university of nigeria...university of nigeria research publications olugu, uma agbai author pg/m....

Post on 10-Apr-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

University of Nigeria Research Publications

OLUGU, Uma Agbai

Aut

hor

PG/M. Engr/82/1393

Title

Computer-Aided Optimization of

Reinforced Concrete Floors

Facu

lty

Engineering

Dep

artm

ent Civil Engineering

Dat

e September, 1984

Sign

atur

e

COMPUTER-AIDED OPTIMIZI tTION OF REINFORCED CONCRETE FLOORS

OLUGU, U m a kgbai PG/M,ENGR/82/1393

DEPIIRTI-iENT OF C I V I L ENGINEERING UNIVERSITY O F N I G E R I A

N S U K K h

SEPTEMBER 1984

COMPUTER-AIDED O P T I M I Z A T I O N O F REINFORCED CONCRETE FLOORS

OLUGU, Uma kgbai P G / M o E n g r / 8 2 / 1 3 9 3

SUBMITTED TO THE DEPi'iRTMENT OF C I V I L E N G I N E E R I N G , I N THC FiiCULTY OF E N G I N E E R I N G ,

AS PIlRT O F T H E REQUIREMENTS FOR T H L AWARD O F MASTER O F ENGINEERING DEGREE O F T H E

U N I V E R S I T Y O F N I G E R I A 4

S U P E K V I S I O R S :

D r . A. O l e i s n e w i c z Dr, lie S t r z e l c z y k Dept, of C i v i l E n g i n e e r i n g Dcpt, of C i v i l E n g i n e e r i n g U n i v e r s i t y of N i g e r i a U n i v e r s i t y of Nigeria Nsukka, N s u k k a .

DEDICATION

Dedicated to my P a r e n t s :

and

Mrs. C. Olugu

PREFACE

The t e x t a ims a t f u l f i l l i n g a need w i t h i t s systematic

a p p r o a c h t o c l a s s i f i c a t i o n o f t h e ( i t e r a t i v e ) o p t i m i z a t i o n

p r o c e s s i n t h e d e s i g n o f f l o o r s .

he p a p e r i s d i v i d e d i n t o f i v e c h a p t e r s .

C h a p t e r 1 on I n t r o d u c t i o n d i s c u s s e s w i t h i n t h e framework of

S t r u t t u r a l Design t h k o r i e s , t h e method of approach and

j u s t i f i c a t i o n o f t h e p r o j e c t . &

C h a p t e r 2 d i s c u s s e s d e s i g n and i n c o n j u n c t i o n w i t h

c h a p t e r 1 e x p l o i t s t h e d e s i g n p h i l o s o p h y t o p r o v i d e a

u n i f i c a t i o n and g e n e r a l i z a t i o n of t h e d e s i g n s t a g e s of t h e

S t r u c t u r a l d e s i g n p r o c e s s , C h a p t e r 3 d e l v e s i n t o s p e c i f i c

d e s i g n methods f o r e a c h of t h e s l a b s t h r o u g h f l o w c h a r t s

and computer programms, C h a p t e r 4 d i s c u s s e s t h e r e s u l t s

o b h a i n e d t h r o u g h g raphs . C h a p t e r 5 p r o v i d e s a c l o s u r e f o r

t h e t e x t ,

The Au tho r h a s t r i e d t o assemble and u n i f y much

s c a t t e r e d knowledge on S t r u c t u r a l Design of S l a b s which

h i s t o r i c a l l y h a s become c o m p a r t m e n t a l i s e d and t h e r e f o r e

p r o v i d e s an iterative method f o r o p t i m i z a t i o n o f R e i n f o r c e d

C o n c r e t e f l o o r s .

ACKNOWLEDGEMENTS

I wish t o thank my Prbjoct Advisers ( E n g r ) D r .

A. 0 1 e i s n i e G f a a n d Ur. n Strezlczyk; Tho accomplishmen9

of t h i s work i s l a r g e l y due to t h e i r help en

a c c o u n t o f t h e i r a d v i c e , corrections, k i n d crif;ici~ms

and i n v a l u a b l e s u g g e s t i o n s .

T h e Head of bcpa r tmen t , ( E n g r ) Dr. N . Egbuniwe

was a l w a y s ready t o c o o p e r a t e and assist dur /ng

moments of need , and I must e x p r e s s g r a t i t u d e t o

him.

t My t h a n k s go to Messrs K,Oo Uma, O.K. / c h i

A . U . Odizia, 0.0, Nwosu and O.U, Emele f o r t h e i r

dnnumerable h e l p ,

F i n a l l y , I wish to thank Engr. ( C h i e f )

F.C.N. f t g b a s i w h o gave mc t h e p r a c t i c a l background

and M r . Ukpai who typed t h e final c o p i e s of t h e

m a n u s c r i p t .

A - Area of Re in fo rcemen t

b a Width o f S e c t i o n

d 5 Effective d e p t h o f tenslbn r e i n f o r c e m e n h

F = U l t i m a t e l o a d

FCC = ~ o m ~ r c ~ s i v e f o r c e i n L t h e coneketc a c t i n g t h r o u g h t h e c e n t r o i d of t h e sti-css block

Pst E T e n s i l e f o r c e i n t h e r e i n f o r c e m e n t acting a t t h e c d n t r o i d of t h e t e n s i l e steel.

Cc = ~ o t a l C o s t o f r e i n f o r c e m e n t

Cs = T o t a l cost o f C o n c r e t e

f c u s C h a r a c t e r i s t i c concrete cube s t r e n g t h

f y = C h a r a c t e r i s t i c s t r e n g t h of r c i n f o r c c r m ~ l l t

h = O v e r a l l d e p t h o f S e c t i o n i n p l a n e o f b e n d i n g b

kl = n v e r a g e Compress ive stress i n c o n c r e t e f o r a

r e c t a n g l u s r - p a r a b o l i c stress baock

K2 = w f a c t o r t h z t re la tes t h c d e p t h to t h e c e n t r o i d o f t h e r e c t a n g u l a r - p a r a b o l i c stress b l o c k and t h c d e p t h of t h e n e u t r a l a x i s .

