type%ia%supernovae: progenitors%and% the%determinaon of ... filetype%ia%supernovae: progenitors%and%...

Post on 21-Oct-2019

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Type  Ia  supernovae:  progenitors  and  the  determina5on  of  dark  energy  

Pilar  Ruiz-­‐Lapuente    Groningen,  April  2014  

 ●      Introduc5on    ●      Type  Ia  supernovae  at  z  close  2!    ●      Rising  the  standard  for  standard  candles  (GTC  Project)    ●      Observing  SNeIa  in  the  infrared    ●      H0  from  SNeIa          

Supernova  Comology  in  2014  

The  Discovery  of  the  Accelera5on  of  the  Universe  

Perlmu6er  et  al.,  incl.  Ruiz-­‐Lapuente  (1999)  

The  Discovery  of  the  Accelera5on  of  the  Universe  

Best-­‐fit  confidence  regions  in  the    ΩM  –  ΩΛ    plane.    The  68%,  90%,  and  99%    sta5s5cal  confidence  regions  are  shown  (Perlmu6er  et  al.,  incl.  Ruiz-­‐Lapuente  1999)  

The  Discovery  of  the  Accelera5on  of  the  Universe  Calibrated  candles  through  the  rela5on  magnitude-­‐  rate  of  decline  

Pskvoskii-­‐Branch  effect    (known  in  the  80’s)  

Phillips  (1993)  Δm15  

Riess,  Press  and  Kirshner  (1995)  

MLCS  

Perlmu6er  et  al.  (1996):  stretch  s  

σ≈0.15  mag  

With  color  informa5on  

σ≈0.11  mag  

The  Discovery  of  the  Accelera5on  of  the  Universe  

There  are  three  different  possible  distance  measurements  in  Cosmology:  from  the  brightness  of  objects  of  known  luminosity,  from  the  angular  size  of  objects  of  known  dimension,  and  from  the  proper  (angular)  mo5on  of  objects  traveling  with  known  velocity  perpendicularly  to  the  line  of  sight.  Each  of  them  is  related  to  the  redshid  z  via  the  cosmological  parameters    q,  ΩM,  ΩΛ,  and  Ωk      The  luminosity  distance,  dL,  is  simply  defined  as  

where  L  is  the  luminosity  and  f  the  measured  flux.    As  a  func5on  of  z,  H0,  and  q0      

But  more  interes5ng  is  the  full  dependence  on  the  three  density  parameters    ΩM  ,    ΩΛ  ,  and  Ωk  :  

where    sinn(x)    =    sin(x),  x,  or  sinh(x)    for  closed,  flat,  and  open  universes,  respec5vely  

Standardizable  candles  

The  Discovery  of  the  Accelera5on  of  the  Universe  

Riess  et  al.  (2007)  

The  Discovery  of  the  Accelera5on  of  the  Universe  

Combined  SNIa,  CMB  and  BAO  constraints  in  the  (ΩM  ,  w)    plane  

(w  ≡  p/ρ  ;  w  =  -­‐1  for  vacuum  energy)  

Amanullah  et  al.,  incl.  Ruiz-­‐Lapuente  (2010)  

The  Discovery  of  the  Accelera5on  of  the  Universe  

Confidence  regions  in  the  (w0  ,  wa)    plane,  combining  SNeIa,  CMB,  and  BAO  

w(z)  =  w0  +  wa  z/(1+z)  

Amanullah  et  al.,  incl.  Ruiz-­‐Lapuente  (2010)  

The  Discovery  of  the  Accelera5on  of  the  Universe  

Union2  

w    =  -­‐0.997  ±  0.08      (flat)                            w    =    -­‐1.038  ±  0.09      (allowing  curvature)        At    z    ≥    1      the  existence  and  nature  of  dark  energy  are  only  weakly  constrained  by  the  data  

Amanullah  et  al.,  incl.  Ruiz-­‐Lapuente  (2010)  

The  Discovery  of  the  Accelera5on  of  the  Universe  

The  cosmological  constant  case  (bold  line)  is  compared  with  evolving  models  close  to    w  =  -­‐1,  i.e.,  a  model  with    w0  =  -­‐1.0  and    wa  =  -­‐1.5  (short  dashed  line)  and  a  model  with    w0  =  -­‐1.0    and    wa  +1.5  (dash-­‐doled  line).  Only  very  accurate  measurements  will  enable  to  discriminate  among  different  equa5ons  of  state  

