tension in the void aims

Post on 17-Jan-2015

552 Views

Category:

Technology

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

 

TRANSCRIPT

A-Void Dark EnergyObservational constraints

Tension in the VoidarXiv:1201.2790

Miguel Zumalacarregui

Institute of Cosmos Sciences, University of Barcelona

with Juan Garcia-Bellido and Pilar Ruiz-Lapuente

AIMS (Cape Town), January 2012

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Outline

1 A-Void Dark EnergyThe Standard Cosmological ModelInhomogeneous Universes

2 Observational constraintsCosmological DataMCMC analysis

3) Conclusions

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

A-Void Dark Energy

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Precission Cosmology and New Physics

Cosmic microwave Background δT/T ∼ 10−6

⇒ Cosmic Inflation

Large scale structure⇒ Dark Matter ρDM ≈ 5× ρSM

Supernovae ⇒ small Λ (Dark Energy, Modified Gravity...)

Probes complementary and consistent: New Physics required

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Standard Model of Cosmology

The ingredients of the Standard Model of Cosmology

GR + FRW + Inflation + SM + CDM + Λ

Theory of Gravitation: General Relativity

Ansatz for the metric: Homogeneous + Isotropic

Initial conditions: Inflationary perturbations

Standard particle content: γ, ν’s, p+, n, e−

Cold Dark Matter: some new particle species

Cosmological constant: Λ (energy of the vacuum??)

Commercial name: ΛCDM c©

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Standard Model of Cosmology

The ingredients of the Standard Model of Cosmology

GR + FRW + Inflation + SM + CDM + Λ

Theory of Gravitation: General Relativity

Ansatz for the metric: Homogeneous + Isotropic

Initial conditions: Inflationary perturbations

Standard particle content: γ, ν’s, p+, n, e−

Cold Dark Matter: some new particle species

Cosmological constant: Λ (energy of the vacuum??)

Commercial name: ΛCDM c©

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Standard Model of Cosmology

The ingredients of the Standard Model of Cosmology

GR + FRW + Inflation + SM + CDM + Λ

Theory of Gravitation: General Relativity

Ansatz for the metric: Homogeneous + Isotropic

Initial conditions: Inflationary perturbations

Standard particle content: γ, ν’s, p+, n, e−

Cold Dark Matter: some new particle species

Cosmological constant: Λ (energy of the vacuum??)

Commercial name: ΛCDM c©

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Standard Model of Cosmology

The ingredients of the Standard Model of Cosmology

GR + FRW + Inflation + SM + CDM + Λ

Theory of Gravitation: General Relativity

Ansatz for the metric: Homogeneous + Isotropic

Initial conditions: Inflationary perturbations

Standard particle content: γ, ν’s, p+, n, e−

Cold Dark Matter: some new particle species

Cosmological constant: Λ (energy of the vacuum??)

Commercial name: ΛCDM c©

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Some Popular (and Unpopular) Variations on the SCM

GR + FRW + Inflation + SM + CDM + Λ

Many models intended to avoid a small cosmological constant

Dark Energy: Λ→ Scalar φ for acceleration

Modified Gravity: GR→ f(R), φR, TeVeS, 5D-DGP. . .

Inflation → Varying speed of light, Horava-Lifschitz...

Neutrinos (mν , Nν), axions...

Backreacktion: Nonlinearity of GR, inhomogeneous effects

Large underdensity: FRW→ inhomogeneous metric

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Some Popular (and Unpopular) Variations on the SCM

GR + FRW + Inflation + SM + CDM + Λ

Many models intended to avoid a small cosmological constant

Dark Energy: Λ→ Scalar φ for acceleration

Modified Gravity: GR→ f(R), φR, TeVeS, 5D-DGP. . .

Inflation → Varying speed of light, Horava-Lifschitz...

Neutrinos (mν , Nν), axions...

Backreacktion: Nonlinearity of GR, inhomogeneous effects

Large underdensity: FRW→ inhomogeneous metric

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Some Popular (and Unpopular) Variations on the SCM

GR + FRW + Inflation + SM + CDM + Λ

Many models intended to avoid a small cosmological constant

Dark Energy: Λ→ Scalar φ for acceleration

Modified Gravity: GR→ f(R), φR, TeVeS, 5D-DGP. . .

Inflation → Varying speed of light, Horava-Lifschitz...

