tatsushi shima research center for nuclear physics, osaka university, japan

Post on 11-Jan-2016

33 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

The 4th Yamada Symposium on Advanced Photons and Science Evolution 2010 (APSE2010) June 14-18, 2010, Osaka Japan. Laser MeV Photons and Few-body Physics. Tatsushi Shima Research Center for Nuclear Physics, Osaka University, Japan. Outline. Few-body physics in nuclei - PowerPoint PPT Presentation

TRANSCRIPT

Tatsushi ShimaResearch Center for Nuclear Physics, Osaka University, Japan

The 4th Yamada Symposium on Advanced Photons and Science Evolution 2010 (APSE2010)

June 14-18, 2010, Osaka Japan

Laser MeV PhotonsLaser MeV Photonsandand

Few-body PhysicsFew-body Physics

Few-body physics in nuclei Real photon beams for nuclear experiments Topics from recent experimental studies Application to nuclear astrophysics Summary

Outline

Few-body Physics in Few-body Physics in NucleiNuclei

Nucleus; a system of a finite number of strongly interacting particles (nucleons)

Potential; nuclear forces (strong interaction) exchange of one pion, 2, heavy meson, ... non-central; tensor, many-body force, ... charge-independence breaking (CIB), charge-symmetry breaking (CSB), etc.

Equation of Motion; no general solution for N>3 systems,

perturbation (expansion by coupling const.) useless

Two-body Two-body systemsystem

Equation of Motion--- analytically solvable exact solution

Observables; nucleon-nucleon scattering, p(n,)d (d(,p)n )

Nucleon-nucleon (NN) potential;

NNvNNvNNvNNv REM

E.M. OPE residual

A few tenth of parameters are adjusted to 2000~4000 data of pp and pn scattering in 0~350MeV. Accuracy; 2/d.o.f. =1~2

Phase parameters for J≤4 in pp scattering (CD-Bonn2001)

R. Machleidt, Phys. Rev. C63, 024001 (2001)

D(D(,n)p cross section data,n)p cross section data

overall uncertainty < 0.9% !

E [MeV]

Cro

ss

Se

cti

on

[m

b]

Skopik 74Ahrens 74Leleux 79,85Birenbaum 85Bernabei 86Michel 89

ENDF/B-VIIArenhoevel

&Sanzone

10 15 20 25 30 35 400

0.4

0.8

1.2

Ground-state properties of 3H and 3He;

binding energy, D-state probability, magnetic moment,...

Scattering; d(p,p)d, d(n,n)d

Radiative capture; d(p,)3He, d(n,)t

Photodisintegration; 3He(,p)d, 3He(,pn)p

numerically exact solution by Faddeev method check nuclear potentials in three-body system

Three-nucleon force (3NF)

Three-body Three-body systemsystem

3NF3NF Binding energies of A=3

* Energy threshold relative to 3H+p

Nuclearpotentials

Ebin [MeV] Eth [MeV] *3H 3He 3He-n d-d

AV18 -7.752 -6.857 0.715 3.145

AV18+UIX -8.460 -7.713 0.747 4.033

AV18+UIX+V3* -8.452 -7.705 0.747 4.025

Exp. -8.481 -7.718 0.763 4.033

H.M. Hofmann and G.M. Hale, PRC68 (2003) 021002R

pd-elastic at RIKEN & RCNP

K. Sekiguchi et al.,PRL 95, 162301 (2005)

NN only

NN+3N

Scattering

3He photodisintegration

Experiment S. Naito et al. PRC73, 034003 (2006)

Faddeev (AV18)

Faddeev (AV18+Urbana-IX)

3NF makes better, but not enough.

(3NF)

Four-body systemFour-body system

Various methods are proposed to solve 4N-EoM;

Faddeev-Yakbovsky method (FY)

Alt-Grassberger-Sandhas formalism (Faddeev-AGS)

No-core shell model (NCSM)

Effective interaction hyperspherical harmonics (EIHH)

Cluster model

Chiral perturbation theory ((Q/) expansion, ~800MeV)

etc...

Most of the above give consistent results on g.s. of 4He.

But...

Trento (Effective Interaction Hyperspherical Harmonics)

Bonn (Faddeev-AGS)

Londergan and Shakin (Coupled Channel Shell Model)

Horiuchi and Suzuki (Cluster model)

Calculation for Calculation for 44He(He(,n),n)33He cross sectionHe cross section

E [MeV]

Cro

ss S

ecti

on

[m

b]

20 25 30 35 40 45 500

1

2

◆ Gorbunov 62▼ Arkatov 78▲ Bernabei 88■ Hoorebeke 93

+ Gardner 62× Gemmell 62

◇ Meyerhof 70

△ McBroom 82 ▽ Calarco 83

○ Feldman 90□ Hahn 95

Previous works; Previous works; 44He(He(,p),p)33H & H & 33H(p,H(p,))44HeHe

E [MeV]

