triple integrals - math 311, calculus iiibanach.millersville.edu/~bob/math311/triple/main.pdf ·...

Post on 18-Apr-2018

223 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Triple IntegralsMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Fall 2011

J. Robert Buchanan Triple Integrals

Riemann Sum Approach

Suppose we wish to integrate w = f (x , y , z), a continuousfunction, on the box-shaped region

Q = {(x , y , z) |a ≤ x ≤ b, c ≤ y ≤ d , m ≤ z ≤ n}.

1 Let P = {Qk}Nk=1 be a partition of Q into rectangular boxes.2 Let the dimensions of Qk be ∆xk , ∆yk , and ∆zk , then

∆Vk = ∆xk ∆yk ∆zk .

3 Let (uk , vk ,wk ) be any point in Qk .

J. Robert Buchanan Triple Integrals

Riemann Sum Approach

Riemann Sum:N∑

k=1

f (uk , vk ,wk )∆Vk .

If ‖P‖ is the length of the longest box diagonal in P, then wemay define the triple integral.

DefinitionFor any function f (x , y , z) defined on the rectangular box Q, wedefine the triple integral of f over Q by∫∫∫

Qf (x , y , z) dV = lim

‖P‖→0

N∑k=1

f (uk , vk ,wk )∆Vk ,

provided the limit exists and is the same for every choice ofevaluation points (uk , vk ,wk ) in Qk .

J. Robert Buchanan Triple Integrals

Riemann Sum Approach

Riemann Sum:N∑

k=1

f (uk , vk ,wk )∆Vk .

If ‖P‖ is the length of the longest box diagonal in P, then wemay define the triple integral.

DefinitionFor any function f (x , y , z) defined on the rectangular box Q, wedefine the triple integral of f over Q by∫∫∫

Qf (x , y , z) dV = lim

‖P‖→0

N∑k=1

f (uk , vk ,wk )∆Vk ,

provided the limit exists and is the same for every choice ofevaluation points (uk , vk ,wk ) in Qk .

J. Robert Buchanan Triple Integrals

Fubini’s Theorem

Theorem (Fubini’s Theorem)

Suppose that f (x , y , z) is continuous on the box Q defined by

Q = {(x , y , z) |a ≤ x ≤ b, c ≤ y ≤ d , m ≤ z ≤ n}.

Then we can write the triple integral over Q as the triple iteratedintegral:∫∫∫

Qf (x , y , z) dV =

∫ b

a

∫ d

c

∫ n

mf (x , y , z) dz dy dx .

There are five other equivalent orders of integration.

J. Robert Buchanan Triple Integrals

Fubini’s Theorem

Theorem (Fubini’s Theorem)

Suppose that f (x , y , z) is continuous on the box Q defined by

Q = {(x , y , z) |a ≤ x ≤ b, c ≤ y ≤ d , m ≤ z ≤ n}.

Then we can write the triple integral over Q as the triple iteratedintegral:∫∫∫

Qf (x , y , z) dV =

∫ b

a

∫ d

c

∫ n

mf (x , y , z) dz dy dx .

There are five other equivalent orders of integration.

J. Robert Buchanan Triple Integrals

Example (1 of 4)

Let Q = {(x , y , z) |0 ≤ x ≤ 1, −1 ≤ y ≤ 2, 0 ≤ z ≤ 3} andevaluate ∫∫∫

Qxyz2 dV .

J. Robert Buchanan Triple Integrals

Example (2 of 4)

∫∫∫Q

xyz2 dV =

∫ 2

−1

∫ 3

0

∫ 1

0xyz2 dx dz dy

=

∫ 2

−1

∫ 3

0

12

x2yz2∣∣∣∣10

dz dy

=

∫ 2

−1

∫ 3

0

12

yz2 dz dy =

∫ 2

−1

16

yz3∣∣∣∣30

dy

=

∫ 2

−1

92

y dy =94

y2∣∣∣∣2−1

=274

J. Robert Buchanan Triple Integrals

Example (3 of 4)

Let Q = {(x , y , z) |0 ≤ x ≤ 2, −3 ≤ y ≤ 0, −1 ≤ z ≤ 1} andevaluate ∫∫∫

Q(x2 + yz) dV .

J. Robert Buchanan Triple Integrals

Example (4 of 4)

∫∫∫Q

(x2 + yz) dV =

∫ 1

−1

∫ 0

−3

∫ 2

0(x2 + yz) dx dy dz

=

∫ 1

−1

∫ 0

−3

(13

x3 + xyz)∣∣∣∣2

0dy dz

=

∫ 1

−1

∫ 0

−3

(83

+ 2yz)

dy dz

=

∫ 1

−1

(83

y + y2z)∣∣∣∣0−3

dz

=

∫ 1

−18− 9z dz = 8z − 9

2z2∣∣∣∣1−1

= 16

J. Robert Buchanan Triple Integrals

Triple Integrals Over General Regions (1 of 2)

To develop of the triple integral of f (x , y , z) over a generalregion Q we must form an inner partition of Q.

x

y

z

J. Robert Buchanan Triple Integrals

Triple Integrals Over General Regions (2 of 2)

DefinitionFor a function f (x , y , z) defined in the bounded, solid region Q,the triple integral of f (x , y , z) over Q is∫∫∫

Qf (x , y , z) dV = lim

‖P‖→0

N∑k=1

f (uk , vk ,wk )∆Vk ,

provided the limit exists and is the same for every choice ofevaluation points (uk , vk ,wk ) in Qk .