Neutrinos (mν , Nν), axions...

Backreacktion: Nonlinearity of GR, inhomogeneous effects

Large underdensity: FRW→ inhomogeneous metric

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Some Popular (and Unpopular) Variations on the SCM

GR + FRW + Inflation + SM + CDM + Λ

Many models intended to avoid a small cosmological constant

Dark Energy: Λ→ Scalar φ for acceleration

Modified Gravity: GR→ f(R), φR, TeVeS, 5D-DGP. . .

Inflation → Varying speed of light, Horava-Lifschitz...

Neutrinos (mν , Nν), axions...

Backreacktion: Nonlinearity of GR, inhomogeneous effects

Large underdensity: FRW→ inhomogeneous metric

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Some Popular (and Unpopular) Variations on the SCM

GR + FRW + Inflation + SM + CDM + Λ

Many models intended to avoid a small cosmological constant

Dark Energy: Λ→ Scalar φ for acceleration

Modified Gravity: GR→ f(R), φR, TeVeS, 5D-DGP. . .

Inflation → Varying speed of light, Horava-Lifschitz...

Neutrinos (mν , Nν), axions...

Backreacktion: Nonlinearity of GR, inhomogeneous effects

Large underdensity: FRW→ inhomogeneous metric

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Beyond Homogeneity

Homogeneity + Isotropy ⇒ FRW

ds2 = −dt2 +a(t)2 dr2

1− k+ [a(t) r]2 dΩ2

Spherical Symmetry ⇒ LTB

The Lemaitre-Tolman-Bondi metric

ds2 = −dt2 +A′2(r, t)

1− k(r)dr2 +A2(r, t) dΩ2

CMB isotropy ⇒ Central location r ≈ 0± 10Mpc

Observations from ds2 = 0⇒ mix time & space variations

Trade Λ for living in the center of a ∼ Gpc underdensity

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Beyond Homogeneity

Homogeneity + Isotropy ⇒ FRW

ds2 = −dt2 +a(t)2 dr2

1− k+ [a(t) r]2 dΩ2

Spherical Symmetry ⇒ LTB

The Lemaitre-Tolman-Bondi metric

ds2 = −dt2 +A′2(r, t)

1− k(r)dr2 +A2(r, t) dΩ2

CMB isotropy ⇒ Central location r ≈ 0± 10Mpc

Observations from ds2 = 0⇒ mix time & space variations

Trade Λ for living in the center of a ∼ Gpc underdensity

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Beyond Homogeneity

Homogeneity + Isotropy ⇒ FRW

ds2 = −dt2 +a(t)2 dr2

1− k+ [a(t) r]2 dΩ2

Spherical Symmetry ⇒ LTB

The Lemaitre-Tolman-Bondi metric

ds2 = −dt2 +A′2(r, t)

1− k(r)dr2 +A2(r, t) dΩ2

CMB isotropy ⇒ Central location r ≈ 0± 10Mpc

Observations from ds2 = 0⇒ mix time & space variations

Trade Λ for living in the center of a ∼ Gpc underdensity

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Beyond Homogeneity

Homogeneity + Isotropy ⇒ FRW

ds2 = −dt2 +a(t)2 dr2

1− k+ [a(t) r]2 dΩ2

Spherical Symmetry ⇒ LTB

The Lemaitre-Tolman-Bondi metric

ds2 = −dt2 +A′2(r, t)

1− k(r)dr2 +A2(r, t) dΩ2

CMB isotropy ⇒ Central location r ≈ 0± 10Mpc

Observations from ds2 = 0⇒ mix time & space variations

Trade Λ for living in the center of a ∼ Gpc underdensity

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Inhomogeneous Cosmologies

LTB metric: ds2 = −dt2 + A′2(r,t)1−k(r) dr

2 +A2(r, t) dΩ2

Two expansion rates: HL = A′/A′ 6= A/A = HT

Three free functions of r:

Local curvature k(r) −→ Matter profile: ΩM (r)

Initial “position” A(r, t0) −→ Gauge choice: A0(r)

Initial velocity A(r, t0) −→ Expansion rate: H0(r)

If pressure negligible:

H2T (r, t) = H2

0 (r)

[ΩM (r)

(A/A0(r))3 +1− ΩM (r)

(A/A0(r))2

]