K2X = Depth Lo t h e c e n t r o i d o f t h e stress b lock

Lx,Ly = Span o f S l a b

M = Bcnding Moment

M u = Ultimate r e s i s i s t a n c e moment

S = S p a c i n g o f r e i n f o r c e m e n t a l o n g t h e member

V = S h e a r f o r c e , volume

X = N e u t r a l a x i s d e p t h

Z r L e v e r arm

E o = Tho c o n c r e t e s t r a i n a t t h e end of t h e p a r a b o l i c S e c t i o n

E s t a T c n s i l c s t r a i n i n t h e r e i n f o r c e m e n t

V - S h e a r S t r . ? s s

W E Thc d i s t a n c e f rom t h c n e u t r a l a x i s t o S t r a i n Eo

' i = W e i g h t o f a l e n g t h o f steel in k i l o g r a m s

WT t Summation of d i f f e r e n t w e i g h t s o f s t ee l i n k i l o g r a m s

CT = T o t a l "ost o f S l a b

0 I Diameter o f r e i n f o r c c m c n t r o d

LIST OF ,FIGURES

S o l i d Slab/Beam Ar rangemen t d o . 6

F l o o r Ar r angemen t f o r bJaff l e C o n s t r u c t i o n 7

F r e e Body s k e t c h o f a Square F l a b - S l ~ b h u a d r a n t 0 0 0 a O m 17

I n f l u e n c e o f kly on C o s t o f S o l i d S l a b 69

C o s t Against T h i c k n e s s o f S l ab .., 70

I n f l u e n c e o f FCU on C o s t o f S l a b 71

'. . I n f l u e n c e o f Rod D i a m e t e r on Co;;t o f . ; .i : ,. S o l i d S l a b - O m o o O 72

I n f l u e n c e o f Rod Diameter on Co;r F l o o r ( S o l i d S l a b + Beam) O n 5 73

I n f l u e n c e o f C o n c r e t e 5 t r i : n ~ t h 0;; Czsi o f F l o o r ( S o l i d S l a b + ~ e a m ) ,, 0 ,, 74

I n f l u e n c e o f S l a b T h i c k n e s s on C o a t o f F l o o r ( S l a b + Beam) a a 0 75

I n f l u e n c e o f S t e e l S t r e n g t h on C o s t o f F l o o r ( S o l i d S l a b + B e a m ) . o m 76

I n f l u e n c e o f R i b T h i c k n e s s on C o s t o f W a f f l e S l a b -.. . O m 77

I n f l u e n c e o f Mould S i z e on C o s t of w a f f l e F l o o r . . . . O D 78

I n f l u e n c e o f C o n c r e t e S t r e n g t h on C o s t of W a f f l e S l a b ... ... 79

I n f l u e n c e o f FY on C o s t o f W a f f l e F l o o r 80

I n f l u e n c e o f Rod Diameter on C o s t o f Waffle F l o o r . . . O O . 81

17. I n f l u e n c e o f B e a m Uepth on C o s t o f B e a m 8 2

Nomina l Cover t o Piain R e i n f o r c e m e n t M o d e r a t e E x p o s u r e a a a O o O

Nomina l C o v c r t o Main R e i n f o r c e m e n t M i l d E x p o s u r e C o n d i t i o n e a 0

S i m p l i f i e d R u l e s f o r C:!.:.tsilment-. of B a r s i n S l a b > ' p a n n i n g i n o n e Gli-c:c!:ion

M o d i f i c a t i o n F a c t o r Lor .ki:s ioirl

R e i n f o r c e m e n t ( FV - 41.G \ - . - M o d i f i c a t i o n F a c t o r I'0.r 'T't?ns:.:,r R e i n f o r c e m e n t ( F Y = [1:%3> , ,

M o d i f i c a t i o n F a c t o r F(,r ;'c\r:s."-~,; R e i n f o r c e m e n t (FY = 4 6 0 ) . L

M o d i f i c a t i o n F a c t o r For 9 'ens io ; l R e i n f o r c e m e n t (FY = 5001 O C .'

M o d i f i c a t i o n F a c t c r F o r T e n s i o n R e i n f o r c e m e n t (FY = 2 5 0 ) 0 0 0

Maximum p e r m i s s i b l e v a l u e o f N g r n i n a l U l t i m a t e S h e a r S t r e s s Uu (N/mm '1 4

U l t i m a t e S h e a r S t r e e s U c i t g a i n s t P e r c e n t a g e R e i n f o r c e m e n t (FCC = 3 0 )

U l t i m a t e S h e a r SBkess U c A g a i n s t P e r c e n t a g e R e i n f o r c e m e n t (FCU = 40 or More.) 0 0 0 0 0 0

U l t i m a t e S h e a r S t r e s s U c A g a i n s t P e r c e n t a g e R e i n f o ~ c c m e n t (FCU = 2 0 )

Ul t imate S h c a r S t r e s s U c b ~ g a i n s t P e r c e n t a g e R e i n f o r c e m e n t (FCU = 2 5 )

LIST OF TABLES P,aqe :

I n f l u t m c e o f S t e e l T e n s i l e S t r e n g t h an C o s t o f S o l i d S l a b . . D o * 52

I n f l u c n c e o f S l a b T h i c k n e s s on C o s t o f S o l i d S l a b .-. o m 5 2

I n f l u e n c e o f C o n c r e t e Compres s ive S t r e n g t h on C o s t o f S o l i d S l a b - I 53

I n f l u e n c e o f Rod D iame te r on C o s t o f S o l i d S l a b a * o O O e 53

I n f l u e n c e o f Rod Diameter on C o s t o f F l o o r ( S o l i d S l a b + B e a m ) m e -

b 54

I n f l u c n c e o f C o n c r e t e S t r e n g t h on C o s t o f F l o o r ( S o l i d S l a b + Beam) ... 54

I n f l u e n c e o f S l ' l b T h i c k n e s s on C o s t o f F l o o r ( S o l i d S l a b + B e a m ) a " > 55

I n f l u c n c e o f S t e e l Tensi1.c St rcnqc;2 on C o s t o f F l o o r ( S o l i d S l a b + Beam) 55

I n f l u c n c e o f R i b T h i c k n e s s , B , cr. C o s t o f W a f f l e F l o o r . a o D o n 56

I n f l u e n c e o f Mould S i z e on C o s t o f W a f f l e F l o o r .- .-. 56

