tribomechanical properties of dlc coatings metallic and ... › ... › 2016 › 09 ›...

Post on 27-Jun-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

T r i b o m e c h a n i c a l P r o p e r t i e s o f D L C C o a t i n g s D e p o s i t e d b y M a g n e t r o n S p u t t e r i n g o n

M e t a l l i c a n d I n s u l a t i n g S u b s t r a t e s

Indianapolis, May 10th, 2016

Dr. Iván Fernández Martínez

D i a m o n d L i k e C a r b o n ( D L C )

Diamond-like Carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. DLC coatings are of interest in a wide variety of applications to provide low friction and high hardness and wear resistance.

Applications - Glass: anti-scratch. - Molds: prevent plastic transfer - Engine parts: low friction (a-C). - Space parts: low friction (a-C:H). - Cutting tools: lubricated and dry

conditions. - Oil & gas: super lubricity in pipes. - ….

D L C : S t a t e o f t h e a r t

A. Voevodin, Surf. Coat. Technol. 82 (1996) 199–213. J. Robertson, Surf. Coat. Technol. 50 (1992) 185–203.

Ion assistance required ~ 100eV

Prof. Wolf-Dieter Munz “Industrial scale deposition of well adherent and low friction DLC coatings grown by HIPIMS and anode assisted unbalanced magnetron” – Private discussion

D L C h a r d c o a t i n g m a g n e t r o n d e p o s i t i o n

Anode to extend the plasma

Magnetically linked magnetrons

D L C h a r d c o a t i n g m a g n e t r o n d e p o s i t i o n

Prof. Wolf-Dieter Munz “Industrial scale deposition of well adherent and low friction DLC coatings grown by HIPIMS and anode assisted unbalanced magnetron” – Private discussion

Bias required Glass? Plastics?

55GPa Microhardess, comparable to filtered arc

I o n a s s i s t e d d e p o s i t i o n o n i n s u l a t o r s ? Magnetron magnetic design (electron filter) + modified asymmetric bipolar pulsed PS

Proprietary technology: Patent application number GB1605162.5 (March 2016)

2

V

4 3

5

8b

6

1b 10ab

9 2b 8c

- Positive ion bombardment - No electron bombardent :

Reduced thermal load?

Magnetron size 400x100mm2 (industrial relevant) – WC, Graphite targets HIPIMS Ti/Cr + WC improves coating adhesion Optimized magnetic field configuration to enhance ion assisted deposition

Proprietary technology: Patent application number GB1605162.5 (March 2016)

I o n a s s i s t e d d e p o s i t i o n o n i n s u l a t o r s ?

Magnetron size 400x100mm2 (industrial relevant) – WC, Graphite targets HIPIMS Ti/Cr + WC improves coating adhesion Optimized magnetic field configuration to enhance ion assisted deposition

Proprietary technology: Patent application number GB1605162.5 (March 2016)

I o n a s s i s t e d d e p o s i t i o n o n i n s u l a t o r s ?

Sample position

3 energy regimes are measured

I o n a s s i s t e d d e p o s i t i o n o n i n s u l a t o r s ?

Hardness value taken at around 10% total DLC thickness

Load partial unload curve

Hysitron TI950 Triboindenter Berkovich tip indenter BKL4

C o a t i n g H a r d n e s s : a b o v e 3 0 G P a o n f l o a t i n g s u b s t r a t e

Hardness = 32 Gpa Young modulus = 220 Gpa 500nm thick DLC

D L C h a r d c o a t i n g m a g n e t r o n d e p o s i t i o n

Prof. Wolf-Dieter Munz “Industrial scale deposition of well adherent and low friction DLC coatings grown by HIPIMS and anode assisted unbalanced magnetron” – Private discussion

Bias required

15GPa Microhardess with -75V Bias!

Proprietary technology: Patent application number GB1605162.5 (March 2016)

H a r d n e s s > 3 0 G P a H a r d n e s s < 1 2 G P a

I o n a s s i s t e d d e p o s i t i o n o n i n s u l a t o r s ?