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Inhomogeneous Cosmologies

LTB metric: ds2 = −dt2 + A′2(r,t)1−k(r) dr

2 +A2(r, t) dΩ2

Two expansion rates: HL = A′/A′ 6= A/A = HT

Three free functions of r:

Local curvature k(r) −→ Matter profile: ΩM (r)

Initial “position” A(r, t0) −→ Gauge choice: A0(r)

Initial velocity A(r, t0) −→ Expansion rate: H0(r)

If pressure negligible:

H2T (r, t) = H2

0 (r)

[ΩM (r)

(A/A0(r))3 +1− ΩM (r)

(A/A0(r))2

]

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Inhomogeneous Cosmologies

LTB metric: ds2 = −dt2 + A′2(r,t)1−k(r) dr

2 +A2(r, t) dΩ2

Two expansion rates: HL = A′/A′ 6= A/A = HT

Three free functions of r:

Local curvature k(r) −→ Matter profile: ΩM (r)

Initial “position” A(r, t0) −→ Gauge choice: A0(r)

Initial velocity A(r, t0) −→ Expansion rate: H0(r)

If pressure negligible:

H2T (r, t) = H2

0 (r)

[ΩM (r)

(A/A0(r))3 +1− ΩM (r)

(A/A0(r))2

]

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Inhomogeneous Cosmologies

LTB metric: ds2 = −dt2 + A′2(r,t)1−k(r) dr

2 +A2(r, t) dΩ2

Two expansion rates: HL = A′/A′ 6= A/A = HT

Three free functions of r:

Local curvature k(r) −→ Matter profile: ΩM (r)

Initial “position” A(r, t0) −→ Gauge choice: A0(r)

Initial velocity A(r, t0) −→ Expansion rate: H0(r)

If pressure negligible:

H2T (r, t) = H2

0 (r)

[ΩM (r)

(A/A0(r))3 +1− ΩM (r)

(A/A0(r))2

]

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Inhomogeneous Cosmologies

LTB metric: ds2 = −dt2 + A′2(r,t)1−k(r) dr

2 +A2(r, t) dΩ2

Two expansion rates: HL = A′/A′ 6= A/A = HT

Three free functions of r:

Local curvature k(r) −→ Matter profile: ΩM (r)

Initial “position” A(r, t0) −→ Gauge choice: A0(r)

Initial velocity A(r, t0) −→ Expansion rate: H0(r)

If pressure negligible:

H2T (r, t) = H2

0 (r)

[ΩM (r)

(A/A0(r))3 +1− ΩM (r)

(A/A0(r))2

]

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Inhomogeneous Cosmologies

LTB metric: ds2 = −dt2 + A′2(r,t)1−k(r) dr

2 +A2(r, t) dΩ2

Two expansion rates: HL = A′/A′ 6= A/A = HT

Three free functions of r:

Local curvature k(r) −→ Matter profile: ΩM (r)

Initial “position” A(r, t0) −→ Gauge choice: A0(r)

Initial velocity A(r, t0) −→ Expansion rate: H0(r)

If pressure negligible:

H2T (r, t) = H2

0 (r)

[ΩM (r)

(A/A0(r))3 +1− ΩM (r)

(A/A0(r))2

]

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Less Inhomogeneous Cosmologies

No pressure: H2T =

1

A

dA

dt= H2

0 (r)[

ΩM (r)

(A/A0(r))3+ 1−ΩM (r)

(A/A0(r))2

]t(A, r) =

∫ A

0

dA′

A′H2T (r,A′)

allows the construction of an implicit solution for A(r, t)

Homogeneous Big-Bang

tBB(r) = t(A0, r) = t0

Relates H0(r)↔ ΩM (r) up to a constant H0 ↔ t0

¶¶ Evolution from very homogeneous state at early times

+ ρb ∝ ρm → growth of an spherical adiabatic perturbation

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Less Inhomogeneous Cosmologies

No pressure: H2T =

1

A

dA

dt= H2

0 (r)[

ΩM (r)

(A/A0(r))3+ 1−ΩM (r)

(A/A0(r))2

]t(A, r) =

∫ A

0

dA′

A′H2T (r,A′)

allows the construction of an implicit solution for A(r, t)

Homogeneous Big-Bang

tBB(r) = t(A0, r) = t0

Relates H0(r)↔ ΩM (r) up to a constant H0 ↔ t0

¶¶ Evolution from very homogeneous state at early times

+ ρb ∝ ρm → growth of an spherical adiabatic perturbation

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Less Inhomogeneous Cosmologies

