the generalized flather lateral open boundary...

Post on 17-Aug-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ThegeneralizedFlatherlateralopenboundarycondi5on

P.Oddo(1)andN.Pinardi(1,2)(1)INGV,Bologna,Italy

(2)Dept.ofEnvironmentalSciences,Univ.ofBologna,Italy

Sub‐5tle:Theneedofopera5onaloceanographyforincreasedforecastskillnearthe

coasts

Outline

1.  Opera5onalOceanographyandthenes5ngapproach

2.  Thenes5ngconundrum:theLateralBoundaryCondi5onproblem

3.  ThegeneralizedFlatherboundarycondi5ons4.TheCoastalRapidEnvironmentalAssessment

(CREA)methodology:apossibleframeworkfortes5ngstructured/unstructuredgridmodels

Multidisciplinary Multi-platform Observing system (permanent and relocatable)

Numerical models of

hydrodynamics and ecosystem,

coupled a/synchronously to atmospheric

forecast

Data assimilation for optimal field

estimates and

uncertainty estimates

Continuos production of nowcasts/forecasts of relevant environmental state variables

The operational approach: from large to coastal space scales (NESTING),

weekly to monthly time scales

OBSERVING SYSTEM

MODELING SYSTEM

MOORED BUOY ARRAYS SOOP EXPANDABLE AND ONDULATING INSTRUMENTS  SATELLITE SENSING: SEA LEVEL, SEA SURFACE TEMPERATURE, SEA SURFACE SALINITY, COLOR, WINDS DRIFTING BUOYS (SURFACE AND SUBSURFACE) GLIDERS

 REPEATED MULTIPARAMETRIC SECTIONS SATELLITE AND AERIAL SURVEYS COASTAL RADARS AUTONOMOUS UNDERWATER VEHICLES   CABLED MULTIPARAMETRIC STATIONS RIVER RUNOFF AND LOADING MONITORING  SEDIMENT/WQ MONITORING

MODEL PHYSICS PRIMITIVE EQUATION (> 1-5 KM) TURBULENCE CLOSURE SUBMODELS

MODEL PHYSICS  Non-Hydrostatic (<1- 5 KM) TURBULENCE AND LIGHT

SUBMODELS

DATA ASSIMILATION  OPTIMAL INTERPOLATION   3-DVAR, KALMAN FILTER

DATA ASSIMILATION KALMAN FILTERS ADJOINT MODELS

BIOCHEMICAL MODELS PELAGIC COMPARTMENT BENTHIC CLOSURE

BIOCHEMICAL MODELS PELAGIC COMPARTMENT

BENTHIC-PELAGIC COUPLING SEDIMENT DYNAMICS

ATMOSPHERIC FORCING  OPERATIONAL ANALYSES AND FORECASTS FROM LARGE SCALE MODELS

ATMOSPHERIC FORCING  OPERATIONAL ANALYSES AND

FORECASTS FROM LIMITED AREA MODELS

Whynes5ng?•  Increasetheresolu5onwhereusersneedit(especiallycoastalusers)

•  Opera5onaloceanographyproductsgivebasicfirstguessfieldsforhighresolu5oncoastalmodels

•  Nes5ngallowstheintroduc5onofnewphysics(haveresolu5onANDPROCESSESwhereandwhenyouneedthem,Robinsonetal.,1998)

•  Prac5calandincrementalwaytoimplementnewtechnologyintheopera5onalframework

The European Operational Oceanography Service 6 European Seas + Global Ocean

Every day the ocean weather with uncertainty estimates

 Ocean Core Information –  Temperature, Salinity,

Currents, Color, Sea Level, Ice variables, Bio variables

–  Hindcast, NowCast, Forecast

–  Re-analyses

  One single desk –  access point to the MyOcean pan-

european information

  Open Data Policy –  Open access –  Free access

Theopera5onalforecas5ngmodelsnow

•  Primi5veequa5onsinsphericalcoordinateswithfulloceanthermodynamics

•  Physics:–  Subgridscaleparametriza5onsforhorizontalviscosityanddiffusivity

(fourthandsixthorderlaplacians)–  Highfrequencyatmosphericforcingandadvancedair‐seainterac5on–  Turbulenceclosuresub‐modelsforthever5calviscosityanddiffusivity–  Bo_omboundarylayerparametriza5ons–  Tidalpoten5alincluded–  Surfacewave‐currentcoupling

•  Dataassimila5oncomponents:mul5variateschemesassimila5ngallavailabledatainreal5me(satelliteandinsitu)

•  Simplifiedphysicsforecas5ngmodels:–  shallowwatermodelsforstormsurgeforecas5ng–  Wavemodelsforsurfacewaveforecas5ng