I n f l u e n c e o f C o n c r e t e Compres s ive S t r e n g t h on C o s t o f W a f f l e F l o o r ,., .. a 5 7

I n f l u e n c e of S t e e l S t r e n g t h on C o s t of W a f f l e F l o o r .OO .om 57

I n f l u e n c e o f Rod Diameter on C o s t o f W a f f l e F l o o r ... - 58

14, I n f l u e n c e o f Beam Depth on C o s t of Beam 58

APPENDIX:

Ale Cover to Reinforcement in all Reinforced Concrete Structures (CPIIO: 3,1:2) 89

h6, Modification Factor for Tension Reinforcement (CPIIO: Clause 3.3,8,1) 94

A12 Maximum Permissible Value of Norninal Ultimate Shear Stress Vu t ~ / m m * ) ~ (CPIIO: Clause 3,3.6.1) 0 0 0 900

A14 Ultimatl Shear Stress in Beams Vc (N/rnm2lh (CPIIO: 3.30G01) U O I. 102

TABLE OF CONTENTS: Page:

D e d i c a t i o n

P r e f a c e

Acknowledgments

Notat i o n s

CHAPTER ONE:

lei I n t r o d u c t i o n i-, s o ,, O #,

1.2 O b j e c t i v e s and Sc~ptr-t c f '.V'srk ,,

1.3 F o r m u l a t i o n o f O p timixa',-.i.cr: Prob ' l Prn

CHAPTER T s

2 , 1 S e l e c t i o n o f F l o o r S y s t e m S e e

2.3 Method o f S o l u t i o n a‘ .c 0 0 . 2,4 Des ign P h i l o s o p h y . a > e n *

CHAPTER THREE :

3.1 S t r u c t u r e o f t h e Flo-d Chizi;; ,. o .

3.2 Program S p e c i f i c a t i o n O cr O

3 . 3 I n p u t Des ign I n f o r m a t i o n and l%s(:r-lpt-ion o f Flow C h a r t . O n . ) * a

3.4 Flow C h a r t f o r S o l i d S l a b s o . .

3.5 Flow C h a r t f o r Beams . O D ... 3.6 Flow C h a r t f o r W a f f l e S l a b s ...

Progranu .*a * e r n

e.. . . 4.2 Program P l o w Cot Solid Slab+ ... 4.3 Pragtam Plow for Beams .. 4.4 Program Flow for Waffle Slabs ... 4,6 Influence of V U P ~ Q U S Parameters on Cost

of the Floor ... 0 0 .

0.7 C9nelulLon and ~ e c w m n b a t ~ o n s CHAPTER FIVE:

5.1 F i n a l Remarks a . o rn o ., 5.2 Suggestions for F u t u r e Work son

Aomndix ... P a -

CHAPTER ONE:

1 1 INTRODUCTION :

This paper describes a slapie -tho4 for d d l ~ e h t

add optimum selection of reinforcod mctete f toe~r4 . A

graphical approach is employed to determine the r ~ h t

economical system, section properties followhg d saCk# of

trial analyses based on CPXIO, part 2, 1972.

CPIIO states that the purpose of design is the

achievement of acceptable probabilities t h a t t h e &ttuCtut4

being designed will not become u n f l t for use for whicd i t

is required; that is, i t will not reach a limit state.

Thus the design of reinforced concrete floors would involve

selecting section properties and floor types, Such that

an acceptable probability is provided against floors reaching

any of the limit states and being unecenomical. It is

possible to select more than one set of section properties

and floor types to satisfy these ~endikiond~

In present day design practece, d~ikable stab ~ d t t i 6 n ~

and types are usually obtained by dnelysing t r ia l des igns ,

the experience of the Engineer being used to interprete

the results, Unfortunately, the need for the Engineer to

redesign the slab considering other floor systems can lead

to an excessively long design time. This results is

o n l y a f e w t r i a l d e s i g n s b e i n g c o n s i d e r e d f o r a p a r t i c u l a r wb:c\> 2 "

f l o o r t y p a a n d thotj_rinal%'L$ a c c e p t e d may be f a r f r o m

t h e op t imum,

T h i s p r o j e c t t h e r e f o r e b r i n g s o u t t h c op t imum

s e c t i o n a n d mater ia l p r o p e r t i d s a n d c o m p a r e s t h e c o s t o f

v a r i o u s f l o o r t y p e s , Th? h s k u n d e r t d k e n a l s o s h o w s t h e

i n f l u e n c e o f t h e v a r i o u s p a r a m c t z r s o n t h e f i n a l c o s t

o f t h e g i v e n f l o o r t y p e . A l s o t h e s e t o f p a r a m e t e r s

a r e ~ v a l u e t e d t o show tht:: m c : s t e c o n o m i c s t r u c t u r a l ,

s o l u t i o n f o r thc: g i v e n s p a n .

1-2 0 3 J L C T I V i i J .i!!iD SCUPE O F ' K I R K : - -.- -.-. - .-.-. ~ . . - --..-- ...---

T h e ma in o b j e c t i v e s o f h i s p s ; ? r a r e , f i r s t t o

p r e s e n t a b r i c f d e s c r i p t i o n 0:' t h e cpt i rnum d e s i g n p r o c e d u r e

t h a t h a s b e e n c l e v c l o p c d and t r . 2n t o illustrate it$

a p p l i c a t i o n . Thi. p r o c e d u r e wc :; d e v ( : l o p e d s p e c i f i c a l l y f o r

one--way s o l i d ( ~ t ~ t t m n a l ) s l a b s , d a f f L -2 s l a b s iind s i m p l y

s u p p o r t e d Beams,

I t e m p l o y s a c o m p u t e r - a i d $ 1 i t e . ' ; l t i v e t e c h n i q u e i n

s t e p s t h , . . : t a r t : g r o u p e d i n t o s p r e l i m i n a r y d e s i g n a n d a

f i n a l d d s i g n p h a s z ,

T h i s 1 ) a p c r S o c u s p s o n t h e i l - . s c r i p t i o n o f p r e l i m i n a r y

d e s i g n p h a s z , c m p h a s i z f n g t h e o p t i m i z a t i o n t e c h n i q u e t h a t

h a s b e e n u s e d a n d it:; a p p l i c a t l c w , P r e l i m i n a r y d e s i g n s

3.

o b t a i n e d u s i n g t h e p r o p o s e d design p r o c e d u r e And a design

o b t a i n e d on t h e basis of CPIIO, ~ t r u ~ k k i ~ a l use o& Cbmerete,

1972, are compared w i t h t h e c!ooYkkuction m&l& k4.8hulted

a n d a l so w i t h r e s p e c t t o b e h a v i o u r a l characterisfitso

erdm t h i s c o m p a r i s o n , t h e ~ p t h u h dea&n and eifdei 05

m a t e r i a l p r o p e r t i e s on C o s t of kioar 16 kdbwn.