No pressure: H2T =

1

A

dA

dt= H2

0 (r)[

ΩM (r)

(A/A0(r))3+ 1−ΩM (r)

(A/A0(r))2

]t(A, r) =

∫ A

0

dA′

A′H2T (r,A′)

allows the construction of an implicit solution for A(r, t)

Homogeneous Big-Bang

tBB(r) = t(A0, r) = t0

Relates H0(r)↔ ΩM (r) up to a constant H0 ↔ t0

¶¶ Evolution from very homogeneous state at early times

+ ρb ∝ ρm → growth of an spherical adiabatic perturbation

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

Less Inhomogeneous Cosmologies

No pressure: H2T =

1

A

dA

dt= H2

0 (r)[

ΩM (r)

(A/A0(r))3+ 1−ΩM (r)

(A/A0(r))2

]t(A, r) =

∫ A

0

dA′

A′H2T (r,A′)

allows the construction of an implicit solution for A(r, t)

Homogeneous Big-Bang

tBB(r) = t(A0, r) = t0

Relates H0(r)↔ ΩM (r) up to a constant H0 ↔ t0

¶¶ Evolution from very homogeneous state at early times

+ ρb ∝ ρm → growth of an spherical adiabatic perturbation

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Constrained GBH: A0(r), H0(r),ΩM(r)

Adiabatic / Constrained models

Homogeneous Big-Bang: ΩM (r) determines H0(r)up to normalization H0 → t0

Constant baryon-DM ratio: ρb(r, t) = fbρm(r, t)

ΩM (r)→ GBH parameterization

Depth of void Ωin

Asymptotic curvature Ωout

Shape of the void R0, ∆R

Local expansion rate Hin

Baryon fraction fb

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

1.2

r

WM

HrL

GBH Profile

W in

Wout

R0

DR =1Gpc

DR =0.5

DR =1.5

These are just parameters → physical quantities ρ,HL, HT ...

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Constrained GBH: A0(r), H0(r),ΩM(r)

Adiabatic / Constrained models

Homogeneous Big-Bang: ΩM (r) determines H0(r)up to normalization H0 → t0

Constant baryon-DM ratio: ρb(r, t) = fbρm(r, t)

ΩM (r)→ GBH parameterization

Depth of void Ωin

Asymptotic curvature Ωout

Shape of the void R0, ∆R

Local expansion rate Hin

Baryon fraction fb

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

1.2

r

WM

HrL

GBH Profile

W in

Wout

R0

DR =1Gpc

DR =0.5

DR =1.5

These are just parameters → physical quantities ρ,HL, HT ...

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Constrained GBH: A0(r), H0(r),ΩM(r)

Adiabatic / Constrained models

Homogeneous Big-Bang: ΩM (r) determines H0(r)up to normalization H0 → t0

Constant baryon-DM ratio: ρb(r, t) = fbρm(r, t)

ΩM (r)→ GBH parameterization

Depth of void Ωin

Asymptotic curvature Ωout

Shape of the void R0, ∆R

Local expansion rate Hin

Baryon fraction fb

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

1.2

r

WM

HrL

GBH Profile

W in

Wout

R0

DR =1Gpc

DR =0.5

DR =1.5

These are just parameters → physical quantities ρ,HL, HT ...

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Constrained GBH: A0(r), H0(r),ΩM(r)

Adiabatic / Constrained models

Homogeneous Big-Bang: ΩM (r) determines H0(r)up to normalization H0 → t0

Constant baryon-DM ratio: ρb(r, t) = fbρm(r, t)

ΩM (r)→ GBH parameterization

Depth of void Ωin

Asymptotic curvature Ωout

Shape of the void R0, ∆R

Local expansion rate Hin

Baryon fraction fb0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

r

WM

HrL

GBH Profile

W in

Wout

R0

DR =1Gpc

DR =0.5

DR =1.5

These are just parameters → physical quantities ρ,HL, HT ...