The  Discovery  of  the  Accelera5on  of  the  Universe  

ACS  image  of  the  SN  loca5on.  Lower  right  panel  shows  a  composite  image  from  the  three  colors.  Lines  indicate  the  dispersion  direc5on  in  ACS  (dashed)  and  WFC3  (doled)  spectroscopy  (Rubin  et  al.  2013)  

Redshid  1.71  supernova  

Each  panel  shows  a  comparison  between  SN  SCP-­‐0401  and  another  SN.  Best-­‐matching  comparison  SN  Ia  in  the  led  panels,  best-­‐matching  CC  SN  in  the  right  panels.  Best  match  is  for  SN1992A.  Out  of  17  CC  SN,  only  SN1983N  is  a  possible  match,  but  it  was  2  mag  fainter  than  any  typical  SN  Ia    (Rubin  et  al.  2013)  

Redshid  1.71  supernova  

Redshid  1.71  supernova  

Most  recent  SCP  Hubble  diagram,  with  Primo  (Rodney  et  a.  2012)  and  SCP-­‐0401  SNe  added  (Rubin  et  al.  2013)  

The  Cosmic  Assembly  Near-­‐IR  Deep  Extragalac5c  Legacy  Survey,  CANDELS  (Grogin  et  al.  2011;  Koekemoer  et  al.  2011),  PI:  S.  Faber,  Co-­‐PI,  H.  Ferguson,  is  designed  to  document  the  first  third  of  galac5c  evolu5on  from  z  =  8  to  1.5  via  deep  imaging  of  more  than  250,000  galaxies  with  WFC3/IR  and  ACS.  It  will  also  discover  and  characterize  Type  Ia  SNe  beyond  z  >  1.5  and  establish  their  accuracy  as  standard  candles  for  cosmology  

CANDELS  

Rodney  et  al.  (2012)  

CANDELS  

z  =  1.55  

Most  distant  SN  Ia  to  date  

z  =  1.914  

Jones  et  al.  (2013)  

Most  distant  SN  Ia  to  date  

Jones  et  al.  (2013)  

Systema5c  uncertain5es:    ●      Dust  ex5nc5on      ●      Possible  evolu5on  of  the  intrinsic  proper5es  of  SNeIa      Evidence  of  two  dis5nct  popula5ons  of  SNeIa  hosts:  SNeIa  in  early-­‐type  galaxies    can  be  dis5nguished  from  those  that  occur  in  late-­‐type  galaxies  

Precision  cosmology  with  SNeIa  

SNeIa  in  progenitor  popula5ons    ●      Currently  ,  using  SALT2.2  to  correct    for  light  curve  shape  (x1    parameter)  and  

color  excess  (c),  from  the  apparent  peak  blue  magnitude  mB,  the  distance  modulus  is  given  by:  

                                                                                           μSN    =    mB  –  MB  –  αx1    +  βc                where    α,  β,  and  MB  are  nuisance  parameters  determined  simultaneously  with  

cosmological  parameters.  That  reduces  the  scaler  of  μSN      about  the  best-­‐fit  model  to  ≈15%,  down  from  the  ≈50%  scaler  for  uncorrected  absolute  peak  magnitudes  

 ●        Ader  those  correc5ons,  however,    it  was    said  that  SNeIa  in  passively  evolving  

or  massive  galaxies  are  slightly  brighter  than  those  in  star-­‐forming  or  less  massive  galaxies  (the  bigger-­‐brighter  correla5on)  

 ●        Need  to  understand  the  physics  of  SN  Ia  brightness  varia5ons  and  of  empirical  

brightness  calibra5ons  and  the  possible  evolu5on  of  those  calibra5ons  and  of  SN  Ia  demographics  

   

SNeIa  in  passive  progenitor  popula5ons  

Meyers  et  al.,  incl.  Ruiz-­‐Lapuente  (2012)  

SNeIa  in  passive  progenitor  popula5ons  

Possible  theore5cal  interpreta5on:    ●      C  mass  frac5on  in  C+O  white  dwarfs  is  smaller  if  the  stars  formed  in  lower  metallicity            or  older  environments.  They  produce  fainter  SN  Ia  (Umeda  et  al.  1999)      

Meyers  et  al.,  incl.  Ruiz-­‐Lapuente  (2012)  

Current  and  Near  Future  Projects  

Kim  et  al.  (2013)  

The  Hubble  constant  

The  Hubble  constant  

PRL  (1996)  

H-­‐band  SN  Ia  Hubble  diagram.  It  includes  23  SN  Ia  observed  with  PAIRITEL  (Wood-­‐Vasey  et  al.  (2008)  