J. Robert Buchanan Triple Integrals

Evaluating Triple Integrals

If region Q can be described as

Q = {(x , y , z) | (x , y) ∈ R, k1(x , y) ≤ z ≤ k2(x , y)}

then ∫∫∫Q

f (x , y , z) dV =

∫∫R

∫ k2(x ,y)

k1(x ,y)f (x , y , z) dz dA.

J. Robert Buchanan Triple Integrals

Example (1 of 7)

Integrate f (x , y , z) = z over the region bounded by the planex + y + z = 1 and the coordinate planes.

J. Robert Buchanan Triple Integrals

Example (2 of 7)

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

z

J. Robert Buchanan Triple Integrals

Example (3 of 7)

∫∫∫Q

z dV =

∫∫R

∫ 1−x−y

0z dz dA

=

∫∫R

12

(1− x − y)2 dA

=12

∫ 1

0

∫ 1−x

0(1− x − y)2 dy dx

= −16

∫ 1

0(1− x − y)3

∣∣∣1−x

0dx

=16

∫ 1

0(1− x)3 dx = − 1

24(1− x)4

∣∣∣10

=1

24

J. Robert Buchanan Triple Integrals

Example (4 of 7)

Integrate f (x , y , z) =√

x2 + z2 over the portion of theparaboloid y = x2 + z2 where y ≤ 4.

-2

-1

0

1

2

x

0

1

2

3

4

y

-2

-1

0

1

2

z

J. Robert Buchanan Triple Integrals

Example (5 of 7)

∫∫∫Q

√x2 + z2 dV =

∫∫R

∫ 4

x2+z2

√x2 + z2 dy dA

=

∫∫R

4√

x2 + z2 − (x2 + z2)3/2 dA

=

∫ 2π

0

∫ 2

0(4r − r3)r dr dθ

= 2π∫ 2

0(4r2 − r4) dr

= 2π(

43

r3 − 15

r5)∣∣∣∣2

0

=128π

15

J. Robert Buchanan Triple Integrals

Example (6 of 7)

Find the volume of the solid region in the positive orthantbounded by z = 2− y and x = 4− y2.

0

1

2

3

4

x

0.0

0.5

1.0

1.5

2.0

y

0.0

0.5

1.0

1.5

2.0

z

J. Robert Buchanan Triple Integrals

Example (7 of 7)

V =

∫∫∫Q

1 dV =

∫∫R

∫ 2−y

01 dz dA

=

∫∫R

(2− y) dA =

∫ 2

0

∫ 4−y2

0(2− y) dx dy

=

∫ 2

0(2− y)(4− y2) dy =

∫ 2

0(y3 − 2y2 − 4y + 8) dy

=

(14

y4 − 23

y3 − 2y2 + 8y)∣∣∣∣2

0

=203

J. Robert Buchanan Triple Integrals

Mass and Center of Mass

If ρ(x , y , z) denotes the density of material at (x , y , z) in regionQ, then the mass of the solid occupying region Q is

m =

∫∫∫Qρ(x , y , z) dV .

The moments of with respect to the coordinate planes are

Myz =

∫∫∫Q

xρ(x , y , z) dV

Mxz =

∫∫∫Q

yρ(x , y , z) dV

Mxy =

∫∫∫Q

zρ(x , y , z) dV

The center of mass is the point with coordinates:

(x , y , z) =

(Myz

m,Mxz

m,Mxy

m

)J. Robert Buchanan Triple Integrals

Example (1 of 4)

Find the mass and center of mass of the solid region boundedby the plane z = 4 and the paraboloid z = x2 + y2 whosedensity is described by ρ(x , y , z) = 3 + x .

J. Robert Buchanan Triple Integrals

Example (2 of 4)

-2-1

01

2x

-2

-1

0

1

2

y

0

1

2

3

4

z

J. Robert Buchanan Triple Integrals

Example (3 of 4)

m =

∫∫∫Q

(3 + x) dV =

∫∫R

∫ 4

x2+y2(3 + x) dz dA

=

∫∫R

[4(3 + x)− (x2 + y2)(3 + x)

]dA

=

∫ 2π

0

∫ 2

0

[4(3 + r cos θ)− r2(3 + r cos θ)

]r dr dθ

=

∫ 2π

0

∫ 2

0[12r − 3r3 + (4r2 − r4) cos θ] dr dθ

=

∫ 2π

0

[12 +

(323− 32

5

)cos θ

]dθ

= 24π

J. Robert Buchanan Triple Integrals

Example (4 of 4)

Myz =

∫∫∫Q

(3x + x2) dV =16π

3

Mxz =

∫∫∫Q

(3y + xy) dV = 0

Mxy =

∫∫∫Q

(3z + xz) dV = 64π

Thus

(x , y , z) =

(Myz

m,Mxz

m,Mxy

m

)=

(29,0,

83

).

J. Robert Buchanan Triple Integrals

Homework

Read Section 13.5.Exercises: 1–43 odd

J. Robert Buchanan Triple Integrals

top related