the life and death of massive stars - microsoft...the life and death of massive stars in the...

Post on 13-Aug-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The Life and Death of Massive Starsin the

Starburst Galaxy I Zw18

Dorottya SzécsiNorbert Langer

Stellar Explosions in an Ever-Changing Environment(IAU General Assembly FM 10)

11-13. August 2015, Honolulu, Hawaii

Life and Death of Massive Stars

Collapsar→ lGRB

Massive stars

?

Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Yoon+12

Life and Death of Massive Stars

Collapsar→ lGRBMassive stars

?

Yoon&Langer’05; Woosley&Heger’06; Yoon+06; Yoon+12

Meet I Zw 18!

• Blue Compact DwarfGalaxy

• 18 Mpc→ local

• SFR: 0.1-1 M�/yr

• ionized gas

• low metallicity:12+log(O/H)=7.17↓Z=1/50 Z� ≈ 0.0002

I Zwicky 18

Z0

IZw18

0.0002

SMC

0.0021

LMC

0.0047

SUN

0.0134

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Meet I Zw 18!

• Blue Compact DwarfGalaxy

• 18 Mpc→ local

• SFR: 0.1-1 M�/yr

• ionized gas

• low metallicity:12+log(O/H)=7.17↓Z=1/50 Z� ≈ 0.0002

I Zwicky 18

Z0

IZw18

0.0002

SMC

0.0021

LMC

0.0047

SUN

0.0134

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators

"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators

"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

Stellar evolution in I Zw 18

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.6 3.8 4 4.2 4.4 4.6 4.8 5

log(

L/L ⊙

)

log(Teff/K)

ZAMS0 km/s

200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

3.5

4

4.5

5

5.5

6

6.5

7

3.63.844.24.44.64.85

log(

L/L ⊙

)

log(Teff/K)

core H-burnZAMS

0 km/s200 km/s350 km/s500 km/s

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Z=1/50 Z� models fromSzécsi et al. 2015 (A&A)

No enhanced mixing→Normal Evolution→

RSGs→SN Type IIp

Slow rotators

Rotational mixing→Chemically Homogeneous

Evolution→’Wolf-Rayet’ stars (?) →

lGRB

Fast rotators"angular momentum in the core is

higher than the critical limit for the

formation of an accretion disc

around a rotating black hole"

Collapsar→ lGRB

MS lifetime of the lGRB progenitors

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95

log(

L/L ⊙

)

log(Teff/K)

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙294 M⊙

τ<0.050.05<τ<11<τ<22<τ<3

Main sequence lifetime: wind optical depth is τ . 1

Transparent WindUltraviolet INtense

(TWUIN) stars

MS lifetime of the lGRB progenitors

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95

log(

L/L ⊙

)

log(Teff/K)

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙294 M⊙

τ<0.050.05<τ<11<τ<22<τ<3

Main sequence lifetime: wind optical depth is τ . 1

Transparent WindUltraviolet INtense

(TWUIN) stars

MS lifetime of the lGRB progenitors

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95

log(

L/L ⊙

)

log(Teff/K)

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙294 M⊙

τ<0.050.05<τ<11<τ<22<τ<3

Main sequence lifetime: wind optical depth is τ . 1

Transparent WindUltraviolet INtense

(TWUIN) stars

MS lifetime of the lGRB progenitors

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95

log(

L/L ⊙

)

log(Teff/K)

10 M⊙

20 M⊙

39 M⊙

77 M⊙

150 M⊙294 M⊙

τ<0.050.05<τ<11<τ<22<τ<3

Main sequence lifetime: wind optical depth is τ . 1

Transparent WindUltraviolet INtense

(TWUIN) stars

Back to I Zw 18

• Blue Compact DwarfGalaxy

• 18 Mpc→ local

• SFR: 0.1-1 M�/yr

• ionized gas

• low metallicity:12+log(O/H)=7.17↓Z=1/50 Z� ≈ 0.0002

I Zwicky 18

Q(HeII)obs =1.3 · 1050 photons s−1

+ weak WR features

(Kehrig+15, Crowther+06 )

Photoionization

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Back to I Zw 18

• Blue Compact DwarfGalaxy

• 18 Mpc→ local

• SFR: 0.1-1 M�/yr

• ionized gas

• low metallicity:12+log(O/H)=7.17↓Z=1/50 Z� ≈ 0.0002

I Zwicky 18

Q(HeII)obs =1.3 · 1050 photons s−1

+ weak WR features

(Kehrig+15, Crowther+06 )