A  new  proposal  

SNeIa  for  Cosmology  at  high  redshid  

●      We  have  observed,  for  the  first  5me,  SNeIa  at    z  >  1.5    ●      The  most  distant  SNeIa  fit  the  ΛCDM  model    ●      Stretch  mainly  depends  on  the  ages              of  the  SNeIa  progenitor    ●      It  appears  that  SNeIa  are  beler  standard  candles  in  the  infrared,              no  stretch  correc5on  being  needed  there.  That  will  be  exploited  by                the  upcoming  NASA  observatory  JWST  

Search  for  SNeIa  companions  

Search  for  SNeIa  companions  

Possible  companions  of  the  exploding  white  dwarf  in  a  SN  Ia    

     ●      Main-­‐sequence  stars    

     ●      Subgiants    

     ●      Red  giants    

     ●      AGB  stars    

     ●      Helium  stars  

Search  for  SNeIa  companions  

Search  for  SNeIa  companions  

The  problem  of  the  nature  of  the  binary  systems  giving  rise  to  Type  Ia  (thermonuclear)  supernovae:  single-­‐degenerate  channel  (with  several  possibili5es)  or  double-­‐degenerate  channel?    •  From  recent  Type  Ia  supernovae  in  nearby  galaxies  (SN  2011fe  in  M101,  at  6.4  Mpc,    

     and  SN  2014J  in  M82,  at  3.5  Mpc  only),  it  has  been        possible  to  rule  out  ,  from  pre-­‐explosion  images,  red-­‐      giant  companions  in  the  second  case  and  just  very        luminous  companion  stars  in  the  first  one  

 New  method    •  A  method  based  consis5ng  of  the  direct  search  for  companion  stars  in  the  central  

     regions  of    recent,  close-­‐by  SNeIa  (in  our  Galaxy  and  in          the  Magellanic  Clouds)  has  been  proposed  (RL  1997)  and  

                                                                                                         it  has  proved  to  be  very  fruiyul      •  Based  on  the  expected  characteris5cs  of  any  kind  of  SN  companion        

•  Type  Ia  SNe  impact  the  companion  star              →    strip  part  of  the  envelope              →    heat  up  the  envelope              →    enrichment  in  metals    •  Calcula5ons  of  this  process  •  Wheeler,  Lecar  &  McKee  (1975);  Marie6a,  Burrows  &  Fryxell  (2000);  Pakmor  et  

al.  (2008);  Pan,  Rickert  &  Taam  (2012);  Liu  et  al.  (2012)  

•  We  simulated,  for  typical  distances,  which  would  be  the  likelyhood  of  finding  a  perturbed  star  

           RL  1997;  Canal,  Méndez  &  RL  2001;  RL  et  al.  2002   → kick + orbital velocity → high radial velocities + proper motions •  The region to be searched depends on the distance to the SNIa and the age

SN 1572 and SN 1006 very good candidates

Search  for  SNeIa  companions  

•  Survey  of  the  central  regions  of  historical  Galacdc  SNeIa  remnants                                                                              (RL  1997;  RL  et  al.    2004;  Gonzalez-­‐Hernandez,  RL    et  al.    2009                                                                                                  

                                                                                           Kerzendorf  et  al.  2009,  2012;  GH,  RL  et  al.  2012)                                                                                                                                          

●  SN  (Tycho)  1572      •  SN  1006      •  Recently  extended  to  the  LMC  (Schaefer  &  Pagnola  2012;  Edwards  et  al.  2012)              

Search  for  SNeIa  companions  

Direct  searches  

SN  1572  

Ground-­‐based  op5cal  image  of    the  region  surveyed    to  search  for  the  binary  companion  of  SN  1572  

(from  Ruiz-­‐Lapuente,  et  al.  2004)  

SN  1572  

Sec5on  of  the  Galac5c  plane,  in  the  direc5on  of  Tycho’s  SNR.  The  average  radial  velocity  (referred  to  the  LSR)  is  shown.  At  the  distance  of  the  SNR,  it  is  in  the  range  -­‐20  to  -­‐40  km/s  

