three-dimensional composite nanostructures for lean nox ... · g. pilania and r. ramprasad, surface...

Post on 07-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

PI: Pu-Xian Gao

Department of Chemical, Materials and Biomolecular Engineering & Institute of Materials Science

University of Connecticut, Storrs, CT

05/12/2011

1

Project ID #ACE030

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

2

• Project start date: 10/01/2009• Project end date: 09/31/2012• Percent complete: continuing

• Barriers addressed– Lean NOx emission reduction– Particulate filtering using new

catalysts– New catalysts for

reducing/eliminating usage of noble metals

– Simplification of emission control devices to reduce the cost

• Total project funding– DOE share: $1,248,242– Contractor share: $314,504

• Funding received in FY10-11 from DOE: $809,446

Timeline

Budget

Barriers

• Honda Research Institute (OH)Partners

Project Objective–To develop a unique class of 3D metal oxide (MeOx)/perovskite (ABO3) composite

nanostructure catalysts to reduce and control lean NOx emission in vehicles, eventually to replace or reduce the usage of the Pt-group metal catalysts.

3

Objectives and Approaches

Synthesis: To synthesize 3D composite nano(wire/dendrite)arrays rooted on different substrates by

solution and vapor phase approaches. Characterization:

To investigate the structure, morphology, chemical and electronic properties of composite nanorrays using a range of microscopy and spectroscopy techniques. Activity, Selectivity, Durability and Regenerability:

To explore the catalytic behavior and stability using microscopy, spectroscopy, thermal analysis and temperature programmed surface analysis tools. Surface Catalysis Modeling :

To simulate and model the surface catalysis behavior on composite nanocatalyst surfaces and interfaces using DFT atomistic calculation.

• Objectives (quarters 3-6, 04/1/2010-3/31/2011) – Synthesis and characterization of 3D nanoarray catalysts.– Metal loading and thermal stability testing– Modeling of surface NOx catalytic chemistry in 3D nanocomposite surface and interface.

• Approaches:

1) Ultrahigh surface; 2) High thermal stability; 3) Strong adherence;4) Low cost; 5) High tailoring ability

MeOx

ABO3

Substrate support

Accomplishments(Project period: 04/1/2010-03/1/2011)

4

1) Successful synthesized and characterized various metal oxidenanoarrays on various planar and monolith substrates.

2) Successful fabricated, characterized, and identified various 3Dcomposite nanowires with very high specific surface area.

3) Successfully characterized and initially validated the thermalstability of various composite nanowires on monolith substratesunder oxidative and reductive atmospheres.

4) Successfully initiated the emission testing over NOx storage andreduction.

5) Successfully modeled and found the high activity of severalperovskite crystal surfaces for O involved reactions.

Metal oxide nanowire arrays on solid substrates.

Large scale nanoarrays by solution and vapor phase depositions

5W. Cai, P. Shimpi, D. Jian, P.-X. Gao, J. Mater. Chem. 2010; G. Liu, Y. Guo, P.-X. Gao et al., 2011, submitted;Y. Guo, Z. Zhang, P.-X. Gao et al., 2011, submitted.

Metal oxide nanowire arrays on solid substrates.

Large scale nanoarrays by solution and vapor phase depositions

6

10 µm2 µm

W. Cai, P. Shimpi, D. Jian, P.-X. Gao, J. Mater. Chem. 2010; G. Liu, Y. Guo, P.-X. Gao et al., 2011, submitted;Y. Guo, Z. Zhang, P.-X. Gao et al., 2011, submitted.

Metal oxide nanowire arrays on solid substrates.

Large scale nanoarrays by solution and vapor phase depositions

7

10 µm2 µm

W. Cai, P. Shimpi, D. Jian, P.-X. Gao, J. Mater. Chem. 2010; G. Liu, Y. Guo, P.-X. Gao et al., 2011, submitted;Y. Guo, Z. Zhang, P.-X. Gao et al., 2011, submitted.

MeOx/ABO3 composite nanoarrays

8

Composite nanowire arrays on solid substrates. W. Cai, P. Shimpi, et al., 2011, submitted; P. Shimpi, C. Chung, et al., 2011, to be submitted; H. Gao, et al., APL, 2011.

MeOx/ABO3 composite nanoarrays

9

Composite nanowire arrays on solid substrates. W. Cai, P. Shimpi, et al., 2011, submitted; P. Shimpi, C. Chung, et al., 2011, to be submitted; H. Gao, et al., APL, 2011.