MOM1.1+SOFAOPA8.2+SOFA(sys2b)OPA8.2+3DVAR(sys3a2)NEMO+3DVAR(sys4a)

rmse

1999

2009

SEALEVELintheMEDSEA

Theerrorsofstructuredgridmodels(pasttenyearsofdataintheMediterranean)

nbofSLADATA nbofTemperatureDATA

RMSEofSLA RMSEoftemperatureat8m

EuroGOOSConference,Exeter,2008Athens,MemberAssembly,4‐5March2008

Shelfandsub‐regionalmodelsnowreach1‐3kmresolu8on

TheMediterraneanForecas8ngsystemdisseminatesdailyforecaststo13nestedna8onalmodelseveryday

Opera5onalOceanography:thenes5ngdeluge(allstructuredgrids)

Opera5onaloceanographyNes5ngwithunstructuredgrids:SHYFEM3‐D

CoastalModelstartedfromShelfmodel

Analysisoflandsourcesofpollu5onandtheirimpactInthesea

Bellafioreetal.,2010

Op.Oc.nes5ngissueswithstructuredandunstructuredgrids

•  Ini5aliza5onproblem:ini5alizingallprognos5cstatevariablesfromthecoarsetothehighresolu5ongrid.VIFOPdeveloped(Varia5onalIni5aliza5onandForcingPlaeorm,Auclairetal.,1999,2000,2006)butmoreisneeded(mass‐conservinginterpola5ontools)

•  Ver5calBoundaryCondi5onproblem:higherresolu5onatmosphericforcingusedinthenestedmodel,needforconsistency(?)

•  LateralBoundaryCondi5onproblem:delicateproblem,wefocusedonthat

TheLateralBoundaryCondi5onproblem

•  Mainlysolvedinthe70’sforlimitedareamodels•  Barotropicquasigeostropicequa5onsareill‐posed(Benne_

andKloeden,1978)butforshort5mescaleserrorscanbekeptbelowathreshold(RobinsonandHaidvogel,1978)

•  Primi5veequa5onsforatmosphere(OligerandSundstrom,1978,Orlansky,1976,MiyakodaandRosa5,1977)

•  Primi5veequa5onsfortheoceans(Flather,1976),SpallandRobinson(1989),etc.

•  Morerecentlyaveryinteres5ngrevisit:Marchesielloetal.(2001)andBlayoandDebreu(2005)

•  Interes5ngworkbyTemanandTribbia(2003)showingthatnon‐hydrosta5copenboundarycondi5onislessill‐posedthanhydrosta5ccase

TheMediterraneannestedmodelsLBCstrategy(Pinardietal.,2003)

•  Fortracers,TandS,andbaroclinicveloci5es,collec5vely,use:

atouelowpoints(inflowcanbeprescribedfromcoarsemodel)•  Forbarotropicvelocitynormalcomponents,

useinstead3differentforms:

•  Whythesedifferentformsandwhatistherela5onshiptoFlather(1976)?

∂θ∂t

+ uNORMALCOARSE ∂θ

∂n= 0

UN =1

H +ηuNORMAL dz

−H

η

UNF =

HC

HF

UNC ±

gHF

ηF ; UNF =

HC

HF

UNC ;

UNF =

HC

HF

UNC ±

gHF

(ηF −ηC )

θ

•  Inaddi5on,allmodels,needtoconsiderthe‘INTERPOLATIONCONSTRAINT’,i.e.theconserva5onoftransportacrosstheopenboundaryalerinterpola5on

•  Thisamountstohaveacorrec5onsdoneeachnes5ng5meonthefineresolu5onvelocitybarotropicfieldofthetype:

TheMediterraneannestedmodelsLBCstrategy(Pinardietal.,2003)

uC−HC

ηC

∫l1

l2

∫ dz dl = uINTERP−HF

ηF

∫l1

l2

∫ dz dl

UF =UINTERP −ΔTSF(x, y, z)

ThegeneralizedFlatherLBC(OddoandPinardi,OM,2008)

•  Flather(1976):

•  Wherethisformulacomesfrom?Flatherdoesnotexplainit.Ourderiva5onis:

•  Imposinganequalitybetweentheconserva5onofmassinthecoarse(c)andfineresolu5on(F)domain:

UNF =UN

C −gH

ηC −ηF( )

∇ ⋅ u = 0

∂η∂t

+∇ ⋅ (H +η)U⎡⎣ ⎤⎦ = 0

∂ηC

∂t+∇ ⋅ (HC +ηC )

UC⎡⎣ ⎤⎦ =

∂ηF

∂t+∇ ⋅ (HF +ηF )