SN  1572  

SN  1572  

SN  1572  

SN  1572      A  normal  SNeIa    (RL  2004;  Krause  et  al.  2008)    Nonthermal  X-­‐ray  arc  inside  the  SNR  possibly  indica5ng  interac5on  of  the  ejecta                                                                                                          with  the  envelope  of  the  companion  (Liu  et  al.  2011)      •  RA:  00  25  19.9    DEC:  +64  08  18.9  (J2000.0)  •  D  =  2.83  ±  0.79  kpc  •  Located    59-­‐78  pc  above  the  Galac5c  plane  •  SNR  radius    ≈  4  arcmin          Highly  reddened  field  :    E(B-­‐V)  ≈  0.6    Surveyed  15%  of  the  innermost  radius  (0.65  arcmin)  of  the  SNR,  down  to    mV  =  22                                                                                                                                            (the  Sun  would  have  mV  =  18.9  at  that  D)                                                                                                                                            both  photometrically  and  spectroscopically    •  Modeled  the  spectra  to  obtain    Teff,  log  g,  [Fe/H]  and  derived  distances  using  the    

                                                                                       photometry  (RL  et  al.  2004;  GH,  RL  et  al.  2009)                                                                                                                                                                                                                            

•  Measured  radial  veloci5es  from  the  spectra  and  proper  mo5ons  from  HST                                                                                                                                                                                                                                        astrometry      

•  Found  a  subgiant  star    (G0-­‐1  IV)  with  peculiar  radial  velocity  for  its  distance  and                                                                                                                                              also  very  high  proper  mo5on  (star  G)                                                                                            

SN  1572  

HST  (ACS)  image  of  the  central  region  of  the  SNR  of  SN  1572  

SN  1572  0.5  arcmin  circles  around  three  different  proposed  centers  of  the  remnant  of  SN  1572,  plus  the  0.65  arcmin  circle  around  the  adopted  center  of  the  survey  (the  Chandra  X-­‐ray  center).  The  current  posi5ons  of  the  stars  are  compared  with  those  in  1572,  based  on  the  proper  mo5ons  measured  

(from  Ruiz-­‐Lapuente,  et  al.  2004)  

SN  1572  

(from  Ruiz-­‐Lapuente,  et  al.  2004)  

SN  1572  

Two  different  regions  of  the  Keck  HIRES  spectrum  of  the  star  Tycho  G,  showing  several  Ni  lines  

SN  1572  

Abundance  ra5os  of  Tycho  G,  compared  to  those  of  G  and  K  metal-­‐rich  dwarf  stars  (the  dispersion  is  of  0.04  dex  only,  for  the  Ni  abundances)  

(from  González  Hernández,  Ruiz-­‐Lapuente,  et  al.  2009)  

SN  1572  

(from  Bedin,  Ruiz-­‐Lapuente,  et  al.  2014)  

SN  1572  

(from  Bedin,  Ruiz-­‐Lapuente,  et  al.  2014)  

SN  1572  

•  At    D  ≈  3  kpc,  stars  close  to  the  Galac5c  plane  move  at    vr    ≈  -­‐20/-­‐40  km/s  (LSR),  while                                                  star    G  is  moving  at    vr    ≈    -­‐80  km/s  •  For  D  ≈  3  kpc,  a  proper  mo5on    µb    ≈    -­‐4  mas/yr  means  a  velocity,  perpendicular  to  the                                                      Galac5c  plane,    vz    ≈    -­‐60  km/s,  while  the  disk’s  velocity  dispersion  is                                                      σz    ≈    17  km/s    only.    The  total    vt    ≈  85  km/s    at  that  distance  •  [Ni/Fe]  =  0.16  ±  0.04  in  star  G,  which  is  of  about  solar  metallicity    ([Fe/H]  =  -­‐0.05  ±  0.04)            Very  low  probability  of  finding  a  star  unrelated  to  the  SN  within  such  a  small  area  of  the        

                                                         sky  and  limited  distance  range  ,                                          

SN  1572  

●    Confirmed  high  velocity  perpendicular  to  the  Galac5c  plane      ●  Shows  Ni  pollu5on    ●  Low  rota5on  velocity  not  par5cularly  significant,  from  current  hydrodynamic  simula5ons    ●  Angular  distance  to  centroid  of  X-­‐ray  emission  well  within  uncertain5es  

SN  1006  

SN  1006  

 •    RA  =  15  02  55      DEC  =  -­‐41  55  12    (J2000.0)    (Allen  et  al.  2001,  but  see  Winkler  et  al.    

