmdηdmdηF(m, m, η, η)?⇒ A =

∫Mbos,g

dmdmF′(m, m)

Supermanifold

Supermanifold

supermanifold = patched superspaces

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM ∋ (x1, · · · , xp|θ1, · · · , θq)θiθj = −θjθi

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM ∋ (x1, · · · , xp|θ1, · · · , θq)θiθj = −θjθi

x′i = fi(x|θ)θ′µ = ψµ(x|θ)

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM ∋ (x1, · · · , xp|θ1, · · · , θq)θiθj = −θjθi

x′i = fi(x|θ)θ′µ = ψµ(x|θ)Mred = {(xi, · · · , xp)} −→ M

Super Riemann Surface (SRS)

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)Patches are glued by superconformal transf.

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)Patches are glued by superconformal transf.

z′ = u(z|η) + θζ(z|η)√

u(z|η)θ′ = ζ′(z|η) + θ

√∂zu(z|η) + ζ(z|η)∂zζ(z|η)

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)Patches are glued by superconformal transf.

z′ = u(z|η) + θζ(z|η)√

u(z|η)θ′ = ζ′(z|η) + θ

√∂zu(z|η) + ζ(z|η)∂zζ(z|η)

Dθ = ∂θ + θ∂z = F(z|θ)(∂θ′ + θ′∂z′)

Split Super Riemann Surface

Split Super Riemann Surface

z′ = u(z)

θ′ = θ√∂zu(z)

Split Super Riemann Surface

z′ = u(z)

θ′ = θ√∂zu(z)

θ ∈ H0(Σ,TΣ∗1/2red )

⇒ split SRS↔ Riemann surface with spin str.

Supermoduli spaceMsuper

Supermoduli spaceMsuper

Space of deformations of SRS

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

odd deformation: χθz ∈ H1(Σred,TΣ1/2red )

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

odd deformation: χθz ∈ H1(Σred,TΣ1/2red )

dimMsuper = ∆e|∆o = 3g− 3|2g− 2 (g ≥ 2)

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

odd deformation: χθz ∈ H1(Σred,TΣ1/2red )

dimMsuper = ∆e|∆o = 3g− 3|2g− 2 (g ≥ 2)

Msuper,red ≃Mspin

Supermoduli space of SRS with punctures

Supermoduli space of SRS with punctures

NS puncture

Supermoduli space of SRS with punctures

NS puncture

R puncture

Supermoduli space of SRS with punctures

NS puncture

R puncture

dimMsuper = ∆e|∆o

= 3g−3+nNS+nR|2g−2+nNS+nR/2 (g ≥ 2)

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

m1 = t1 + it2 + nilp., barm1 = t1 − it2 + nilp.,

ζ i = ηi, ζ i+∆o = η i

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

m1 = t1 + it2 + nilp., barm1 = t1 − it2 + nilp.,

ζ i = ηi, ζ i+∆o = η i

Integration over Γ is unique

[E.Witten , arXiv:1209.2199]

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

m1 = t1 + it2 + nilp., barm1 = t1 − it2 + nilp.,

ζ i = ηi, ζ i+∆o = η i

Integration over Γ is unique

[E.Witten , arXiv:1209.2199]

if we fix the behavior of

Γ near boundary.

Odd coordinates ofMsuper

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

{χσ} : a (bosonic) basis of gravitino background

χ = ησχσ

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

{χσ} : a (bosonic) basis of gravitino background

χ = ησχσ

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

{χσ} : a (bosonic) basis of gravitino background

χ = ησχσ

Σ = (m|η1, · · · , η∆o)

Coupling between gravitino and SCFT

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Sχ = 12π

∫Σred

d2zχTF

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Sχ = 12π

∫Σred

d2zχTF

Sχχ =∫ΣredχχA

A ∝ ψµψµ (Flat background)

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Sχ = 12π

∫Σred

d2zχTF

Sχχ =∫ΣredχχA

A ∝ ψµψµ (Flat background)

c.f. Dµφ†Dµφ ∋ AµA

µφ†φ

Scattering amplitudes of superstring

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

AV,g =∫Γ dmdηdmdη FV,g(m, η, m, η)

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

AV,g =∫Γ dmdηdmdη FV,g(m, η, m, η)

FV,g(m, η, m, η) =⟨∏i Vi

∏∆e

a=1(∫Σred

d2zbµa)

∏∆e

b=1(∫Σred

d2zbµb)

∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(−Sχ − Sχ − Sχχ)〉m

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

AV,g =∫Γ dmdηdmdη FV,g(m, η, m, η)