▲ ■ ▼ ◆

○ □ △ ▽◇ +×

3H(p,)4He

4He(,p)3HCro

ss S

ectio

n [m

b]

● RCNP-AIST2005

20 25 30 35 400

1

2

PRC72, 044004 (2005)

(detailed balance)

(,p)

(p,)

◆ Gorbunov 62▲ Berman 71■ Malcom 73▼ Irish 73● Nilsson2005

△ Ward 81○ Komar 93

Previous works; Previous works; 44He(He(,n),n)33He & He & 33He(n,He(n,))44HeHe(detailed balance)

E [MeV]

▲ ■ ◆ +

○ △ 3He(n,)4He

4He(,n)3He

Cro

ss S

ectio

n [m

b]

RCNP-AIST2005Lund-Glasgow2005

20 25 30 35 400

1

2

● RCNP-AIST, PRC72, 044004 (2005)No other tracking measurement with monochromatic -rays.

(,n)

(n,)

Low-energy Low-energy -ray sources -ray sources

Discrete -rays from radioisotopes

Bremsstrahlung (continuous energy) / tagged photons

e+e- pair annihilation in flight ; monoenergy + brems.

Laser Compton Scattered (LCS-)

Energy distributions of Energy distributions of -ray -ray beamsbeams

Bremsstrahlung,e+e- annihilation in flight

Laser Compton-Scattered (PH spectra of GSO scintillator)

Pulse Height [MeV]

Co

un

t [

arb

. un

it] laser =1064nm, Ee = 0.976GeV, Ie =83mA

Plaser=3.53W

Plaser=0W

0 5 10 15 20

100

200

(almost) no BG !!BG from low-energy component of brems.

Laser Compton Laser Compton backscatteringbackscattering

Relativistic electron (Ee)

Laser light (L)

(E)

222

2

, 1

4

cm

EhcE

e

e

L

E

()

ex. L=1.064m, Ee=800MeV

⇒ E = 11MeV

Angular dependence

Klein-Nishina formula

Advantages of Advantages of LCS-LCS-

Quasi-monochromatic; E/E ~ a few %

Little background -rays; tagging not necessary

Well-collimated; < 0.1 mrad

Highly polarized; linear or circular, P ~ 100%

Continuous or pulsed; t < 10ns

Considerable intensity; =104 ~ 108 /s/MeV

LCS LCS -ray facilities in the world-ray facilities in the world

Year FacilityEe

[GeV]Laser

E

[MeV]

[/sec/MeV]

1964 Lebedev 0.6 ruby ~10 ~ 106

1965 Harvard / CEA 6 ruby ~1000 5×104

1978 Frascati / LADON 1.5 Ar+ 5 – 80 ~ 105

1985 ETL(AIST) / TERAS 0.2-0.8 Nd-YAG 2 – 32 103 ~105

1990 BNL / LEGS 2.8 Nd-YAG 150 – 470 104 ~ 105

1996 Grenoble / GrAAL 6 Ar+ 1500 ~ 4×103

1999 SPring-8 / LEPS 8 Ar+ 1500 – 3500 ~104

1999 TUNL(Duke) / HIS 0.2-1.2 FEL 2 – 70 107 ~ 109

2004LASTI(U. Hyogo) / N

ewSUBARU1 - 1.5

Nd-YVO4,

CO2, CO1.7 – 40 105 ~ 106

NewSUBARUNewSUBARU Lab. of Adv. Sci. and Tech. for Industry, University of Hyogo, Japan

NewSUBARU/LCS-NewSUBARU/LCS- source source

Linac

e-

Ee=1.0GeV

E =16 - 40 MeV, =104~5 photons/MeV/s, E/E =3~10%

K. Aoki, S. Miyamoto, et al. NIM A516 (2004) 228-236

accelerated to 1~1.5GeV

Experiment with quasi-monochromatic Experiment with quasi-monochromatic at NewSUBARUat NewSUBARU

Laser Compton-scattered -ray :

E = 16 ~ 40MeV, ~2×104 /sec, FWHM~9%, P~100%

Time Projection ChamberTime Projection Chamber

• Operational gas; He+CD4 (active target)→ ~ 4 , 100%, little uncertainty in detector sensitivity

• track shape, dE/dx → reliable event ID

• capability to simultaneous measurements of two-body and multi-body reaction channels as well as the reference reaction (d(,p)n)

Event Event IdentificationIdentification

4He(,p)3H

4He(,n)3He

4He photodisintegrations

Backgroundsx

[mm

]

z [mm]0 50 100 150 200 250-30

0

30

x [m

m]

z [mm]0 50 100 150 200 250-30

0

30

from natural RI

Photoelectrons

D(D(,p)n,p)n

--- Good agreement with existing data as well as theoretical calculations and fittings !