1.3 FORMULATION OF OPTIMIZATION PROBLEM:

T h e o p t i m i z a t i o n p r o b l e m i s to f i n d t h e c o n t r o l s

for a R e i n f o r c e d C o n c r e t e f l oo r which m i n i m i z e s t h e

c r i t e r i o n "Cos tw fo r a d e s i g n p r o c e s s t h a t s a t i s f i e s 'and

f o l l o w s l i m i t s t a te b e h a v i o u r and r e c o m m e n d a t i o n s i n "The

S t r u c t u r a l Use of C o n c r e t e C P I I O : 19729t.

C o n s i d e r i n g a U n i t w i d t h of s lab , t h e v a r i a t i o n of

b e n d i n g moment i s c a l c u l a t e d for t h e s l ab s u b j e c t t o t h e

u l t i m a t e l o a d s u s i n g any of t h e a n a l y t i c a l me thods

s p e c i f i e d i n CPIIO.

L e t Mmax be t h e maximum b e n d i n g moment i n the member,

The C o n s t f u n c t i o n , C p e r u n i t Area of s lab a t Maximum

moment p o i n t c a n t h e n be e x p r e s s e d a s

C = AS CS + 1 x HCC

where

As = Area of Steel

Cs = Cost of Steel per hp -

H = Depth of Concrete floor

Cc = Cost of Cubic metre af Concrete

For any grade of concrete and type of reinforcement,

Cs, Cc are constants,

CONSTRAINTS :

A) The behaviour Constraint defined by the ultimaie limit

state can be expressed as

Mmax 6 mu

where Mu is the ultimate moment of resistance

of section.

8 ) The serviceability limit state requirement appears as

a limit on the deflection. CPIIO specifies that efgher

the deflection may be calculated or certain limits on span

effective depth ratio be observed. The limits for this

ratio depends on support conditions, steel stress etc.

and given in the appendix of this paper by figures A6 to

All.

With this, the optimization problem reduces to

finding design variables which minimizes the objective

function,

D,',., .',:, ; ,ii OF COST OF SLAB:

Weight o f steel i n k i l o g r a m s i s found by u s i n g t h e

r e l a t i o n s h i p t h a t

2 'i

= 00006265.* D e L

From R e i n f o r c e d C o n c r e t e D e s i g n e r s Handbook by C h a s 2 , ReynoldS .

where Wi = "de igh t i n k i l o g r a m s

D = Diame te r o f S t e e l i n mm

L = Leng th o f s t ee l i n m e t r ~ s

T o t a l w e i g h t of s tee l f o r a s l a b is

F o r a p r i c c i n d e x o f N1 ,5 p e r 1: i logram of s tee l

T o t a l c o s t o f s tee l = C,: = A1.5 WT

Volume o f c o n c r e t e = Ares o f s l a b ~ s l a b t h i c k n e s s

T o t a l c o s t o f c o n c r e t e u s i n g a p r i c e i n d e x of

3 ,4180 p e r m o f c o n c r e t e , havl-: t h a t

T o t a l c o s t o f c o n c r e t e = Cc = t 1 8 0 X Area o f s1abYr:H

0 T o t a l c o s t o f s l ab = CT = Ss + dc 0 0

CHAPTER TWO

2 - 1 SELECTION OF FLOOR SYSTEM:

F i g u r e s 1 a n d 2 show t h e d i m e n s i o n s a n d w o r k i n g

s y s t e m o f t h e f l o o r s e l e c t e d f o r s t u d y ,

T h c s e l e c t i o n t-es.t h e a v i l y upon t h e e x p e r i e n c e a n d

j u d g 2 m c n t o f t h e w r i t e r o n conmon f l o o r s y s t e m s m e t i n

p r a c t i c e ,

T h e m a i n c o n s i d e r a t i o n i s t o a p p l y a number o f d i f f e r e n t

t y p e s o f s l a b s t h a t w o u l d rc 2 r e s e n t a much l a r g e r c l a s s 6

of f l o o r s n o r m a l l y e n c o u n t e r d i n tl - d e s i g n o f f i c e ,

T h e op t imum s l e c t i o n s h l a l ~ l d be : a r r i e d o u t f o r t h e

f o l l o w i n g a r r a n g e m e n t s :

a) S o l i d S l a b s

b ) H o l l o w S l a b s ( P r e c a s t

c ) 3 i b b e d S l a b s

d ) F l < ~ t S l a b s ( H a f f l e )

B u t b e c a u s e o f t i m e l i m i t c n d t - 3 d i f f i c u l t y i n

p r o g r a m m i n g , o n l y t h e s o l i d a n d d a f f : - s l a b s w i l l be

c o n s i d e r e d .

T h e p a r a m e t e r s c o n s i d e r e d . . g n i f i c m t i n t h e

scl:!ct i o n were

i) Span r a t i o

i i ) T h i c k n e s s of s l ab

iii) S l a b / b e a m a r r a n g e m e n t

i v ) M a t e r i a l c h a r a c t e r i s t i c s

v ) F u n c t i o n a l c o n s i d e r a t i o n

S c h e m a t i c r e p r e s e n t a t i o n s o f t h e t w o s l a b s are shown

i n f i g u r e s 1 a n d 2 r e s p e c t i v e l y , I n t h e case o f o n e way

s l a b s , t h e s e a r c h w a s c a r r i e d o u t f o r a 6 x 4 m ' i n t e r n a l

s l a b w h i l e t h a t o f t h e waff le f l o o r was f o r a n 8 x 8m' B

i n t * r n a l f l a t s l a b a n d d e s i g l e d as- two way.

