torsion (moment along the longitudinal axis) -...

Post on 08-Sep-2019

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Torsion (Moment along the longitudinal axis)

� In this section we will be studying

what happens to shafts under

torsional effects. We will limit

ourselves with elements having

circular cross sections.

� How do we calculate stresses at

the section under torsion, what is its

distribution, and what is angle of

twist?

� How do we analyze statically

indeterminate shafts?

TorsionTorsional deformation of circular shafts

� Torque or torsion is the moment which acts along the longitudinal axis of

the shaft. Torsion is the governing force in the design of vehicle shafts.

� We can investigate what happens to a shaft under torsional effects by

studying the shaft made of highly deformable material.

TorsionTorsional deformation of circular shafts

Before Deformation

After Deformation

Assumption:

�No local deformation occurs where the torsion acts on the

shaft (Saint Venant’s principle holds)

� If the angle of twist is small, then the length and the

diameter of the shaft remain the same (unchanged).

TorsionTorsional deformation of circular shafts

� Consider the shaft which is fixed at one end, and the torque of T is applied to the

other end (free end). Notice that the dark-green longitudinal plane is deformed as

follows:

�The radial line at a distancex from the fixed end rotatesabout an angle ϕ(x).

� The angle ϕ(x) is called theangle of twist, and it is afunction of the distance x.

� ϕ(x) increases withdistance x.

TorsionTorsional deformation of circular shafts

� In order to see what T does to the material, let’s look at a small element at a radial

distance ρ (rho) from its center :

� If the back face rotates ϕ(x), then the

front face rotates about ϕ(x) + Δϕ,

� The difference Δϕ between the faces

exerts on the element shear deformations,

� In order to calculate this deformation,

one needs to calculate the angle change

between the sides AB and AC.

� Before deformation, the angle between

them was 90o then the angle becomes θ’:

θ’

lim2 C A

B A

πγ θ

→→

′= −

γ

Torsion generated shear deformations.

TorsionTorsional deformation of circular shafts

� The angle γ (gama) can be related to Δx (the segment’s thickness) and the angle Δϕ,

� At the limit Δx -> dx and Δϕ -> dϕ, then we can write the following:

BD d dxρ φ γ= =

Therefore

d

dxγ ρ

φ=

Notice that the term in red fonts is the same for every point at the section; it can be said that it is constant. Therefore, the shear deformation is proportional only with the radial distance ρ. In other words, shear deformations linearly change with the radial distance.

TorsionTorsional deformation of circular shafts

� The following expressions can be written:

max

max

d

dx c

c

γφ γρ

ργ γ

= =

=

The shear strains on a cross section

increase linearly with ρ.

d

dx

φ: constant

TorsionTorsional deformation of circular shafts

TorsionTorsion Formula

� In this section, we will develop a relationship between internal torsional moment

and shear stresses.

� Shear strains are caused by the shear stresses. Notice that since the change in

shear strains is linear therefore the shear stress change will be linear as well.

If we assume that the material remainslinear elastic under torsional effects, wecan write the following based on theHooke’s law:

Gτ γ=

By referring to the figure on the left in afull circular cross-section, the shearstresses would start from zero andlinearly increases with the radialdistance, and becomes the largest atthe periphery .

� From the Hooke’s law, also the following expression can be written:

maxc

ρτ τ =

This expression emphasizes that also the shear stress is a function of ρ.

� Due to the equilibrium, internal torque must be equal to the external torque T.

We can write the force on a infinitesimally small area dA as dF = (τ)dA. The

torque due to this force is dT = ρ(τdA). If we integrate that

( ) 2maxmax

A A A

T dA dA dAc c

τρρ τ ρ τ ρ = = =

∫ ∫ ∫

TorsionTorsion Formula

2max

A

T dAc

τρ= ∫

� The integral given above is related to the geometry of the cross-section, and

it is known as the polar moment of inertia of the cross-section. This value is

designated as J. The formula can be rewritten as follows:

max

TcJ

τ =

Maximum shear stress at the cross-section

Internal torque at the cross-section

Radius of the cross-section.

TorsionTorsion Formula

� By using the formulas given below, we can derive a general expression to

find shear stress at any point on the cross-section.

maxc

ρτ τ =

max

TcJ

τ =

T

Jτ ρ=

This formula is known to be the torsion formula. It can be used for circular shafts and

if the material is homogenous and linear elastic.

TorsionTorsion Formula

TorsionPolar moment of inertia (for full circular sections)

� Polar moment of inertia of a full circular cross-section can be found as follows:

( )2 2 3

0

4

02

2 2

c c

A

d cJ A d dρ ρπ

πρ ρ π ρ ρ= = = =∫ ∫ ∫

TorsionPolar Moment of Inertia (Circular tube type cross-

sections)� For circular cross-section with an hollow part (tube type) with inner and outer

radius ci and co, respectively, the polar moment of inertia can be found as follows:

( )4 4

2o i

J c cπ

= −

Shear stresses increases linearly along the radial

path.

Failure due to Torsion

EXAMPLE 13.1

EXAMPLE 13.1

EXAMPLE 13.1

Example 5.3� Free Body Diagram

� Polar moment of inertia of the hollow tube:

Example 5.3 (larger figures etc.)

� Shear Stresses:

At the outer most radial distance (@co):

At the inner radial distance (@ci):

EXAMPLE 13.1 Hint: P = T × ωwhere P: power in Watt (N.m/s)T: Torque in N.mω: frequency in rad/sec

EXAMPLE 13.1

BurulmaBurulma Açısı

� Bazen şaftların dizaynında burulma açısı tasarımı sınırlayan durum olabilir, bu

durumda burulma açısının hesabına ihtiyaç vardır.