E [MeV]

Cro

ss S

ecti

on

[m

b] Skopik 74Bernabei 86Leleux 79,85Michel 89RCNP-AISTRCNP-NewSUBARU (1)RCNP-NewSUBARU (2)RCNP-NewSUBARU (3)

ENDF/B-VIIArenhoevel

&Sanzone

10 15 20 25 30 35 400

0.4

0.8

1.2

44He(He(,p),p)33H H (preliminary)(preliminary)

●○ RCNP-AIST2005 (PRC72, 044004) ; =351nm (3rd), Ee=0.8GeV

● RCNP-NewSUBARU; =532nm (2nd), Ee=0.97GeV

● RCNP-NewSUBARU; =1064nm (fund.), Ee≤1.46GeV

○ RCNP-NewSUBARU; =532nm (2nd), Ee=1.06GeV

E [MeV]

Cro

ss

Se

cti

on

[m

b]

20 25 30 35 40 45 500

1

2

44He(He(,n),n)33He He (preliminary)(preliminary)

●○ RCNP-AIST2005 (PRC72, 044004) ; =351nm (3rd), Ee=0.8GeV

● RCNP-NewSUBARU; =532nm (2nd), Ee=0.97MeV

● RCNP-NewSUBARU; =1064nm (fund.), Ee≤1.46GeV

○ RCNP-NewSUBARU; =532nm (2nd), Ee=1.06GeV

● Lund 2005-2007 (PRC75, 014007) ; tagged photons

E [MeV]

Cro

ss S

ecti

on

[m

b]

20 25 30 35 40 45 500

1

2

Comparison with theory Comparison with theory : : 44He(He(,n),n)33HeHe

●○ RCNP-AIST

●●○ RCNP-NewSUBARU

● Lund 2005-2007

Trento (Effective Interaction Hyperspherical Harmonics)

Bonn (Faddeev-AGS)

Londergan-Shakin (Coupled Channel Shell Model)

Horiuchi, Suzuki (Cluster model)

E [MeV]

Cro

ss S

ecti

on

[m

b]

20 25 30 35 40 45 500

1

2

Big Bang nucleosynthesis

p(n,)d, d(p,)3He, 3H(,)7Li, 3He(,)7Be, …

H- and He-burnings in stars

d(p,)3He, 12C(p,)13N, 13C(p,)14N, 14N(p,)15O, ...

4He(2,)12C, 12C(,)16O, ...

s-process

(n,) on heavy nuclei (production)

(n,) on light nuclei (neutron poison)

r-, p-, rp-, -processes

(p,), (n,), (,x)

Application to Nuclear Astrophysics Application to Nuclear Astrophysics StudiesStudies

Trajectories of Mass Elements in core-collapse SNeTrajectories of Mass Elements in core-collapse SNe

Sumiyoshi et al., ApJ 629 (2005) 922

Shock stalls at t~100ms, r~100km

Core bouncec ~ 1014 g/ccTc ~ 5 MeV

Shock wave-heating

Neutrino-nucleus interactions in astrophysicsNeutrino-nucleus interactions in astrophysics

Janka-Müller, A&A 306 (1996) 167

-heating; energy transfer by -heating; energy transfer by -A interaction-A interaction

3~12% increase in neutrino luminosity will make it.

1051 erg

Isotopic composition of post-bounce supernova coreIsotopic composition of post-bounce supernova core

M=15M☉, 150ms after bounce

D

Sumiyoshi & Röpke (2008)

4He

Analogy between Analogy between -A and -A and -A -A interactionsinteractions

JL

LLWLJ

WLJ

JLLLW

LJWLJ

YrigT

YrigT

1111

1010

JL

LLEMLJ

EMLJ

JLLLEM

LJEMLJ

YrigT

YrigT

2

2

31111

31010

Weak operators (neutral current) ;

EM operators ;

--- Photon is a useful probe for weak nuclear responses.

SummarySummary Photonuclear reactions provide unique tools for experimental studies of few-nucleon systems;

· 3NF(, 4NF?), tensor force, CIB, CSB, ... · theoretical approach to solve N-body EoM

They are also useful to obtain nuclear data demanded for nuclear astrophysics;

· radiative capture, neutrino-nuclear reactions

New real-photon source; Laser Compton Scattered --- quasi-monoenergy, little background, high polarization Precise data on cross section, branching ratio, angular distribution, analyzing power, ...

CollaboratorsCollaborators

Y. Nagai Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency

H. Utsunomiya, H. Akimune Department of Physics, Konan University

T. Mochizuki, S. Miyamoto, K. Horikawa Laboratory for Advanced Science and Technology for Industry, University of Hyogo

T. Hayakawa, T. Shizuma Kansai Photon Science Institute, Japan Atomic Energy Agency

M. Fujiwara Research Center for Nuclear Physics, Osaka University

top related