2.2 P L ~ ~ A M E T E ~ ~ S $ A S S U M P T I O N $ - W i t h r c s p e c t t o t h e d e s i r j n o f f h e s l a b s a n d beams ;

a ) T h e l o a d i n g was a s s u r c.d t o be m o s t l y u n i f o r m l y

d i s t r i b u t e d ;

b) T h e s p e c i f i c w e i g h t of c o n c r e t e was t a k e n a s

2360kg/m3;

C ) Maximum s i z e o f a g g r e r l l t e h . 1 ~ a s s u m e d t o be

2 Omit1 ;

d l From e x t e n s i v e i n q u i r i : ~ , i t was d i s c o v e r e d t h a t

t h c p r i c e s of mater ia ls w e n as follows:

d 1 , S p c r k i l o g r a m f o r ct~l d i a m e t e r sizes o f s t ee l

,$I80 p e r c u b i c meter fc .- c o n c r e t e o f a n y c u b i c

str 2ng th .

P s e a r c h _were. T h e va r i ab le p a r a m e t e r s used i n t h -

A ) F o r S o l i d S l a b s / B e a m

i ) T h i c k n e s s , H , o f s l a b

i i ) C o m p r e s s i v e s t r e n g t h o f c o n c r e t e (FCU)

iii) T e n s i l e s t r e n g t h o f s teel (FY)

i v ) Diameter D, of r e i n f o r c e m e n t bars a n d

v ) B e a m d e p t h ( H I )

8 ) F o r W a f f l ? F l o o r s

i ) T h i c k n e s s o f R i b (E) t

i i) S i z e o f mou ld ( S )

i i i ) C o m p r ~ s s i v c s t r c n g t t o f corcrete (FCU)

i v ) T e n s i l e s t r e n g t h o f ,tee1 (?Y)

v ) Uiameter O , o f r e i n f o r c e m e n t ba r s

2 - 3 METI~OD OF SOLUTIOiV:

E s t a b l i s h e d S t r u c t u r a l d e : ; i y n p r o c e d u r e s are s e e n t o

be i t e r a t i v e i n n a t u r e , T h e i t 2 r a t i - m s arise f r o m t h e

a n a l y s i s - b a s e d mode o f a t t a c k c. t h e d e s i g n p r o b l e m ,

I n s h o r t , c o n v e n t i o n a l d e s i g n i: a p r o c e s s o f t r i a l

a n d error o p t i m i z a t i o n . O e s i g n s y s t e r , l s a r c commonly

d i v i d e d i n t o S u b s y s t c r , i s t o prod^ c:e a t r a c t a b l e d e s i g n

s u b p r o b l e m b u t c e r t a i n i n c o n ~ i s t e n ~ f e s make t h i s

p r o c e d u r e d i f f i c u l t , T h e r e a l s o e i x s t s a n i n t e r d e p e n d e n c e

o f e a c h l e v e l , a : e q u i r i + . * t k n o w l e f l g e a t a h i g h e r l e v e l

when d e s i g n i n g a lower l e v e l s u b s y s t e m . T h i s t h e r e f o r e

means t h a t n o i s o l a t e d s y s t e m s e x i s t t h e r e b y j u s t i f y i n g

t h e u s e of i t e r a t i o n i n t h i s p r o j e c t .

An i t e e a t i v e a p p r o a c h h a s b e e n employed f o r t h e

s o l u t i o n , The method i s b r i e f l y e x p l a i n e d . The

s e c t i o n and material p r o p e r t i e s a r e c h o s e n a s t h e known

v a r i a b l e s ,

The moments, s h e a r forces and t h e a x i a l l oad ,

d i s t r i b u t i o n on t h e f l oo r p a n e l d u e t o t h e a p p l i c a t i o n

of t h e l o a d i s c l a c u l a t e d ~ n d t h e s l a b i s d e s i g n e d f o r

a se t o f t h e s e v a l u e s .

h s i n g l e s o l u t i o n t o t h e p r o k l e m i s t r i v i a l a n d

may e a s i l y be c a r r i e d o u t b i hand c a l c u l a t i o n s a s shown i n

t h e s e c t i o n f a r p rogram f low; .

A c o m p u t e r s o l u t i o n is l o w e v e r , n e c e s s a r y s i n c e t h e

object of t h e e x e r c i s e i s t o seek m optimum

c o m b i n a t i o n o f t h e s e c t i o n an3 m a t : ? r i a l p r o p e r t i e s t o

m i n i m i z e cost , t h e r e f o r e r e q u - r i n g many s o l u t i o n s

f o r d i f f e r e n t c o n d i t i o n s .

H c o m p u t e r programme was d r i t t e n f o r t h i s p u r p o s e

and c o m p u t a t ~ o n s w e r e c a r r i e d c u t f o r t h e d i f f e r e n t

s l a b s m e n t i o n e d wf,&e.

The impu t d a t a fo r t h e programme c o n s i s t s of t h e

d e s c r i p t i o n o f t h e s e c t i o n and m a t e r i a l p r o p e r t i e s o f

t h e s l a b , The programme c a l c u l a t e d t h e moments, s h e a r

stresses a t t h e c r i t i c a l s e c t i o n s , c h e c k s d e f l e c t i o n s a n d

c r a c k i n g , d e s i g n s t h e s l a b s and t h e n c o s t s it.

The o u t p u t c o n s i s t s o f an e c h o o f t h e impu t and

t h e o u t p u t r e s u l t s o f t h e a n a l y s i s . The r e s u l t s w & e

t h e n p l o t t e d m a n u a l l y i n a g r a p h as shown.

2,4 DES1G.N PHILOSOPHY

A n a l y s i s and Des iqn o f - S l a b S e c t i o n :

The f i g u r e below r e p r e s e n t s t h e C r o s s S e c t i o n

o f a s i n g l y r e i n f o r c e d c o n c r e t e s e c t i o n and t h e r e l e v a n t

s t r a i n and stress d i s t r i b u t i o n s .

