tmat 103

Post on 16-Mar-2016

64 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

TMAT 103. Chapter 5 Factoring and Algebraic Fractions. TMAT 103. § 5.1 Special Products. § 5.1 – Special Products. a(x + y + z) = ax + ay + az (x + y)(x – y) = x 2 – y 2 (x + y) 2 = x 2 + 2xy +y 2 (x – y) 2 = x 2 – 2xy +y 2 (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2xz + 2yz - PowerPoint PPT Presentation

TRANSCRIPT

TMAT 103

Chapter 5Factoring and Algebraic Fractions

TMAT 103

§5.1Special Products

§5.1 – Special Products• a(x + y + z) = ax + ay + az

• (x + y)(x – y) = x2 – y2

• (x + y)2 = x2 + 2xy +y2

• (x – y)2 = x2 – 2xy +y2

• (x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz

• (x + y)3 = x3 + 3x2y + 3xy2 + y3

• (x – y)3 = x3 – 3x2y + 3xy2 – y3

TMAT 103

§5.2Factoring Algebraic Expressions

§5.2 – Factoring Algebraic Expressions

• Greatest Common Factorax + ay + az = a(x + y + z)

• Examples – Factor the following3x – 12y40z2 + 4zx – 8z3y

§5.2 – Factoring Algebraic Expressions

• Difference of two perfect squaresx2 – y2 = (x + y)(x – y)

• Examples – Factor the following16a2 – b2

36a2b4 – 100a4z10

256x4 – y16

§5.2 – Factoring Algebraic Expressions

• General trinomials with quadratic coefficient 1x2 + bx + c

• Examples – Factor the followingx2 + 8x + 15q2 – 3q – 28x2 + 3x – 42m2 – 18m + 28b4 + 21b2 – 100x2 + 3x + 1

§5.2 – Factoring Algebraic Expressions

• Sign Patterns

Equation Template

x2 + bx + c ( + )( + )

x2 + bx – c ( + )( – )

x2 – bx + c ( – )( – )

x2 – bx – c ( + )( – )

§5.2 – Factoring Algebraic Expressions

• General trinomials with quadratic coefficient other than 1ax2 + bx + c

• Examples – Factor the following6m2 – 13m + 59x2 + 42x + 499c4 – 12c2y2 + 4y4

TMAT 103

§5.3Other Forms of Factoring

§5.3 – Other Forms of Factoring

• Examples – Factor the followinga(b + m) – c(b + m)4x + 2y + 2cx + cyx3 – 2x2 + x – 236q2 – (3x – y)2

y2 + 6y + 9 – 49z4

(m – n)2 – 6(m – n) + 9

§5.3 – Other Forms of Factoring

• Sum of two perfect cubesx3 + y3 = (x + y)(x2 – xy + y2)

• Examples – Factor the followingx3 + 648z3m6 + 27p9

§5.3 – Other Forms of Factoring

• Difference of two perfect cubesx3 – y3 = (x – y)(x2 + xy + y2)

• Examples – Factor the followingm3 – 1258z3 – 64p9s3

TMAT 103

§5.4Equivalent Fractions

§5.4 – Equivalent Fractions

• A fraction is in lowest terms when its numerator and denominator have no common factors except 1

• The following are equivalent fractions a = ax

b bx

§5.4 – Equivalent Fractions

• Examples – Reduce the following fractions to lowest termsx2 – 2x – 242x2 + 7x – 4

a2 – ab + 3a – 3b a2 – ab

x4 – 16x4 – 2x2 – 8

x3 – y3

x2 – y2

TMAT 103

§5.5Multiplication and Division of

Algebraic Fractions

§5.5 – Multiplication and Division of Algebraic Fractions

• Multiplying fractions a • c = ac .

b d bd• Dividing fractions

a c = a • d = ad .

b d b c bc

§5.5 – Multiplication and Division of Algebraic Fractions

• Examples – Perform the indicated operations and simplify4t4 • 12t2

6t 9t3

a2 – a – 2 • a2 + 3a – 18

a2 + 7a + 6 a2 – 4a + 4

15pq2 39mn4

13m5n3 5p4q3

TMAT 103

§5.6Addition and Subtraction of

Algebraic Fractions

§5.6 Addition and Subtraction of Algebraic Fractions

• Finding the lowest common denominator (LCD)1. Factor each denominator into its prime factors; that is,

factor each denominator completely2. Then the LCD is the product formed by using each of

the different factors the greatest number of times that it occurs in any one of the given denominators

§5.6 Addition and Subtraction of Algebraic Fractions

• Examples – Find the LCD for:

307

125

82 ,, and

22534 and ,,xyyx

95

)3(3

964

22 and ,, xxxx

§5.6 Addition and Subtraction of Algebraic Fractions

• Adding or subtracting fractions1. Write each fraction as an equivalent fraction over the

LCD2. Add or subtract the numerators in the order they

occur, and place this result over the LCD3. Reduce the resulting fraction to lowest terms

§5.6 Addition and Subtraction of Algebraic Fractions

• Perform the indicated operations

ss1

34

421

631

61

xxx

222222 23

2312

yxyxyxyxyx

TMAT 103

§5.7Complex Fractions

§5.7 Complex Fractions

• A complex fraction that contains a fraction in the numerator, denominator, or both. There are 2 methods to simplify a complex fraction

– Method 1• Multiply the numerator and denominator of the complex

fraction by the LCD of all fractions appearing in the numerator and denominator

– Method 2• Simplify the numerator and denominator separately. Then

divide the numerator by the denominator and simplify again.

§5.7 Complex Fractions

• Use both methods to simplify each of the complex fractions

11

2

2

c

c

22

425

3

3

x

xx

TMAT 103

§5.8Equations with Fractions

§5.8 Equations with Fractions

• To solve an equation with fractions:1. Multiply both sides by the LCD2. Check

• Equations MUST BE CHECKED for extraneous solutions

– Multiplying both sides by a variable may introduce extra solutions

– Consider x = 3, multiply both sides by x

§5.8 Equations with Fractions

• Solve and check

34

934 2 xx

41252

xxx

2Rfor Solve21 RQ

RQV

top related