FV,g(m, η, m, η) =⟨∏i Vi

∏∆e

a=1(∫Σred

d2zbµa)

∏∆e

b=1(∫Σred

d2zbµb)

∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(−Sχ − Sχ − Sχχ)〉mSχ =

∑∆o

σ=1ησ2π

∫Σred

d2zχσTF

Picture changing formalism

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

=∏∆o

σ Y(pσ)

Y(pσ) = δ(β(pσ))TF(pσ)

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

=∏∆o

σ Y(pσ)

Y(pσ) = δ(β(pσ))TF(pσ)

χχ term vanishes if pσ 6= pτ

⇒ Formulation of FMS

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

=∏∆o

σ Y(pσ)

Y(pσ) = δ(β(pσ))TF(pσ)

χχ term vanishes if pσ 6= pτ

⇒ Formulation of FMS

Valid where [δ(z− pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

Integration over a supermanifold

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

ω|U1= (f0(m) + f2(m)η1η2)dmdη1dη2

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

ω|U1= (f0(m) + f2(m)η1η2)dmdη1dη2

ω|U2=

(f0(m′) + (f2(m

′)− a∂f0(m′))η1η2)dm′dη′1dη

′2

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

ω|U1= (f0(m) + f2(m)η1η2)dmdη1dη2

ω|U2=

(f0(m′) + (f2(m

′)− a∂f0(m′))η1η2)dm′dη′1dη

′2∫

M ω =∫V1,red

f2dm +∫V2,red

(f2 − a∂f0)dm′

Projectedness of supermanifolds

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

All supermanifolds are projected in smooth sense.

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

non-holomorphic projection destroys holomorphic

factorization.

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red ≃Mspin i :Mspin −→Msuper

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red ≃Mspin i :Mspin −→Msuper

p :Msuper →Mspin does not exists.

(g ≥ 5, non-holomorphic one exists)

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red ≃Mspin i :Mspin −→Msuper

p :Msuper →Mspin does not exists.

(g ≥ 5, non-holomorphic one exists)

Global integration onMsuper

6⇒ Global integration onMspin

(with holomorphic factorization)

Superstring Perturbation Theory Revisited[E.Witten ’12]

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Movement of PCO⇒ exact form

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Movement of PCO⇒ exact form

E.Witten described the way which does not rely on

the reduction

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Movement of PCO⇒ exact form

E.Witten described the way which does not rely on

the reduction

Infrared regularization

Section 3

Reduction to integration over moduli

Reduction condition

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

(f2 − a∂f0)dm′

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

ω = F(m, m)∏

dmdm∏

all ηiηi∏

dηdηi

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

ω = F(m, m)∏

dmdm∏

all ηiηi∏

dηdηi

ω = i∗α ∧ P.D.[Mspin]

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

ω = F(m, m)∏

dmdm∏

all ηiηi∏

dηdηi

ω = i∗α ∧ P.D.[Mspin]

ω does not depend on the locations of picture

changing operators

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Type II string on CY (N = (2, 2)SCFT) ×R1,3

⇒ 4d N = 2 supergravity model

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Type II string on CY (N = (2, 2)SCFT) ×R1,3

⇒ 4d N = 2 supergravity model

F-term of 4d effective field theory is related to

topological string.

Topological string

Twisted N = (2, 2) string theory

Topological string

Twisted N = (2, 2) string theory

Amplitude =∫Mbos· · ·

Topological string

Twisted N = (2, 2) string theory

Amplitude =∫Mbos· · ·

Fg : g loop vacuum amplitude

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag =∫Γ · · ·

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag =∫Γ · · ·

dimR Γ = 6g − 6|6g − 6

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag =∫Γ · · ·

dimR Γ = 6g − 6|6g − 6

Ag = (g!)2Fg =∫Mbos· · ·

Vertex operators

Vertex operators

Graviphoton: VT = Σ× spacetime× (ghost)

Σ = exp(i√32(H(z)∓ H(z))) H : U(1)R boson

Σ : U(1)R charge (3/2,∓ 3/2)

Vertex operators

Graviphoton: VT = Σ× spacetime× (ghost)

Σ = exp(i√32(H(z)∓ H(z))) H : U(1)R boson

Σ : U(1)R charge (3/2,∓ 3/2)