UF⎡⎣ ⎤⎦

ThegeneralizedFlatherLBC,cont.•  Fromtheequalitybefore:

•  Assumingthatthefreesurfacetendencycanbewri_enas:

•  WeobtainthegeneralizedFlatherboundarycondi8on:

∂η∂t

+∇ ⋅ C η[ ] = 0

∂ηC

∂t+∇ ⋅ (HC +ηC )

UC⎡⎣ ⎤⎦ =

∂ηF

∂t+∇ ⋅ (HF +ηF )

UF⎡⎣ ⎤⎦

UNF =

HC +ηC

HF +ηF

UNC −

CN

HF +ηF

ηC −ηF( )

ThegeneralizedFlatherLBC,cont.

•  ThegeneralizedFlatherboundarycondi8on:

•  BecomestheFlather(1976)onlyif

•  Thisisalsowhynes8ngandnestedmodelsbathymetryshouldnotbeverydifferentattheopenboundaryifFlather(1976)isused

UNF =

HC +ηC

HF +ηF

UNC −

CN

HF +ηF

ηC −ηF( )

HC ≈ HF = H ;

ηC ,F H ;

CN = gHUN

F =UNC −

gH

ηC −ηF( )

Scaleselec5veLBC•  Knowingtheprinciples,nowwecanconsiderascale

separa5oninthefineresolu5onfield:supposeonepartspectrallyoverlapwiththecoarsefieldwhiletheotherisnew.Thus

•  Alersomealgebratwonewequa5onsareformedforeachpor5onofthesolu5on:

ηF = ′ηF + ′′ηF

UF = ′U F + ′′U F

′UNF =

HC +ηC

HF + ′ηF

UNC − ′CN

HF + ′ηF

ηC − ′ηF( )

′′UNF = ′′ηF

HF +ηF

′′CN − ′UNF( )

Scaleselec5veversusnon‐scaleselec5vegeneralizedFlather:idealizedcase

Nestedmodeldomain

Timeofintegra5on

VelocitymagnitudeatpointS1

Referencesolu,on

Flather(1976)

Scaleselec5vegeneralizedFlather

Scaleselec5veversusnon‐scaleselec5vegeneralizedFlather:realis5ccase

Nestedmodel:From6‐7kmto2km

InsitudatatovalidatethemodelOutputwithDifferentLBC

Experiment

LBC

Exp1 Imposed

Exp2 Radia5on

Exp3 Scaleselec5ve

Scaleselec5veversusnon‐scaleselec5vegeneralizedFlather:realis5ccase

RP =rms(Exp2) or rms(Exp3)

rms(E xp1)Rela5vePerformanceIndex

RP =rms(Exp3)rms(E xp1)

Aprildata Junedata Octdata Decdata

RP =rms(Exp2)rms(E xp1)

TheCoastalRapidEnvironmentalAssessment(CREA)framework

•  CREAistheevolu5onofMREAconcepts(Robinsonetal.,2000)forthecoastalarea

•  Theaimistouseallinforma5ontoreduceuncertain5esinthe5‐7daysforecastofcurrents,temperatureandsalinitynearthecoastalareas

•  CREAiscomposedof:–  Basicopera5onaloceanographyanalysesandforecasts–  Ahigherresolu5onnestedmodel–  Observa5onsfromcoastalsystems–  Ablendingalgorithm,mul5scaleop5malinterpola5onbyMarianoandBrown(1992)

–  Ini5aliza5onstrategy(ThisisapartofSimoncelliPh.D.Thesis,2010)

TheCREAcomponents

(1)  ThecoastalNetworks(ItalianandCroa5anEPAnetwork)

(2)Thenestedmodels,7,2kmand800meters

T (x, y, z,t) = TM (x, y, z,t) + TE (x, y, z,t) + ε

Twoinputdatasets:coarsemodeldataandlocalinsitudatawithdifferenterrorsMul5scalesubdivisionofthefield

Mul5‐inputandmul5scaleOI

(3)Theblendingalgorithm

TheBlendingimpact

a) 20’ 30’ 40’ 50’ 13oE

44oN

10’

20’

30’

40’

T[C°] 05!May!2003 IAFS

16.2

16.6

17

17.4

17.8

18.2

18.6

19

19.4

19.8

b) 20’ 30’ 40’ 50’ 13oE

44oN

10’

20’

30’

40’

T[C°] 05!May!2003 OBS

16.2

16.6

17

17.4

17.8

18.2

18.6

19

19.4

19.8

c) 20’ 30’ 40’ 50’ 13oE

44oN

10’

20’

30’

40’