                                                                                                                               2003,  2005)  •    D  =  2.18  ±  0.08  kpc  •    Located    ≈  0.5  kpc  above  the  Galac5c  plane  •    SNR  radius    ≈  15  arcmin              Low  reddening:    E(B-­‐V)    ≈    0.1,  as  compared  with  the  SN  1572  field    Surveyed  the  region  within  4  arcmin  from  the  adopted  center  (≈  27%  of  the  SNR  radius),    

 down  to  the  luminosi5es  of  main-­‐sequnce  stars  dimmer  than  the  Sun    Photometry  from  the  USNO-­‐A2.0  catalog:    26  stars  selected    Spectroscopy  with  VLT/UVES  of  the  selected  stars,  with  resolu5on    R  =  43,000  

●    R  ≈  43,000    in  UVES                                                        →      ∆vrot            ≈    7  km/s      ●    R  ≈  25,000    in  FLAMES    +  GIRAFFE    →    ∆vrot            ≈  12  km/s                      

SN  1006  

5-­‐arcmin  circle  around  the  adopted  center  of  the    survey,  with  the  posi5ons  of  the  26  stars,  numbered  according  to  their    increasing  distances  from  the  center  (see  Tables)    

S  designates  the  adopted  center  of  the  survey,  G  is  the  geometrical  center  of  the  Hα  emission  determined  by  Winkler  et  al.  (2003),  and  S-­‐M  is  the  posi5on  of  the  Schweitzer-­‐Middleditch  star  (a  background  star)  

(from  González  Hernández,  Ruiz-­‐Lapuente,  et  al.  2012)  

SN  1006  

SN  1006  

SN  1006  

•    Surveyed  a  large  area  around  the  center  of  the  SNR.  From  the  stellar  parameters  and  the  photometry,  we  see  that  only  a  small  number  of  stars  are  at  distances  compa5ble  with  that  of  the  SNR.      ●    No  star  ,  within  the  magnitude  limit  of  our  survey,  has  any  peculiarity  that  could    point  to  it  as  the  companion  of  the  SN.    ●  No  evolved  star  can  thus  be  the  companion  and  any  possible  MS  companion  should  be  less  luminous  than  the  Sun.      

SN  1006  

Spectra  of  the  4  giant  stars  at  distances  marginally  compa5ble  with  that  of  the  SN  1006  SNR  

(from  González  Hernández,  Ruiz-­‐Lapuente,  et  al.  2012)  

SN  1006  

SN  1006  

Abundance  ra5os  of  the  surveyed  stars  (blue  and  red  dots),  compared  to  those  of  a  sample  of  field  stars  (black  dots)  covering  the  same  metallicity  range.  Red  dots  correspond  to  stars  with  distances  compa5ble  with  that  of  the  SNR  

(from  González  Hernández,  Ruiz-­‐Lapuente,  et  al.  2012)  

Kepler  SNIa  

SN  1604  SNR  :  spectroscopy  of  stars    with    mR    ≤  18,  within  a  3  arcmin  radius    around  the  X-­‐ray  center  of  the  remnant,  using  FLAMES  with  UVES  and  GIRAFFE  on  the  VLT    (work  in  progress).  Interes5ng  case,  since  there  are  have  been  sugges5ons  that  the  SN  companion  was  a  RG  star  

Search  for  SNeIa  companions  

Targeted  stars  for  VLT  spectroscopy  and  for  PM  measurements  with  the  HST.  Blue  circle:  20%  radius  of  the  SNR.    Green  circle:  33%  of  the  radius  

Search  for  SNeIa  companions  

SNR  0509-­‐67.5  in  the  LMC  (from  Schaefer  &  Pagno6a  2012)  

Search  for  SNeIa  companions  

Search  for  SNeIa  companions  

SN  took  place    400  ±  50  years  ago  (from  light  echo)      No  star  in  the  central  region,  down  to  MV  =  +8.4    (the  Sun  has  MV  =  +4.5)        

Search  for  SNeIa  companions  

SNR  0519-­‐69.0  in  the  LMC  (from  Edwards,  Schaefer  &  Pagno6a  2012)  

Search  for  SNeIa  companions  

No  stars  down  to  V    =  26.05      That  eliminates  red  giant  stars  recurrent  novae,  and  helium  donors  

Search  for  SNeIa  companions  

SNR  G272.2-­‐3.2  

(from  Harrus  et  al.  2001)  

Search  for  SNeIa  companions  

●  Five  direct  searches  for  companions  (3  in  the  Galaxy,  2  in  the  LMC)  have  just  produced  1  possible  object  (a  SG  star)  up  to  now      ●  SN  2011fe  and  SN  2014J  (a  very  nearby  one)  have  not  shown  any  evidence  of  a  companion  star.  Red  giants  and  other  luminous  companions  are  ruled  out      ●  From  X-­‐ray  and  radio  surveys,  the  same  conclusions  are  reached  (see  review  by  Ruiz-­‐Lapuente  2014)  

EXCLUDED!    

top related