the barotropic vorticity equation (with free surface)

Post on 01-Jan-2016

39 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

The barotropic vorticity equation (with free surface). Barotropic Rossby waves (rigid lid). Barotropic Rossby waves (rigid lid). Barotropic Rossby waves (rigid lid). Rossby waves. The 2D vorticity equation ( f plane, no free-surface effects ). In the absence of dissipation and forcing, - PowerPoint PPT Presentation

TRANSCRIPT

The barotropic vorticity equation (with free surface)

u = −∂ψ

∂y, v =

∂ψ

∂x, ζ =∇ 2ψ

D

Dt∇ 2ψ −

L2

LD2ψ + β y

⎝ ⎜

⎠ ⎟= 0

∂t∇ 2ψ −

L2

LD2ψ

⎝ ⎜

⎠ ⎟+ ψ , ∇ 2ψ −

L2

LD2ψ

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥+ β

∂ψ

∂x= 0

Barotropic Rossby waves (rigid lid)

u = −∂ψ

∂y, v =

∂ψ

∂x, ζ =∇ 2ψ

D

Dt∇ 2ψ + β y( ) = 0

∂t∇ 2ψ + ψ ,∇ 2ψ[ ] + β

∂ψ

∂x= 0

u =U + u'

v = v '

ψ = Ψ(y) +ψ '= −U y +ψ '

Barotropic Rossby waves (rigid lid)

u =U + u'= −∂ψ

∂y= −

∂Ψ

∂y−

∂ψ '

∂y, v = v '=

∂ψ '

∂x, ζ = ζ '=∇ 2ψ '

ψ = Ψ(y) +ψ '= −U y +ψ '

∂t∇ 2ψ '+U

∂x∇ 2ψ '( ) + β

∂ψ '

∂x= 0

Barotropic Rossby waves (rigid lid)

∂∂t∇ 2ψ '+U

∂x∇ 2ψ '( ) + β

∂ψ '

∂x= 0

ψ '= exp ik x + i l y − iω t( )

ω

k=U −

β

k 2 + l2

Rossby waves

The 2D vorticity equation ( f plane, no free-surface effects )

u = −∂ψ

∂y, v =

∂ψ

∂x, ζ =∇ 2ψ

∂∇2ψ

∂t+ ψ ,∇ 2ψ[ ] = Dζ + F

In the absence of dissipation and forcing,2D barotropic flows conserve

two quadratic invariants:energy and enstrophy

E =1

A A

∫ 1

2u2 + v 2

( )dxdy =1

A A

∫ 1

2∇ψ

2dxdy

Z =1

A A

∫ ζ 2

2dxdy

1

A A

∫ 1

2∇ 2ψ( )

2dxdy

As a result, one has a direct enstrophy cascadeand an inverse energy cascade

Two-dimensional turbulence:the transfer mechanism

E = E1 + E2

Z = Z1 + Z2

Z = k 2E

k 2E = k12E1 + k2

2E2

As a result, one has a direct enstrophy cascadeand an inverse energy cascade

Two-dimensional turbulence:inertial ranges

ετ=u3

l= constant → u ≈ l1/ 3

E(k)dk ≈ u2 ≈ l2 / 3

k ≈1/ l

E(k) ≈ k−5 / 3

As a result, one has a direct enstrophy cascadeand an inverse energy cascade

Two-dimensional turbulence:inertial ranges

Z

τ=u3

l3= constant → u ≈ l

E(k)dk ≈ u2 ≈ l2

k ≈1/ l

E(k) ≈ k−3

As a result, one has a direct enstrophy cascadeand an inverse energy cascade

Two-dimensional turbulence:inertial ranges

As a result, one has a direct enstrophy cascadeand an inverse energy cascade

log k

log E(k)

k-3

k-5/3

E Z

Is this all ?

Vortices form, interact,and dominate the dynamics

Vortices are localized, long-lived concentrations

of energy and enstrophy:Coherent structures

Vortex studies:

Properties of individual vortices(and their effect on tracer transport)

Processes of vortex formation

Vortex motion and interactions,evolution of the vortex population

Transport in vortex-dominated flows

Coherent vortices in 2D turbulence

Qualitative structure of a coherent vortex

(u2+v2)/2

Q=(s2-2)/2

The Okubo-Weiss parameter

u2+v2

Q=s2-2

=∂v∂x

−∂u

∂y, sn =

∂u

∂x−

∂v

∂y, ss =

∂v

∂x+

∂u

∂y

Q = sn2 + ss

2 −ζ 2

Q = −4∇ 2p

Q = −4 det

∂u

∂x

∂u

∂y∂v

∂x

∂v

∂y

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟= 4 λ2

The Okubo-Weiss field in 2D turbulence

u2+v2

Q=s2-2

The Okubo-Weiss field in 2D turbulence

u2+v2

Q=s2-2

Coherent vortices trap fluid particles

for long times

(contrary to what happens with linear waves)

Motion of Lagrangian particlesin 2D turbulence

(X j (t),Y j (t)) is the position of the j − th particle at time t

dX j

dt= u(X j ,Y j , t) = −

∂ψ

∂y

dY jdt

= v(X j ,Y j , t) =∂ψ

∂x

Formally, a non-autonomous Hamiltonian systemwith one degree of freedom

The Lagrangian view

Effect of individual vortices:Strong impermeability of the vortex edgesto inward and outward particle exchanges

Example: the stratospheric polar vortex

Vortex formation:

Instability of vorticity filamentsDressing of vorticity peaks

But: why are vortices coherent ?

Q=s2-2

Instability of vorticity filaments

Q=s2-2

Existing vortices stabilize vorticity filaments:Effects of strain and adverse shear

Q=s2-2

Processes of vortex formation and evolutionin freely-decaying turbulence:

Vortex formation period

Inhibition of vortex formation by existing vortices

Vortex interactions:

Mutual advection (elastic interactions)

Opposite-sign dipole formation (mostly elastic)

Same-sign vortex merging, stripping, etc(strongly inelastic)

2 to 1, 2 to 1 plus another, ….

A model for vortex dynamics:The (punctuated) point-vortex model

222 )()(

log4

1

jiji

ijjji

i

j

jj

j

jj

yyxxR

RH

x

H

dt

dy

y

H

dt

dx

ij−+−=

ΓΓ=

∂∂

∂∂

−=Γ

∑≠π

Q=s2-2

Beyond 2D:

Free-surface effects

Dynamics on the -plane

Role of stratification

The discarded effects: free surface

The discarded effects: dynamics on the -plane

Filtering fast modes:The quasigeostrophic approximation

in stratified fluids

The stratified QG potential vorticity equation

ug = −∂ψ

∂ y, vg =

∂ψ

∂ x

ζ =∂vg∂ x

−∂ ug∂ y

=∇ 2ψ

q =∇ 2ψ 0 + β y +∂

∂z

f02

N 2(z)

∂ψ

∂z

⎝ ⎜

⎠ ⎟

N 2(z) = −g

ρ

dz

∂q

∂t+ ψ ,q[ ] = Dζ + F

Vortex merging and filamentationin 2D turbulence

Vortex merging and filamentationin QG turbulence: role of the Green function

top related