L e t r Z p c c - be t h e Compressivef~r-e i n t h e c o n c r e t e

a c t i n g t h r o u g h t h e c e n t r ~ k f o f t h e stress b l o c k ,

F . be t h e t e n s i l e f o r c e i n t h e r e i n f o r c e m e n t a c t i n g s i a t t h e c e n t r o i d o f t h e t e n s i l e s teel ,

y-.. be t h e t e n s i l e s t r a i n i n t h e r e i n f o r c e m e n t s t

f s i be t h e t e n s i l e stress i n t h e r e i n f o r c e m e n t

a n d Z be t h e l e v e r arm w h i c h i s t h e d i s t a n c e be tween

t h e p o i n t s o f a c t i o n o f FCC a n d F s t 0

T h e s e t w o f o r c e s i n t h e c o n c r e t e f a w m a c o u p l e

t o d e v e l o p t h e u l t i m a t e moment o f r e s i s t a n c e o f t h e

S e c t i o n . (Mu) v . MU = F c c . 2 = F s t ,L

ahris; . ' id ' : ' . : t h e f u n d a m e n t a l e q u a t i o n s o f e q u i l i b r u m

f o r t h e cross s e c t i o n and are a p p l i c a b l e i r r e s p e c t i v e o f * t h e n a t u r e of t h e d i s t r i b u t i o n o f t h e s t r a i n s or t h e

stresses,

Fir.:. = a v e r a g e c o n c r e t e stress x area o f c o n c r e t e \". ... i n c o m p r e s s i o n

T h e r e f o r e FCC = k b x 1

F . = S t e e l s t r e s s s a r e a o f steel .; t'

From stress b l o c k d i a g r a m ,

f r o m e q u a t i o n s ( 1) a n d ( 2 1 , w e h a v e t h a t

f r o m e q u a t i o n s (2) a n d ( 3 1 , we a l so h a v e t h a t

Mu = fst A s . Z

z) A8 = Mu/fst (d-k2X)

Using that fst = 0,87x FY, weRave that

As - MU/O.$?FY ( D - ~ ~ x ) 6

X is the depth of the neutral axis and is dot w h M the

moment of resistance of the concrete q ~ c t i o n is weaker

than the loading moment from M - 0.4 r B x pcO f X(d-k2x)

Determination of

From Strain diagram

/--'

A t maximum stress, Eo = 2.4 x ,I/( fcubm)

+ W = x w i t h = 1.5 17,86

For the stress block,

Ki = area of stress block/x

= (area pqrs - area r s t ) / x

From properties of a parabola

K 1 = (0.45fcux - O . ~ S ~ C U . W / ~ ) / X

16.

Determination of the Depth of the Controid K2X

K2 u s determined by tak ing area moments of the stress

block about the n e u t r a l a x i s

S u b s t i t u t i n g f c r W , w e have t h a t

hence

For Doubly Reinforced Sections

Compression Steel

As = M - 0.15fcu bd 2

1 0.72fy (d-d )

Tensile S t e e l

A n a l y s i s o f F l a t S l a b S e c t i o n :

A s t a t i c A n a l y s i s for a square panel of f l a b

s l a b is shown,

h c i s t h e d i a m e t e r of t h e column Capf tax, The

p o r t i o n of t h e dead and l i v e load which lies directly

o v e r t h e Column C a p i t a l is carried d i r e c t l y by t h e

columns and was p u r p o s e l y e x c l u d e d from the l o a d , W ,

which i s c o n s i d e r e d t o be u n i f o r m l y d i s t r i b u t e d .

The C e n t r c Q d s o f t h e r e a c t i o n f o r c e s a c t i n g upward

a round the q u a r t e r - c i r c l e s a t t h e b o u n d a r i e s o f t h e

c a p i t a l s are a t some d i s t a n c e , a , from t h e column c e n t r e s .

A q u a d r a n t o f t h e s l a b is t a k e n o u t for t h e study ~f

bend ing moments i n t h e east-west d i r e c t i o n o n l y .

The l o a d W/4 acts a t $o%&'i d i s t a n c e from l i ne of

Column C e n t r e s .

Mp and Mn a r e p o s i t i v e and n e g a t i v e moments t h a t

e x i s t i n t h e p a n e l , t h e h a l f v a l u e s shown a r e f o r t h e

q u a d r a n t o n l y ,

Mn/Z i n c l u d e s t h e component, i n t h e c o - o r d i n a t e

d i r e c t i o n s , of w h a t e v e r n e g a t i v e bending moment t h e r e

i s upon t h e a d j a c e n t c u r v e d boundary. From Symmetry,

t h e r e i s no v e r t i c a l shear on any of t h e f o u r plane

v e r t i c a l s u r f aces shown. T a k i n g ncrments about t h e

d i a g o n a l AC:

w (X -a) s=c4s0 = (2m - 2 ~ ~ ) COS 45' 4 P + - 2 2

L e t sum of t h e p o s i t i v e and n e g a t i v e bend ing moments

p e r p a n e l , i n e a c h d i r e c t i o n , be Plds, and t a k i n g a h a l f

p a n e l f o r s t u d y ;

From Mechanics:

W = w(L2 - 5 h g ) 4

where W i s t h e l o a d p e r U n i t square t t?

By t a k i n g moments o f a r e a s a b o u t AB:

S i n c e a = hc/X from m a t h e m a t i c s , T h e r e f o r e :

Mds = + 1 1 3 ( k c ) 8 hL L

From which by a p p r o x i m a t i o n s ,

Mds = & (1 - 3 h c l L - 8 3L

CHAJJTCR , , THREE

3.1 STRUCTUKE OF THE FLOW ,CHAFfTG

Each of t h e f low c h a r t s starts W i t h t h e d e f i n i t i o n

o f t h e i n p u t p a r a m e t e r s ,

A n a l y s i s of l o a d i n g f o l l o w s w i t h t h e C a s e of

r e s t r a i n t a s s p e c i f i e d i n C P I I O S e l e c t e d . T h i s

t h u s h e l p s i n t h e c a l c u l a t i o n of t h e b e n d i n g momen t s

a n d w h e n c e areas o f r e i n f o r c e m e n t . b

T h e f l o w c h a r t s e n d w i t h t h e c h e c k s r e q u i r e d b y

t h e l i m i t s t a t e d e s i g n v i z : C r a c k i n g C o n t r o l , D e f l e c t i o n

a n d S h e a r .

T h e m a i n f l o w c h a r t s a n d d e s i r j n s are m e a n t t o

show t h e i n f l u e n c e of S t e e l t y p e (FYI d e p t h of s l a b

( H ) , C o n c r e t e g r a d e (Fa) a n d Diameter of S t e e l

r e s p e c t i v e l y o n t h e C o s t of t h e s l a b .

