supporting information ester derivatives. derived imines ... · 6500 me b o o ome o 3gii. 8.0 7.5...

Post on 06-Nov-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Supporting Information

One-pot catalytic asymmetric borylation of unsaturated aldehyde-

derived imines; functionalisation to homoallylic boronate carboxylate

ester derivatives.

Alba Pujol, Adam D. J. Calow, Andrei S. Batsanov and Andrew Whiting

1. ReactIR studies on in situ imine formation

2. Chiral HPLC

3. 1H, 13C, 11B NMR spectra

4. Crystallographic structures and data

5. References

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2015

1. ReactIR studies on in situ imine formation

R

O

1

H2NPh

Ph(1.0 equiv)

3Å-MS, iPrOH, r.t.R

N

4

Ph

Ph

Scheme 1 Formation of α,β-unsaturated imines in iPrOH.

Standard conditions: To an oven-dried two-necked flask, fitted with the IR probe, enal (2.0

mmol) was added to a stirring solution of solvent (8.0 mL) and 3 Å-molecular sieve beads

(2.0 g, oven-dried at 250 ºC for >48 h prior to use), under argon at 25 ºC. Once the C=O peak

had plateaued (observed through PC-interface), showing maximum intensity, amine (2.0

mmol) was added and the reaction was carried out for 0.5 – 24 h. The in situ-formed imine

was then utilised without purification by using a needle-syringe combination.

Representative graphical output of the reaction between Cinnamaldehyde 1a and benzhydryl

amine (see standard conditions).

Reaction profile of 2-Hexenal 1d and benzhydryl amine (see standard conditions).

Reaction profile of Crotonaldehyde 1g and benzhydryl amine (see standard conditions).

Reaction profile of (2E)-3-(Thiophen-2-yl)prop-2-enal 1j and benzhydryl amine (see standard

conditions).

2. Chiral HPLC

Sample chromatograms: 1) Racemic standard; 2) Optimised asymmetric reaction (IPA, (R)-

DM BINAP as ligand, unless otherwise stated).

BOO

OMe

O

3aii

MeO

B

OMe

OOO

3bii

Optimised asymmetric reaction (THF/MeOH, (R)-DM-BINAP as ligand)

BOO

OMe

O

3dii

Cl

B

OMe

OOO

3eii

Optimised asymmetric reaction (THF/MeOH, (R)-DM-BINAP as ligand)

BOO

OMe

O

3fii

BOO

OMe

O

3gii

OMe

BO O

O

3iii

Stereochemical assignments

The relative stereochemistry of each chiral compound can be determined through the use of

chiral HPLC (see above). In addition, the absolute stereochemistry of each product is

assumed to be consistent with previous studies in our group,1 whereby derivatisation and

X-ray analysis allowed for the absolute stereochemistry of the respective compounds to be

assigned. This was later supported by derivatisation of such compounds into known

pharmaceuticals,2 whereby the absolute stereochemistry was consistent with those

independently verified by this work.1

3. 1H, 13C and 11B NMR spectra

It is important to note that samples 6a-c, 7b and 7d could not be purified due to their inherent

instability. Therefore, the crude 1H-NMR spectra of 6a-c, 7b and 7d are listed below.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

Crude 1H-NMR showing the presence of 6a

Ph O

BOO

6a

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5f1 (ppm)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

p-OMePh O

BOO

6b

Crude 1H-NMR showing the presence of 6b 4a

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

O

BOO

6c

Crude 1H-NMR showing the presence of 6c 4a

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

p-OMePh

BOO

7bO

OCrude 1H-NMR showing the presence of 7b 4a

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

Pr

BOO

7dO

O

Crude 1H-NMR showing the presence of 7d 4a

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

Ph

BOO

OEt

O

3ai

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Ph

BOO

OEt

O

3ai

-25-20-15-10-5051015202530354045505560f1 (ppm)

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Ph

BOO

OEt

O

3ai

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Ph

BOO

OMe

O

3aii

0102030405060708090100110120130140150160170f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Ph

BOO

OMe

O

3aii

510152025303540455055606570f1 (ppm)

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ph

BOO

OMe

O

3aii

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

p-OMePh

BOO

OMe

O

3bii

0102030405060708090100110120130140150160170f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

p-OMePh

BOO

OMe

O

3bii

46810121416182022242628303234363840424446485052545658606264f1 (ppm)

-500

0

500

1000

1500

2000

p-OMePh

BOO

OMe

O

3bii

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

Pr

BOO

OMe

O

3dii

0102030405060708090100110120130140150160170f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Pr

BOO

OMe

O

3dii

-25-20-15-10-50510152025303540455055606570f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Pr

BOO

OMe

O

3dii

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

p-ClPh

BOO

OMe

O

3eii

0102030405060708090100110120130140150160170f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

p-ClPh

BOO

OMe

O

3eii

68101214161820222426283032343638404244464850525456f1 (ppm)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

p-ClPh

BOO

OMe

O

3eii

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Et

BOO

OMe

O

3fii

0102030405060708090100110120130140150160170f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

Et

BOO

OMe

O

3fii

-5051015202530354045505560f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

Et

BOO

OMe

O

3fii

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Me

BOO

OMe

O

3gii

0102030405060708090100110120130140150160170f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Me

BOO

OMe

O

3gii

051015202530354045505560f1 (ppm)

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Me

BOO

OMe

O

3gii

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

OMe

BO O

O

3iii

-505101520253035404550556065f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000OMe

BO O

O

3iii

-100102030405060708090100110120130140150160170f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

OMe

BO O

O

3iii

4. Crystallographic data

Figure X1. X-ray molecular structure of compound 4a at 120 K. Here and below, atomic

displacement ellipsoids are drawn at 50% probability level.

Figure X2. X-ray molecular structure of compound 4b at 120 K.

Figure X3. X-ray molecular structure of compound 4e at 120 K.

Figure X4. Two independent molecules in the crystal structure of compound 4h at 120 K.

Figure X5. X-ray molecular structure of compound 4j at 120 K; the thiophene ring is disordered

between two opposite orientations in 4:1 ratio (minor atom positions are primed).

5. References

1. A. D. J. Calow, A. Batsanov, A. Pujol, C. Solé, E. Fernández, A. Whiting, Org. Lett., 2013, 15, 4810-4813

2. A. D. J. Calow, E. Fernández, A. Whiting, Org. Biomol. Chem., 2014, 12, 6121-6127.

top related