T[C°] 05!May!2003 BA

16.2

16.6

17

17.4

17.8

18.2

18.6

19

19.4

19.8

d) 18’ 24’ 13oE

30.00’

36’ 42’

28’

32’

45oN 36.00’

40’

44’

T[C°] 05!May!2003 IAFS

15.3

15.5

15.7

15.9

16.1

16.3

16.5

16.7

16.9

17.1

17.3

17.5

17.7

17.9

18.1

18.3

18.5

18.7

e) 18’ 24’ 13oE

30.00’

36’ 42’

28’

32’

45oN 36.00’

40’

44’

T[C°] 05!May!2003 OBS

15.3

15.5

15.7

15.9

16.1

16.3

16.5

16.7

16.9

17.1

17.3

17.5

17.7

17.9

18.1

18.3

18.5

18.7

f) 18’ 24’ 13oE

30.00’

36’ 42’

28’

32’

45oN 36.00’

40’

44’

T[C°] 05!May!2003 BA

15.3

15.5

15.7

15.9

16.1

16.3

16.5

16.7

16.9

17.1

17.3

17.5

17.7

17.9

18.1

18.3

18.5

18.7

Fig. 8. SST fields on May 5th for the Emilia Romagna coastal area and the Gulf of Trieste.a) Emilia Romagna IAFS SST field; b) BA observed SST; c) BA blended initial conditionSST; d) Gulf of Trieste IAFS SST; e) BA observed SST; f) BA blended SST. (SST fieldshave been masked for mapping error greater than 30%)

56

COARSEMODEL INSITUDATA BLENDEDFIELD

AREA1

AREA2

20

16

17

18

19

18

15

TheCREAstrategy•  Interpolatefromthecoarsegridtothefinerresolu5ongridand

extrapolateifneededusingclimatology•  Blendthemodelinforma5onwiththeobserva5ons•  Spin‐upthedynamicstohavehigherresolu5onscalesintheIC•  ForcewithNWPanalysesandforecasts

CREA DAYIC DAY

(DE,D) IAFS

(BE,B) BA

(SU) IAFS BASPIN UP

Fig. 4. CREA initialization and forecast procedure.

52

Simoncellietal.,2010

ICday

BA‐BlendingIAFS‐Interpola5on

Theimprovementduetohighresolu5on(structured),observa5onsandspin‐up

a)

25 26 27 28 290

2

4

6

8

10

12

14

16

T[C°]d

ep

th [m

]35.7 36.2 36.7 37.2 37.70

2

4

6

8

10

12

14

16

S[psu]

CTD

AFS

D

B

SU

b)

20 22 24 26 280

5

10

15

20

25

T[C°]

de

pth

[m

]

35 35.5 36 36.5 37 37.5 380

5

10

15

20

25

S[psu]

c)

12 14 16 18 20 22 24 26 280

5

10

15

20

25

30

35

40

T[C°]

depth

[m

]

37 37.5 38 38.50

5

10

15

20

25

30

35

40

S[psu]

Fig. 13. Model results after one week of simulation from the Summer CREA experimentstarting August 11th. a) Emilia Romagna; b) Gulf of Trieste; c) Rovinj.

61

a)

25 26 27 28 290

2

4

6

8

10

12

14

16

T[C°]

depth

[m

]

35.7 36.2 36.7 37.2 37.70

2

4

6

8

10

12

14

16

S[psu]

CTD

AFS

D

B

SU

b)

20 22 24 26 280

5

10

15

20

25

T[C°]

de

pth

[m

]

35 35.5 36 36.5 37 37.5 380

5

10

15

20

25

S[psu]

c)

12 14 16 18 20 22 24 26 280

5

10

15

20

25

30

35

40

T[C°]

de

pth

[m

]

37 37.5 38 38.50

5

10

15

20

25

30

35

40

S[psu]

Fig. 13. Model results after one week of simulation from the Summer CREA experimentstarting August 11th. a) Emilia Romagna; b) Gulf of Trieste; c) Rovinj.

61

InterpolIC BlendedIC Spin‐upplusblending

%RMSEdecreasealeroneweekforecast

10% 20‐25% 30%

Conclusions•  Opera5onaloceanographyisprovidingbasicanalysesformodelvalida5onanddevelopmentinmanypartsoftheworldocean

•  Baroclinicmodelnes5ngforthecoastalareasworkingatallscales(openoceantoo,notshown)butneedfor:–  Robustini5aliza5onmethods– Accurateorhighresolu5onatmosphericforcing–  LateralBoundarycondi5ons:newgeneralizedFlatherpromising

•  Possibletestbedforunstructuredgridvalida5on:CREAmethodsanddatabases.DatacouldbemadeavailabletothecommunityforNorthernAdria5cSea

top related