3.2 PROGRAMME SPECIFICATION:

T h e p u r p o s e of t h i s p rog ramme i s t o d e m o n s t r a t e

t h e c o m p u t e r - a i d e d d e s i g n of one-way a n d w a f f l e s labs.

T h e a n a l y s i s i s r e s t r i c t e d t o a n i n t e r i o r p a n e l t y p e

i n a c o n t i n o u s f loor .

The single loading condition hnsiderecf i s tha t

of a uniformingly distributed loat) co\ictincj U;i? A l e

area of the panel,

The slabs are designed for the ultimate limit

state of bendinq and the serviceability limit states

of deflection and cracking as defined in CPIIO: 1972.

3.3 INPUT DESIGN IlIFORIVV\TION AND DESCRIPTION OF FLOh CHART:

STAGE I: - 4

The design infori~iation is read into the computer

in this stage.

The material properties which are now made the

variables are punched in,

Concrete strength (Pcu) has the values

Steel tensile strength (FYI are 250, 420, 425,

Steel Diameter (D) are 10, 12, 16, 20, 25,

Slab Thickness PHI are 100, 125, 150, 175, 200mm

Beam depth (HI) are 250, 300, 350, 400, 450,

Rib Thickness (B) are 100, 120, 130, 140, 150,

STAGE I V :

T h i s c o m p r i s e s of t h e f irst sectlor\ check. I f

t h e a p p l i e d moment i s g r e a t e r t h a n t h e m o m e n t ef

r e s i s t a n c e of t h e c o n c r e t e ( o n t h e basis of %alanced

d e s i g n ) , t h e n t h e s e c t i o n d e p t h must be i n c r e a s e d .

I f t h e check shows t h a t t h e c o n c r e t e h a s a sufficiently

h i g h moment of r e s i s t a n c e , t h e n n e x t s t a g e i n t h e

c a l c u l a t i o n i s t o d e t e r m i n e t h e a r e a o f steel r e q u i r e d .

STAGE V: 6

The maximum s p a c i n g of b a r s i s c o n t r o J 3 6 d b y t h e

c h a r a c t e r i s t i c s t r e n g t h o f s tee l , t h e steel p e r c e n t a g e

and t h e o v e r a l l s l ab dep th .

The pu rpose of t h i s , s t a g e i s t o d e t e r m i n e t h e

s p a c i n g o f t h e d e s i g n e r s p e c i f i e d b a r d i a m e t e r which

g i v e s an a r e a p e r meter wid th .

STAGE V I :

T h i s s t a g e i s a check on t h e d e f l e c t i o n c r i t e r i a

i n C P I I O . The m o d i f c a t i o n f a c t o r s are whown i n t h e

APPENDIX ( F i g u r e s A 6 t o A l l ) , The S t e e l p e r c e n t a g e

(PI which i n c o n j u n c t i o n w i t h t h e s p e c i f i e d s l a b d e p t h

s a t i s f i m t h e bench ing c r i t e r i a i s u s e d to d e t e r m i n e a n

e f f e c t i v e d e p t h and span which meets d e f l e c t i o n

r e q u i r e m e n t s . The s p a n i s &np&ed w i t h t h e available 1

s p a n . I f t h e s p a n r e q u i r e d f o r defl&t$an i s g r e a t e r

t h a n t h a t a v a i l a b l e , t h e n t h e c h a r t s i n s t r u c t t h e

d e s i g n e r t o i n c r e a s e t h e s l ab d e b t h u

STAGE VII:

The A c t u a l s h e a r stress a n d t h e a l l o w a L l e v a l u e

a r e compared. If a t t h i s j u n c t u r e t h e a c t u a l s h e a r

stress i s less t h a n t h e a l l m w a b l e v a l u e , t h e n t h e

slab w i l l h a v e s a t i s f i e d a l l t h e programmed design b

cr i ter ia b u t t h e c a l c u l a t i o n w i l l move f u r t h e r i f

s h e a r r e q u i r e m e n t s dactate t h a t t h e s l a b s h o u l d be

m o d i f i e d i n some way. The c o n c e r n o f t h e programme

i s to d e t e r m i n e t h e n a t u r e o f t h e m o d i f i c a t i o n .

STAGE; VIII:

In t h i s s t a g e , c a l c u l a t i o n of t h e number,

l e n g t h and w e i g h t of steel r e q u i r e d i s done.

C u r t a i l m e n t o f steel i s c o n s i d e r e d i n t h e c a l c u l a t i o n

a n d l e n g t h o f b a r i s c o n v e r t e d i n t o w e i g h t a s shown

ear l ier . The cost i s t h e n c a l c u l a t e d , The results

for a n y s l a b which m e t C P I I O r e q u i r e m e n t s would

a u t o m a t i c a l l y be o u t p u t . The programme r u n i s

t e r m i n a t e d a t t h i s p o i n t . A n o t h e r set o f v a r i a b l e s

are t h e n s e l e c t e d f o r a n o t h e r programme r u n ,

COM~R~SSLOW mwzec- 47 = ~ 7 r -10 .-1 W/DB-YM

NUMBeRr U S < ~ * A ~ / X D ~ ) (260ol r .la)

LEF(OTH=L~-@-~Z-~~)~~NS

b TENSWN = ~ e <~T&-ao-tbpr=~~ .a- s"aL (w-(P=P~/~ -70/4103-~2~4 UIrWBER = N B C ~ ~ ~ K C B Q ) ~ : r i rE iQ3/ f - t~ LENGTH = LB r ( L ~ - r ~ 5 ) l t CoMPReaslOHI ~ ' t =[a+=cu. erElL <09-K2 R C L ) + e - * F I - ~ f e 8 7 h

NUUSER = U6 =C41~7~0~&541f1-16

36.

P r i n t "Des ign of R.C. Slabs - Ofbe WayH I

P r i n t qtH are 1$0, 125, 159, 175, 2ggN

P r i n t "F2 are 28, 25, 38, 48, 58"

P r i n t "F3 are 25p, 418, 425, 468, 5$@,W

P r i n t 'ID are 10, 12, 16, 28, 25"

I n p u t H, F2, F3, D

L1 = 4.0$

L2 = 6p10

B = 35P)

H I = 55P)

D5 = 8

S1 = ,P)236 x H K L1

F1 = 1.5 x L1

Dl = Sl + F1

I1 = 3 3 L1

D2 = 1.4 K Dl + 1-6 X I1

Z = (3 - LGT (F2))/1,2 C 1 = 19 A Z

D3 = H - Cl - D/2 Rem l g D e s i g n S p a n 2-3"

37.