� Ayrıca burulma açısının hesabı, statikçe belirsiz problemlerin çözülebilmesi için

gerekmektedir.

BurulmaBurulma Açısı

� Bu bölümde, şaftın bir ucunun diğer bir ucuna göre yaptığı

burulma açısının hesabına ilişkin bir formülü çıkaracağız.

Şaftın en kesiti dairesel olduğu ve malzemenin lineer elastik

davrandığı kabul edilecektir.

� Torkun (burulma momentinin) etkidiği noktalardaki lokal

deformasyonlar ise Saint Venant prensibine uygun davrandığı

kabul edilecektir. Oluşturdukları etki ise genellikle ihmal

edilebilir düzeyde olacaktır.

BurulmaBurulma Açısı

� Kesit metodu kullanılarak, şafttan dx kalınlığında bir parça çıkarılacaktır:

En kesitteki bileşke burulma momenti T(x) ‘dir. T(x)’den dolayı diskin bir yüzü diğer yüzüne göre dϕ kadar burulacaktır (dönecektir). Bu sebeple, ρ gibi bir mesafedeki malzeme γ (gama) kesme şekil değişimine maruz kalacaktır.

BurulmaBurulma Açısı

� Şekle referansla aşağıdaki ifadeyi yazmak mümkündür:

dxdφ γ

ρ=

� Hooke yasası geçerli olduğuna göre, geçerlidir. Ayrıca,

olduğu bilinmektedir. Bu durumda, bu üç denklem kullanılarak, aşağıdaki ifadeyi

yazmak mümkündür:

G

τγ = ( )

( )

T x

J xτ ρ=

0

( ) ( )

( ) ( )

LT x T x

d dx dxJ x G J x G

φ φ= = ∫

BurulmaBurulma Açısı

� Sabit burulma momentinin ve en kesit alanının olması durumunda, yukarıdaki ifade daha basit soldaki forma dönüşür, şafta birden fazla noktada burulma momenti etkiyorsa, bu durumda burulma açısı sağdaki form kullanılarak hesaplanır:

TL

JGφ =

Bu denklemle eksenel yüke maruz çubukların şekil değişimini veren formül arasındaki benzerliğe dikkat edin!

PL

AEδ =

TL

JGφ =∑

PL

AEδ =∑

BurulmaBurulma Açısı

� Yukarıdaki denklemi uygulamak için işaret kabulü yapmamız gerekmektedir. Bunun için “sağ el” kuralı kullanılacaktır. Aşağıdaki şekle referansla pozitif yönler tarif edilmiştir:

TL

JGφ =∑

Baş parmak dışarı doğruysa tork (burulma momenti) ve burulma açısı pozitiftir, tersi durumunda negatiftir.

BurulmaBurulma Açısı

� Bu kuralın uygulanmasını göstermek için aşağıdaki örneği ele alalım:

A ucunun D ucuna göre yaptığı burulma açısını bulmak için önce iç kuvvet diyagramı çizilir:

BurulmaBurulma Açısı

� İç kuvvet diyagramı dikkate alınarak, formül uygulanır:

( ) ( ) ( )/

80 70 10AB BC CD

A D

Nm L Nm L Nm L

JG JG JGφ

− −= + +

Sonuç pozitif çıkarsa, A ucu D ucuna göre şekilde gösterilen elin parmakları yönünde burulma gerçekleştirecektir demektir.

� Eğer bir noktanın burulma açısı, sabitlenmiş bir noktaya göre bulunuyorsa, bu durumda burulma açısı tek bir alt-indeksle gösterilir; örn. ϕA

gibi.

Örnek - 3

� Şekilde gösterilen vites sistemi üç farklı yerinden burulma momentleri etkisi

altındadır. Şaftın yapıldığı malzemenin kesme modülü G = 80 GPa ve çapı ise 14

mm ise, A vitesi üzerindeki P noktasının ne kadar yer değiştirdiğini bulunuz. Şaft

B kılavuzu içinde serbestçe dönebilmektedir.

Örnek – 3 (devam)

� İç kuvvetleri bulursak, AC, CD ve DE bölgelerinde farklı fakat sabit burulma

momentleri olduğunu görürüz, E noktasındaki mesnette oluşan burulma momentinin

de gösterildiği çizimi dikkate alırsak, bu bölgelerdeki iç kuvvetleri hesaplayabilir:

İç kuvvet diyagramı çizilirse aşağıdaki grafik elde edilir:

Örnek – 3 (devam)

� Burulma açısı: şaftın en kesitinin polar atalet momenti aşağıdaki gibi bulunur:

Burulma açısı denklemini üç farklı segmente uygulayarak P nin E’ye göre dönmesini bulabiliriz,

Sonuç negatif çıktığına göre, P ucu aşağıdaki gibi döner:

P noktasının yer değiştirmesi ise:

Örnek - 4

� G = 26 GPa kesme modülüne, C noktasından sabitlenmiş 80 mm çapa sahip

şaft, şekilde gösterilen burulma yüklemesine maruzdur. A noktasının toplam

burulma açısını bulunuz.

Örnek – 4 (devam)

� İç kuvvetleri serbest cisim diyagramlarını kullanarak

Örnek – 4 (devam)

� Burulma açısı: Şaftın polar atalet momenti,

( ) ( )4 60.04 1.28 10

2J

ππ−

= =

top related