Photoionization

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Photoionization in I Zw 18

He II photon number

5

5.5

6

6.5

7

4.3 4.4 4.5 4.6 4.7 4.8 4.9

log

(L/L

⊙)

log(Teff)

0

2e+48

4e+48

6e+48

8e+48

1e+49

1.2e+49

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Q(HeII)obs =

1.3 · 1050 photons s−

1

+ weak WR features

Photoio

nization

Z=1/50 Z� models fromSzécsi et al. 2015

+ Black body radiation

simulated stellar population ofI Zw 18:

Q(He II)sim=1.6·1050 photons s−1

TWUIN stars→ HeII flux of I Zw 18 �Transparent Wind Ultraviolet INtense

Cowther+06, Shirazi+12, Kehrig+15, Heap+15

Photoionization in I Zw 18

He II photon number

5

5.5

6

6.5

7

4.3 4.4 4.5 4.6 4.7 4.8 4.9

log

(L/L

⊙)

log(Teff)

0

2e+48

4e+48

6e+48

8e+48

1e+49

1.2e+49

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Q(HeII)obs =

1.3 · 1050 photons s−

1

+ weak WR features

Photoio

nization

Z=1/50 Z� models fromSzécsi et al. 2015

+ Black body radiation

simulated stellar population ofI Zw 18:

Q(He II)sim=1.6·1050 photons s−1

TWUIN stars→ HeII flux of I Zw 18 �Transparent Wind Ultraviolet INtense

Cowther+06, Shirazi+12, Kehrig+15, Heap+15

Photoionization in I Zw 18

He II photon number

5

5.5

6

6.5

7

4.3 4.4 4.5 4.6 4.7 4.8 4.9

log

(L/L

⊙)

log(Teff)

0

2e+48

4e+48

6e+48

8e+48

1e+49

1.2e+49

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Q(HeII)obs =

1.3 · 1050 photons s−

1

+ weak WR features

Photoio

nization

Z=1/50 Z� models fromSzécsi et al. 2015

+ Black body radiation

simulated stellar population ofI Zw 18:

Q(He II)sim=1.6·1050 photons s−1

TWUIN stars→ HeII flux of I Zw 18 �Transparent Wind Ultraviolet INtense

Cowther+06, Shirazi+12, Kehrig+15, Heap+15

Photoionization in I Zw 18

He II photon number

5

5.5

6

6.5

7

4.3 4.4 4.5 4.6 4.7 4.8 4.9

log

(L/L

⊙)

log(Teff)

0

2e+48

4e+48

6e+48

8e+48

1e+49

1.2e+49

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Q(HeII)obs =

1.3 · 1050 photons s−

1

+ weak WR features

Photoio

nization

Z=1/50 Z� models fromSzécsi et al. 2015

+ Black body radiation

simulated stellar population ofI Zw 18:

Q(He II)sim=1.6·1050 photons s−1

TWUIN stars→ HeII flux of I Zw 18 �Transparent Wind Ultraviolet INtense

Cowther+06, Shirazi+12, Kehrig+15, Heap+15

Photoionization in I Zw 18

He II photon number

5

5.5

6

6.5

7

4.3 4.4 4.5 4.6 4.7 4.8 4.9

log

(L/L

⊙)

log(Teff)

0

2e+48

4e+48

6e+48

8e+48

1e+49

1.2e+49

39 M⊙

77 M⊙

150 M⊙

294 M⊙

Q(HeII)obs =

1.3 · 1050 photons s−

1

+ weak WR features

Photoio

nization

Z=1/50 Z� models fromSzécsi et al. 2015

+ Black body radiation

simulated stellar population ofI Zw 18:

Q(He II)sim=1.6·1050 photons s−1

TWUIN stars→ HeII flux of I Zw 18 �Transparent Wind Ultraviolet INtense

Cowther+06, Shirazi+12, Kehrig+15, Heap+15

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

Takeaway message

lGRBs(Levesque’10, Niino’11 )

Death of Massive Stars

He II photons(Shirazi+12, Kehrig+15 )

Life of Massive Stars

Hot stars with weak winds

Explanation

Chemically Homogeneous Evolution

Theory

TransparentWind UVINtense(TWUIN) stars

!

Thank you

for your

attention!

A&A: Szécsi et al. 2015

[arXiv:1506.09132]

?

Poster: FM 7 p. 64

top related