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

The Standard Cosmological ModelInhomogeneous Universes

The Constrained GBH: A0(r), H0(r),ΩM(r)

Adiabatic / Constrained models

Homogeneous Big-Bang: ΩM (r) determines H0(r)up to normalization H0 → t0

Constant baryon-DM ratio: ρb(r, t) = fbρm(r, t)

ΩM (r)→ GBH parameterization

Depth of void Ωin

Asymptotic curvature Ωout

Shape of the void R0, ∆R

Local expansion rate Hin

Baryon fraction fb0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

r @ GpcD

WM H rL

ΡH r ,t0L Ρ¥H t0LΡ H r ,t10 L Ρ ¥ H t10 L

HT H r ,t0L

HL H r ,t0L

These are just parameters → physical quantities ρ,HL, HT ...

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Observational constraints

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Supernova Ia - Standard Candles

Standar(izable) Candles: ≈ Same (corrected) Luminosity

DL(z) =

√Luminosity

4π Flux= H−1

0 f(z,ΩΛ,ΩM ) (FRW)

difficult to model SNe ⇒ Intrinsic Luminosity unknown!!

For any L, comparison of low and high z SNe very useful

FRW: Luminosity degenerate with Hubble rate⇒ need L to determine H0

In LTB not quite true ⇒ convert constraint

H0 = 73.8± 2.4 Mpc/Km/s ↔ L = −0.120± 0.071 Mag

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Supernova Ia - Standard Candles

Standar(izable) Candles: ≈ Same (corrected) Luminosity

DL(z) =

√Luminosity

4π Flux= H−1

0 f(z,ΩΛ,ΩM ) (FRW)

difficult to model SNe ⇒ Intrinsic Luminosity unknown!!

For any L, comparison of low and high z SNe very useful

FRW: Luminosity degenerate with Hubble rate⇒ need L to determine H0

In LTB not quite true ⇒ convert constraint

H0 = 73.8± 2.4 Mpc/Km/s ↔ L = −0.120± 0.071 Mag

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Supernova Ia - Standard Candles

Standar(izable) Candles: ≈ Same (corrected) Luminosity

DL(z) =

√Luminosity

4π Flux= H−1

0 f(z,ΩΛ,ΩM ) (FRW)

difficult to model SNe ⇒ Intrinsic Luminosity unknown!!

For any L, comparison of low and high z SNe very useful

FRW: Luminosity degenerate with Hubble rate⇒ need L to determine H0

In LTB not quite true ⇒ convert constraint

H0 = 73.8± 2.4 Mpc/Km/s ↔ L = −0.120± 0.071 Mag

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Baryon acoustic oscillations - Standard Rulers

-CMB light released when H forms

-Sound waves in the baryon-photonplasma travel a finite distance

-Initial baryon clumps → more galaxies

Same logic as SNe: Distance vs Length (well determined!)

LTB: Do these clumps/galaxies move? Geodesics

r +

[k′

2(1− k)+A′′

A′

]r2 + 2

A′

A′tr = 0

t r ⇒ Constant coordinate separation (zero order)

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Baryon acoustic oscillations - Standard Rulers

-CMB light released when H forms

-Sound waves in the baryon-photonplasma travel a finite distance

-Initial baryon clumps → more galaxies

Same logic as SNe: Distance vs Length (well determined!)

LTB: Do these clumps/galaxies move? Geodesics

r +

[k′

2(1− k)+A′′

A′

]r2 + 2

A′

A′tr = 0

t r ⇒ Constant coordinate separation (zero order)

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Baryon acoustic oscillations - Standard Rulers

-CMB light released when H forms

-Sound waves in the baryon-photonplasma travel a finite distance

-Initial baryon clumps → more galaxies

Same logic as SNe: Distance vs Length (well determined!)

LTB: Do these clumps/galaxies move? Geodesics

r +

[k′

2(1− k)+A′′

A′

]r2 + 2

A′

A′tr = 0

t r ⇒ Constant coordinate separation (zero order)

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Baryon acoustic oscillations - Standard Rulers

-CMB light released when H forms

-Sound waves in the baryon-photonplasma travel a finite distance

-Initial baryon clumps → more galaxies

Same logic as SNe: Distance vs Length (well determined!)