C o m m e r c i a l D C - P u l s e d P S M o d i f i e d D C - P u l s e d P S

S E M i m a g e : D e n s e D L C f i l m

SEM cross section of WC/DLC coating

Rockwell HRC tests - 150kg - Diamond indenter conical tip

A d h e s i o n o n m e t a l s : S t a n d a r d R o c k w e l l ( D a i m l e r o r M e r c e d e s ) t e s t s

HF1

DLC on HSS

HSS substrate surface

DLC coated surface DLC delaminated coating

Cr + WC + DLC on HSS

NO DLC coating delamination

Indentation HF5 HF1

675mN load 5um tip radius

Rockwell HRC tests, 150kg

Diamond indenter conical tip

HF1

A d h e s i o n o n m e t a l s : R o c k w e l l a n d n a n o - s c r a t c h t e s t s

HF1

F r i c t i o n a n d w e a r – A S T M G 9 9 S t a n d a r d t e s t

SS304 uncoated substrate DLC coated SS304

HF1

0 2000 4000 6000 80000.0

0.1

0.2

0.3

0.4

0.5 Frictioncoeff.

Frict

ion

coef

ficie

nt

t (s)

F r i c t i o n a n d w e a r – A S T M G 9 9 S t a n d a r d t e s t

Ongoing stress measurements in DLC coatings

L o w a c c u m u l a t e d s t r e s s @ h i g h h a r d n e s s

Biased process : high DLC coating stress N4E process : low DLC coating stress

D L C c o a t i n g o n G l a s s

Delamination problem: Need to reduced thicknesses and ion bombardment

Hardness in the range of 20GPa for 40nm thick DLC layer

DLC

Glass

D L C c o a t i n g o n G l a s s

Substrate can be pre-treated with reactive gases such as oxygen

+485V

Current to floating potential (10mV/A)

D L C c o a t i n g o n G l a s s

8006004002000

8

7

6

5

4

3

2

1

0

X[nm]

Z[nm

]

8006004002000

12

10

8

6

4

2

0

X[nm]

Z[nm

]

Untreated glass substrate

Oxygen treated glass substrate

RMS roughness : 2.6 nm

RMS roughness : 1.4 nm

D L C c o a t i n g o n G l a s s : n a n o - s c r a t c h t e s t s

500mN critical load – 5 micron tip radius

Characteristics - Acceleration of a test probe (diamond tip)

towards sample.

- Impact energy can be controlled and quantified.

- multiple impacts.

- Strain rate: 100-1000 (s-1).

* J.M. Wheeler et al., Surface & Coatings Technology 232 (2013) 264–268 “Analysis of failure modes under nano-impact fatigue of coatings via high-speed sampling“

N a n o - i m p a c t t e s t i n g o n D L C c o a t i n g s

Loads: 5, 10, 15mN

N a n o - i m p a c t t e s t i n g o n D L C c o a t i n g s

Advantages - Produce contact fatigue.

- Adhesion failure without substrate deformation

- Measure dynamic instead of static hardness

Simulate thin film in-situ service for machining operations

* J.M. Wheeler et al., Surface & Coatings Technology 232 (2013) 264–268 “Analysis of failure modes under nano-impact fatigue of coatings via high-speed sampling“

N a n o - i m p a c t t e s t i n g a - C : H o n S i

Test conditions - Conical tip. R= 5(µm) - Impact Height: 10 (µm) - Rest time: 500 (ms) - Specimens: a-C and a-C:H on Si

a - C o n M 2 s t e e l w i t h C r - H I P I M S i m p l a n t .

HF1 Rockwell DLC on M2 Steel Multiple Impact with Previous Conditions Multiple impacts: 30 mN during 1200s.

No delamination!

Loads: 5 to 30mN Load: 30mN

Guggenheim Museum, Bilbao

ecnf conference

www.ecnf2016.org

Submit your abstract in May!!! Main topics:

Characterisation techniques and Properties

Novel 2D materials

From molecules and nanoparticles to thin films

Tribological coatings

Energy conversion (solar, batteries) and catalysis

Nanostructured coatings

Thank you for your attention!

top related