10

Thermal stability of ZnO/LSCO nanoarrays

W. Cai, P. Shimpi, et al., 2011, submitted.

11

Thermal stability of ZnO/LSCO nanoarrays

W. Cai, P. Shimpi, et al., 2011, submitted.

12

Thermal stability of ZnO/LSCO nanoarrays

W. Cai, P. Shimpi, et al., 2011, submitted.

13

Thermal stability of ZnO/LSCO nanoarrays

600oC490m2/g

800oC268m2/g

1000oC262m2/g

25oC424m2/g

W. Cai, P. Shimpi, et al., 2011, submitted.

14

Metal loading on metal oxide nanoarrays

Y. Guo, Z. Zhang, et al., 2011, submitted.

2 µm

100 nm

ZnO/LSMO/Pd nanoarrays

15

Metal loading on metal oxide nanoarrays

Y. Guo, Z. Zhang, et al., 2011, submitted.

2 µm

100 nm

KeV

20 nm

Pd nanoparticles

ZnO/LSMO/Pd nanoarrays

16

Metal loading on metal oxide nanoarrays

Y. Guo, Z. Zhang, et al., 2011, submitted.

2 µm

100 nm

KeV

20 nm

Pd nanoparticles

ZnO/LSMO/Pd nanoarrays

Wt. %4.21Impregnation

Nanoparticle dispersion Wt. %1.91

KeV

TiO2/Pt nanoarrays

2 nm

17

Structure and surface areas of TiO2nanoarrays on substrate

Samples TiO2-Cordierite TiO2

800oC TiO2-Cordierite 800oC TiO2

Specific Surface Area (m2/g) 37.96 704.47 24.51 454.86

Y. Guo, Z. Zhang, et al., 2011, submitted.

18

Thermal stability of TiO2nanorods array at 800oC for 24h

Thermal stability of TiO2 nanoarrays

Y. Guo, Z. Zhang, et al., 2011, submitted.

19

Thermal stability of TiO2nanorods array at 800oC for 24h

Thermal stability of TiO2 nanoarrays

Y. Guo, Z. Zhang, et al., 2011, submitted.

20

Thermal stability of TiO2nanorods array at 800oC for 24h

200 400 600 800 1000 1200 1400 160090

92

94

96

98

100

TiO2 nanorods array

Wei

ght(%

)

Time(min)

Thermal stability of TiO2 nanoarrays

Y. Guo, Z. Zhang, et al., 2011, submitted.

21

Thermal stability of TiO2 nanoarraysunder oxidative atmosphere

TGA and DSC of TiO2 nanorods array on substrates

0 200 400 600 800 100095

96

97

98

99

100

Blank CHS TiO2/Pt nanorods array/CHS TiO2 nanorods array/CHS

Wei

ght(%

)

Temperature(oC)

0 200 400 600 800 1000

-100

-90

-80

-70

-60

-50

-40

-30

-20

Blank CHS TiO2/Pt nanorods array /CHSTiO2 nanorods array/CHS

Hea

t Flo

w(m

W)

Temperature(oC)

Y. Guo, Z. Zhang, et al., 2011, submitted.

22

TPR-H2 of Pt coated TiO2 nanoarrays on substrates.

Thermal stability of TiO2 nanoarraysunder reductive atmosphere

Y. Guo, Z. Zhang, et al., 2011, submitted.

O ad-atoms on perovskites:Geometry, electronic structure and energetics

Perovskite crystal structure Various O adsorption sites on the (001) surfaces

1x1 AO-terminated 1x1 BO2-terminated

PbTiO3v/s

LaMnO3

G. Pilania and R. Ramprasad, Surface Sci. 2010.23

(p,T) surface phase diagrams:Thermodynamic stability of Clean and Oad atom

or vacancy covered surfaces

Based on DFT calculations within LDA approximation24

Computed reaction barriers

25

Collaborations Partners:

• Honda Research Institute (industry): collaboration on catalyst design and synthesis, emission control catalytic behavior testing;

• United Technologies (industry): collaboration on nanomaterials synthesis and surface analysis

26

Future work

27

1) Conduct systematical synthesis optimization of 3Dcomposite nanowire arrays.

2) Continue the metal (oxide) loading/doping study on 3Dcomposite nanowire arrays.

3) Evaluate the catalytic performance of 3D compositenanowire arrays on the NOx storage and reductionperformance.

4) Calculate reaction barriers for various elementary stepsinvolved in the oxygen dynamics on the perovskite crystalsurfaces associated with incorporation of NOx interactions.

Acknowledgements• Postdoc: Drs. Y. Guo, Z. Zhang, H. Gao, and G. Liu

Graduate students: W. Cai, P. Shimpi, G. Pilania, C. Chung, S. Glod, Z. Ren

• Co-PIs: Drs. P. Alpay and R. Ramprasad (UConn), Dr. C. Brooks (HRI, Ohio)

• Project officers: K. Howden, M. Ursic• DOE/NETL, UConn Research Foundation, UConn - New

faculty start-up funds, ACS-PRF, Honda Research Institute

282828

top related