LTB: Do these clumps/galaxies move? Geodesics

r +

[k′

2(1− k)+A′′

A′

]r2 + 2

A′

A′tr = 0

t r ⇒ Constant coordinate separation (zero order)

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Observations in LTB universes (Constrained case)

ìì-2 0 2 4 6 8 10

0

2

4

6

8

10

12

r @ GpcD

t@G

yrD

constant t H z =0L

t H z =1L

t H z =100 L

constant Ρ

CMB

z~1100

Homogeneous state at

early times, large r

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Observations in LTB universes (Constrained case)

ìì

øøWe are here

-2 0 2 4 6 8 10

0

2

4

6

8

10

12

r @ GpcD

t@G

yrD

constant tH z =0L

tH z =1L

tH z =100L

constant Ρ

CMB

z~1100

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Observations in LTB universes (Constrained case)

ìì

øøWe are here

ç

çç

çç

çç

ç

ççç

ç

ç

ç

ç

ç

ç

ç

çç

çççç

ç

çç

ç

ç

çç

ç

ç

ççççç

ç

çç

çç

ç

ç

çç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

çç

çç

ç

ç

ç

çç

çççç

ç

çççç

ççççç

ç

ççç

ççç

ççççççç

ç

ç

ç

çç

ç

çççç

çç

çç

çççç

ç

ççç

ç

çç

çç

çç

ççç

çç

ç

ç

ççç

ç

ç

ççç

ç

ç

ç

çççç

çççç

çç

ç

çç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

çç

ç

ç

ç

çç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ççç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ççç

ç

ç

çç

çç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

-2 0 2 4 6 8 10

0

2

4

6

8

10

12

r @ GpcD

t@G

yrD

constant tH z =0L

tH z =1L

tH z =100L

constant Ρ

CMB

z~1100

Ia SNe zd1.5

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Observations in LTB universes (Constrained case)

ìì

øøWe are here

ç

çç

çç

çç

ç

ççç

ç

ç

ç

ç

ç

ç

ç

çç

çççç

ç

çç

ç

ç

çç

ç

ç

ççççç

ç

çç

çç

ç

ç

çç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

çç

çç

ç

ç

ç

çç

çççç

ç

çççç

ççççç

ç

ççç

ççç

ççççççç

ç

ç

ç

çç

ç

çççç

çç

çç

çççç

ç

ççç

ç

çç

çç

çç

ççç

çç

ç

ç

ççç

ç

ç

ççç

ç

ç

ç

çççç

çççç

çç

ç

çç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

çç

ç

ç

ç

çç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ççç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ççç

ç

ç

çç

çç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

õ

õ

õ

õ

õ

õ

õ

-2 0 2 4 6 8 10

0

2

4

6

8

10

12

r @ GpcD

t@G

yrD

constant tH z =0L

tH z =1L

tH z =100L

constant Ρ

CMB

z~1100

Ia SNe zd1.5

BAO zd0.8

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Observations in LTB universes (Constrained case)

ìì

øøWe are here

ç

çç

çç

çç

ç

ççç

ç

ç

ç

ç

ç

ç

ç

çç

çççç

ç

çç

ç

ç

çç

ç

ç

ççççç

ç

çç

çç

ç

ç

çç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

çç

çç

ç

ç

ç

çç

çççç

ç

çççç

ççççç

ç

ççç

ççç

ççççççç

ç

ç

ç

çç

ç

çççç

çç

çç

çççç

ç

ççç

ç

çç

çç

çç

ççç

çç

ç

ç

ççç

ç

ç

ççç

ç

ç

ç

çççç

çççç

çç

ç

çç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

çç

ç

ç

ç

çç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ççç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ççç

ç

ç

çç

çç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

õ

õ

õ

õ

õ

õ

õ

ôô

-2 0 2 4 6 8 10

0

2

4

6

8

10

12

r @ GpcD

t@G

yrD

constant tH z =0L

tH z =1L

tH z =100L

constant Ρ

CMB

z~1100

Ia SNe zd1.5

BAO zd0.8

Relate to early time

and asymptoticvalue

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

The physical BAO scale

BAO scale at early times ≈ homogeneous and isotropic

Fix early time BAO scale with r →∞ value (FRW limit)

LTB geodesics ⇒ baryon clumps remain at constant r, θ, φ

Physical distances given by grr = A′2(r,t)1−k(r) , gθθ = A2(r, t)

lL(r, t) =A′(r, t)

A′(r, te)learly, lT (r, t) =

A(r, t)

A(r, te)learly

LTB: evolving (t), inhomogeneous (r) and anisotropic lT 6= lL

FRW → only time evolution!

