ultrafast spectroscopy - university of california, berkeley 7... · ultrafast examples: •...

Post on 24-Sep-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Ultrafast Spectroscopy

Gabriela Schlau-CohenFleming Group

Why femtoseconds?

timescale = distance/velocity~~~~~~

distance ≈

10 ÅE ≈

hν ≈ (6.626*10-34kg*m2/s)*(3*108m/s /6*10-7m) ≈

3*10-19kg*m2/s2

E= ½mv2

v=√(2*E*/m) =√(2*E*/9*10-31kg) =√(2*3*10-19/(9*10-31 ) m2/s2)

v=8*105

m/s

~~~~~~timescale

(10*10-10m)/(8*105m/s) ≈

10-15

sec

Ultrafast examples:

Photosynthesis: energy transfer in <200 fs (Fleming group)

Vision: isomerization

of retinal in 200 fs (Mathies

group)

Dynamics: ring opening reaction in ~100s fs (Leone group)

Transition states: Fe(CO)5

ligand

exchange in <1 ps

(Harris group)

High intensity: properties of liquid carbon (Falcone

group)

How can we measure things this fast?

1960 1970 1980 1990 2000

10–6

10–9

10–12

10–15Ti

mes

cale

(sec

onds

)

Year

Electronics

Optics

Laser Basics

Level empties

fast!

Four-level system

Laser Transition

Pump Transition

Fast decay

Fast decay

•Population inversion

•Pump energy source

•Lasing transition

• Method of creating pulsed output• Compressed output• Broadband laser pulse

What we need for ultrashort pulse generation:

Ultrafast Laser Overview

Laser oscillator

Amplifier medium

pump

3 pieces of ultrafast laser system:•

Oscillator

Regenerative Amplifier

Tunable Parametric Amplifier

Oscillator generates short pulses with mode-locking

Ti:Sapphirelaser crystal

Cavity with partially reflective mirror

Pump laser

Prisms

Titanium: Sapphire

oxygenaluminum

Al2 O3 lattice

4 state system

Upper state lifetime of 3.2 μs for population inversion

Broadband of states around lasing wavelength

Kerr-Lens effect (non-linear index of refraction)

Ti:Sapphire spectral

properties(nm)

FLU

OR

ES

CE

NC

E (a

u)

Inte

nsity

(au)

Mode-locking

Mechanism of Mode-locking: Kerr Lens Effect

)(20 xInnn ⋅+=

Compression

Prism compression

Gratings, chirped mirrors

t t

Chirped Pulse Amplification

Pulse compressor

t

t

Solid state amplifiers

t

Dispersive delay linet

Short pulse

oscillator

• Stretch

• Amplify

• Recompress

Regenerative Amplifier

Pulsed seed•

Ti: Sapph

crystal

Faraday rotator

thin-film polarizerPockels cell

Pulsed pump laser•

Pockels

cell

p-polarized light

s-polarized light

OPA/NOPA

Parametric amplification•

Non-linear process

Energy, momentum conservedω1

ω3ω2

Optical Parametric Amplification (OPA)

ω1 "signal"

"idler"

“seed"

“pump"

Non-linear processes

Emitted-light frequency

(1) (2) 2 (3) 30 ...ε χ χ χ⎡ ⎤= + + +⎣ ⎦c X X X

(5) *0 1 2 3 4 5E E E E Eε χ=c

ωsig

Time Resolution for P(3)

“Excitation pulses”Variably delayed “Probe pulse”

“Signal pulse”Medium under study

Sig

nal p

ulse

ene

rgy

De

Two-Dimensional Electronic Spectroscopy can study:

Electronic structure

Energy transfer dynamics

Coupling

Coherence

Correlation functions

2D Spectroscopy

Excitation at one wavelength influences emission at other wavelengths

Diagonal peaks are linear absorption

Cross peaks are coupling and energy transfer

Excited StateAbsorption

Inhomogeneous Linewidth

HomogeneousLinewidth

CrossPeak

ωτ

(“absorption”)

ωt (

“em

issi

on”)

Dimer Model (Theory)

Electronic Coupling

1 2Dimer

E

g1

e1

g2

e2Δ

ε1

ε2

J

E

J

Principles of 2D Spectroscopy

τ T t

( )tψ = e( ) i tt eψ β −= + ⋅ 3ωg e

g

e

( )ρ t ABSORPTIONFREQUENCY

EMISSIONFREQUENCY

1ω 3ω

SIGNAL

Recoveredfrom Experiment

( )3 ( , , )S T tτ

Time

⟩⋅+⟩=⟩ eegt ti ||)(| 3ωβψ

12

34

delay 1delay 2

1 23 4

1&2

3&4

diffractiveoptic (DO)

sample

2 f

sphericalmirror

spectro-meter

1 2 3 sig4=LO

coh.time

pop.time

echotime

τ T t

OD3

2D Heterodyne Spectroscopy

Opt. Lett. 29 (8) 884 (2004)

Experimental Set-up

Fourier Transform

Future directions of ultrafast

Faster: further compression into the attosecond

regime

More Powerful: higher energy transitions with coherent light in the x-ray regime

0j kδω δω <

0j kδω δω >

NegativelyCorrelated Spectral Motion

PositivelyCorrelated Spectral Motion

2D spectrum with cross-peaksA measurement at the amplitude level

top related