Graviton: VR =∫Σred

spacetime,ghost

Calculation of amplitude

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(−Sχ − Sχ − Sχχ)〉m

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

TF = TF,spacetime,ghost + G+ + G−

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

TF = TF,spacetime,ghost + G+ + G−

G± : U(1)R charge ±1

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

TF = TF,spacetime,ghost + G+ + G−

G± : U(1)R charge ±1A = A++ + A+− + A−+ + A−− + Aspacetime

A±±: U(1)R charge (±1,±1)⇐ Coupling A to N = (2, 2) supergravity:∫Σred

A±±χ∓χ∓ → χ = χ+ = χ−

Saturation of η’s

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

nonzero contribution

⇒ 3g − 3χ and 3g − 3χ

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

nonzero contribution

⇒ 3g − 3η and 3g − 3η

dimΓ = 6g − 6|6g − 6⇒ saturation η’s

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

nonzero contribution

⇒ 3g − 3η and 3g − 3η

dimΓ = 6g − 6|6g − 6⇒ saturation η’s

The correlation function does not depend of the

choice of χσ

Conclusion

Conclusion

Superstring amplitude cannot be represent as

integration overMbos in general

Conclusion

Superstring amplitude cannot be represent as

integration overMbos in general

Special cases exist.

Conclusion

Superstring amplitude cannot be represent as

integration overMbos in general

Special cases exist.

Amplitudes which is equivalent topological

amplitudes are the case.

Prospects

Prospects

More nontrivial example of calculation

[E.Witten, arXiv:1304.2832],[E.Witten, arXiv:1306.3621]

Prospects

More nontrivial example of calculation

[E.Witten, arXiv:1304.2832],[E.Witten, arXiv:1306.3621]

Superstring field theory

Prospects

More nontrivial example of calculation

[E.Witten, arXiv:1304.2832],[E.Witten, arXiv:1306.3621]

Superstring field theory

Another application of supergeometry

End.

Berkovits and Vafa embedding[N.Berkovits, C.Vafa ’94]

Worldsheet supersymmetric model equivalent to

bosonic string theory

⇒ Bosonic string : An (unstable) vacuum of

superstring theory

〈V1 · · ·Vn〉bos =⟨V′1 · · ·V′n

⟩super

⇔ ∫Mbos· · · = ∫

Msuper· · ·

Supermoduli space of SRS with punctures

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred)+ positions of punctures

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred ⊗O(∑

NS pi +∑

R qi))

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred ⊗O(∑

NS pi +∑

R qi))

odd deformation:

H1(Σred,R⊗O(∑

NS pi))

R2 ≃ TΣred ⊗O(∑

R qi)

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred ⊗O(∑

NS pi +∑

R qi))

odd deformation:

H1(Σred,R⊗O(∑

NS pi))

R2 ≃ TΣred ⊗O(∑

R qi)

dimMsuper = ∆e|∆o

= 3g−3+nNS+nR|2g−2+nNS+nR/2 (g ≥ 2)

Superconformal transformation

νf = f(z)(∂θ − θ∂z)

Vg = g(z)∂z + 1/2∂zgθ∂θ

Gn = νzn+1/2

Lm = −Vzm+1

Superconformal transformation near R

vertex

νf = f(z)(∂θ − zθ∂z)

Vg = z(g(z)∂z + 1/2∂zgθ∂θ)

Gr = νzr

Lm = −Vzm

Integration over odd variables

Integration over odd variables

ηi:odd variable

Integration over odd variables

ηi:odd variable

ηiηj = −ηjηi η2i = 0

Integration over odd variables

ηi:odd variable

ηiηj = −ηjηi η2i = 0

f(η1, η2) = a + bη1 + cη2 + dη1η2

Integration over odd variables

ηi:odd variable

ηiηj = −ηjηi η2i = 0

f(η1, η2) = a + bη1 + cη2 + dη1η2∫dη2dη1f(η1, η2) = d

SRS with punctures

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

R puncture: {z = z1} ⊂ Σ : submanifold of Σ

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

R puncture: {z = z1} ⊂ Σ : submanifold of Σ

D∗θ = ∂θ + (z− z1)θ∂z

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

R puncture: {z = z1} ⊂ Σ : submanifold of Σ

D∗θ = ∂θ + (z− z1)θ∂z

θ′ =√z− z1θ ⇒ D∗θ =

√z(∂θ′ + θ′∂z)

θ′:antiperiodic around z1

Subtlety for picture changing formalism

Subtlety for picture changing formalism

Valid where [δ(pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

Subtlety for picture changing formalism

Valid where [δ(pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

M super

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

Subtlety for picture changing formalism

Valid where [δ(pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

M super

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

movement of PCOs⇒ BRST exact term⇔ exact

form on patches

top related