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

The physical BAO scale

BAO scale at early times ≈ homogeneous and isotropic

Fix early time BAO scale with r →∞ value (FRW limit)

LTB geodesics ⇒ baryon clumps remain at constant r, θ, φ

Physical distances given by grr = A′2(r,t)1−k(r) , gθθ = A2(r, t)

lL(r, t) =A′(r, t)

A′(r, te)learly, lT (r, t) =

A(r, t)

A(r, te)learly

LTB: evolving (t), inhomogeneous (r) and anisotropic lT 6= lL

FRW → only time evolution!

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

The physical BAO scale

BAO scale at early times ≈ homogeneous and isotropic

Fix early time BAO scale with r →∞ value (FRW limit)

LTB geodesics ⇒ baryon clumps remain at constant r, θ, φ

Physical distances given by grr = A′2(r,t)1−k(r) , gθθ = A2(r, t)

lL(r, t) =A′(r, t)

A′(r, te)learly, lT (r, t) =

A(r, t)

A(r, te)learly

LTB: evolving (t), inhomogeneous (r) and anisotropic lT 6= lL

FRW → only time evolution!

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

The physical BAO scale

BAO scale at early times ≈ homogeneous and isotropic

Fix early time BAO scale with r →∞ value (FRW limit)

LTB geodesics ⇒ baryon clumps remain at constant r, θ, φ

Physical distances given by grr = A′2(r,t)1−k(r) , gθθ = A2(r, t)

lL(r, t) =A′(r, t)

A′(r, te)learly, lT (r, t) =

A(r, t)

A(r, te)learly

LTB: evolving (t), inhomogeneous (r) and anisotropic lT 6= lL

FRW → only time evolution!

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

The physical BAO scale

BAO scale at early times ≈ homogeneous and isotropic

Fix early time BAO scale with r →∞ value (FRW limit)

LTB geodesics ⇒ baryon clumps remain at constant r, θ, φ

Physical distances given by grr = A′2(r,t)1−k(r) , gθθ = A2(r, t)

lL(r, t) =A′(r, t)

A′(r, te)learly, lT (r, t) =

A(r, t)

A(r, te)learly

LTB: evolving (t), inhomogeneous (r) and anisotropic lT 6= lL

FRW → only time evolution!

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

The observed BAO scale

Observations → galaxy correlation in angular and redshift space

Geometric mean d ≡(δθ2δz

)1/3δθ =

lT (z)

DA(z), δz = (1 + z)HL(z) lL(z)

Different result than FRW

dLTB(z) = ξ(z) dFRW(z)

ξ(z) = rescaling = (ξ2T ξL)1/3

Inhomogeneous, anisotropic0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

z

ΞHz

L

Transverse

rescalingLongitudinal

rescaling

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

The observed BAO scale

Observations → galaxy correlation in angular and redshift space

Geometric mean d ≡(δθ2δz

)1/3δθ =

lT (z)

DA(z), δz = (1 + z)HL(z) lL(z)

Different result than FRW

dLTB(z) = ξ(z) dFRW(z)

ξ(z) = rescaling = (ξ2T ξL)1/3

Inhomogeneous, anisotropic0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

z

ΞHz

L

Transverse

rescalingLongitudinal

rescaling

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC data and models

Observations:

WiggleZ BAO: 3× d measurements + Carnero et al.: 1× δθ4 new points at 0.4 < z < 0.8 → lBAO in broad range

Union 2 Supernovae Compilation: 557 Ia SNe z . 1.5

H0 = 73.8± 2.4 → Prior on the SNe luminosity

CMB peaks position (simplified analysis):1% error on first peak, 3% on second and thirdFixes the BAO scale

Monte Carlo Markov Chain Analysis of

FRW reference model: ΛCDM

LTB models with homogeneous BB: Ωout = 1 and Ωout ≤ 1

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC data and models

Observations:

WiggleZ BAO: 3× d measurements + Carnero et al.: 1× δθ4 new points at 0.4 < z < 0.8 → lBAO in broad range

Union 2 Supernovae Compilation: 557 Ia SNe z . 1.5

H0 = 73.8± 2.4 → Prior on the SNe luminosity

CMB peaks position (simplified analysis):1% error on first peak, 3% on second and thirdFixes the BAO scale

Monte Carlo Markov Chain Analysis of

FRW reference model: ΛCDM

LTB models with homogeneous BB: Ωout = 1 and Ωout ≤ 1

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC data and models

Observations:

WiggleZ BAO: 3× d measurements + Carnero et al.: 1× δθ4 new points at 0.4 < z < 0.8 → lBAO in broad range

Union 2 Supernovae Compilation: 557 Ia SNe z . 1.5

H0 = 73.8± 2.4 → Prior on the SNe luminosity

CMB peaks position (simplified analysis):1% error on first peak, 3% on second and thirdFixes the BAO scale

Monte Carlo Markov Chain Analysis of

FRW reference model: ΛCDM

LTB models with homogeneous BB: Ωout = 1 and Ωout ≤ 1

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC data and models

Observations:

WiggleZ BAO: 3× d measurements + Carnero et al.: 1× δθ4 new points at 0.4 < z < 0.8 → lBAO in broad range

Union 2 Supernovae Compilation: 557 Ia SNe z . 1.5

H0 = 73.8± 2.4 → Prior on the SNe luminosity

CMB peaks position (simplified analysis):1% error on first peak, 3% on second and thirdFixes the BAO scale

Monte Carlo Markov Chain Analysis of

FRW reference model: ΛCDM

LTB models with homogeneous BB: Ωout = 1 and Ωout ≤ 1

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC: FRW-ΛCDM reference model

Using BAO scale, CMB peaks, Supernovae and H0+BAO+CMB+SNe

BAO ∼ SNe: Arbitrarylength/luminosity (beforeadding CMB/H0)

CMB constraints muchweaker than usual1− Ωk . 1%

⇒ don’t take our CMB constraints too seriously

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC: constrained GBH, Ωout = 1

Filled: SNe+H0, BAO+CMB, Dashed: BAO , CMB peaks, Supernovae

Depth of the Void:

SNe → Ωin ≈ 0.1 (< 0.18)

BAO → Ωin ≈ 0.3 (> 0.2)

New: 3σ Away!!!

Local Expansion Rate:

SNe+H0 → hin ≈ 0.74

BAO+CMB → hin ≈ 0.62

known, worse if full CMB used

Do asymptotically open models work better?

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC: constrained GBH, Ωout = 1

Filled: SNe+H0, BAO+CMB, Dashed: BAO , CMB peaks, Supernovae

Depth of the Void:

SNe → Ωin ≈ 0.1 (< 0.18)

BAO → Ωin ≈ 0.3 (> 0.2)

New: 3σ Away!!!

Local Expansion Rate:

SNe+H0 → hin ≈ 0.74

BAO+CMB → hin ≈ 0.62

known, worse if full CMB used

Do asymptotically open models work better?Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

MCMC: constrained GBH, Ωout ≤ 1

Filled: SNe+H0, BAO+CMB, Dashed: BAO , CMB peaks, Supernovae

Depth of the Void:

SNe → Ωin ≈ 0.1

BAO → Ωin ≈ 0.3

Still 3σ Away!!!

Local Expansion Rate:

Ωout ≈ 0.85↔ higher Hin

t0 ∝ 1/Hin → t0 . 12Gyr

Only better H0, but Universe too young

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Best fit models

Tension in the Void

Bad fit to SNe and BAO

SNe measure distanceBAO: distance+rescaling

complementary probes

Strongly ruled out

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

r @ GpcD

WM

HrL

constrained GBH Profile, Wout=1

BAO: Win>0.18

SNe: Win<0.18

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Best fit models

Tension in the Void

Bad fit to SNe and BAO

SNe measure distanceBAO: distance+rescaling

complementary probes

Strongly ruled out

Model χ2 − logE

FRW-ΛCDM 536.6 282.2

flat-CGBH +19.8 +10open-CGBH +9.4 +6

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

A-Void Dark EnergyObservational constraints

Cosmological DataMCMC analysis

Conclusions

Large voids as alternative to dark energy

BAO and SNe alone strongly rule out the GBH model withhomogeneous Big Bang and baryon fraction

Purely geometrical result, whatever Luminosity & BAO scale

Possible ways to save large void models:

Change the profile ΩM (r)

Inhomogeneous Big Bang ↔ free H0

Large scale isocurvature ρb = fb(r) ρm

BAO are a powerful test for large voids models of acceleration

If large voids ruled out ⇒ need small Λ or “new” physics

Miguel Zumalacarregui Tension in the Void

top related