M2 = D2 L1/14

K 1 = (g.45 - g.$@84 H SQR ( ~ 2 ) ) N F2

K2 = 1 - g.45 F2/KI ( g . 5 - F2/3828)

M 1 = 4@$ F2 x X -n (D3 - K 2 +t X )

I f (b12 or- 1$ A 6 & M I ) Then G d o 290 ELSE GOT0 280

X = X + 1 GOT0 26g

2 1 = D3 - K2 +P X

A2 = M2 -x l a fi 6/(ae87/F3/2l

S2 25g w PI 3+ D D D/k23

I F 92 G 75 Thcn 410

I F 92 C 100 Then 420

I F 92 C 125 Then 430

I F $2 L 250 Then 440

I F $2 4 175 T h c n 450

I F S2 1 200 T h e n 460

I F $2 C 250 T h e n 470

I F 'S2 4 300 Then 480

I F S 2 f r3OO Then 490

S3 = 5$ GOT0 5@$

5 3 = 75 GOT0 6@$

S3 = 1$g GOT0 50g

S3 = 125 GOT0 59$

5 3 = 15$ GOT0 588

S3 = 175 GOLO 5$$

S3 = 2$$ GOT0 508

S3 = 258 GOTO 5$$

S 3 = 3$$ GOT0 5$P

A 1 = 25g H P I +E D at D/S3

R e m E 'Chcrk fo; U e f l e c t i o n f 7

P = ~ 1 / 1 $ / D 3

I F ( F 3 = 25g) T h e n 58g

I F ( F 3 = 41$) T h e n 59$

I F ( F 3 = 425) T h e n 698

I F (F3 = 46g) T h e n 618

I F ( F 3 = 588) T h e n 620

E = EXP ($3.77 - g.356 * L O G ( P ) ) - 1 @ GOT0 63$

E = EXP ( g . 3 - 9.2 u LOG (P)) - 16.34 8 GOT0 63g

E = EXP ( $ , 2 7 - $ . 3 1 * LOG ( P I ) - Be35 @ GOT0 63pl

E = EXP ( $ . I 9 - g.32 * L O G f ~ ) ) - 8.4 @ GOT0 639

39.

E = EXP (PI.12 - 16.28 u LOG ( I ? ) ) - El = 26 at E w D3

IF (El 4 lPI$jJ* C1) Then 60

R e m "Chcck f o r Crack Widtht'

C = 3 i t D 3

IF (S3 3, C ) Then 68

N1 = (1088 X- L2 - ( 2 * C1) ) /S3

L4 = 9.8 * 1\41 ae L1 CJ1 = pl.g@6165 x D x D w L4

A4 = "1 a +ti

S4 = 2 5 g ht. Dl x DS a D5/A4

IF 54 @ 75 Th$n,82$

IF S4 L lg@ Then 839

IF S4 125 Then 84PI

IF S4 4 158 Then 85P

IF 9 4 < 175 Then 86P

IF 6 4 4. 2$@ Then 878

IF 54 4 25$ Then 888

IF S4 C_ 3@@ Then 89pl

IF 94 ptz 3P)P Thcn 988

87$ S5 = 175 GOTO 91g

880 S5 = 298 GOT0 91@

090 S 5 = 25fJ GOT0 918

9$$ s5 = 3fJ@

91(a N 2 =. (1$54 x Ll - P 4 e - C 1 ) / S S

92jl LS - L 2 x ? ; 2

93$ W 2 L- , J Y ~ $ 6 1 F 5 -x D5 &.I5 xL5

94B R c m " l i u p p ~ r t E ~ r n c i . t c '

95@ M3 = D3 x L1/9

99$ R e r n "Design Su7ports 2&3"

?gag XI = 1

101$ M 4 = 4@@ E F2 1 * (D3 -K2 n XI) 1020 IF (lB@j?I@Ple) +e M3 M4) T h e n lp140

1930 XI - X I + 1 GOT0 l@l@

1@4@ 22 L D3 - L2 x XI

1$5$ A3 = '~j2(3P@@Ed * M3/Be87/F3/Z2 la68 S6 = 250 x 01 K D * D/A3

41.

197511 IF S6 C 75 Then 1160

19)89 I F S 6 4 I@@ Then 117$

1@9$ I F 56 4 125 Then lied 118$ I F S6 < 15$ Then 1198

111p IF S 6 IC, 1 7 5 Thcn 1 2 8 8

112P) I F S 6 < 290 Then 1219 1139 I F S 6 < 250 Thcn 1 2 2 8

l14B I F S 6 < 3@@ Then 1238

11SB I F S 6 3 9 3 0 8 Then 1 2 4 8

1160 S 7 J 50 GOT01;1258

1 1 7 s 57 a 75 GOT0 1250

1189 S7 4 18fl GOT0 1 2 5 8

119$ 57 = 1 2 5 GOT0 1 2 5 8

1 2 0 8 S7 = 1 5 0 GOT0 1250

121s S7 = 1 7 5 GOT0 1 2 5 0

1220 57 = 289 GOT0 1 2 5 8

1 2 3 8 S7 = 250 GOT0 12Sg

1240 S 7 = 3$a

1258 A5 = 250 +e PI I D D Dl57

1268 Rem "Check Crack liJidthw

1270 C2 = 3 * D3

1 2 8 8 If ( S 7 > C2) Then 6fd

129a N 3 = ( I@@ w L2 - 2 W C I ) / S 7

138jJ W3 = 4.086165 w D K D * L6 1329 A 6 = 3 x H

1338 S 8 = 25jU n DI * D5 % D5/A6

1348 IF S 8 4 75 Then 1438

1 3 5 0 IF S 8 r 1PB Then 1448

1360 I F 58 L 125 Then 1450

1378 I F S 8 6 1 5 0 Then 1468

138g I F S 8 L175 Then 1478

1399 IF S 8 < 2$8 Then 1488

id@$ I F ~8 f. 2SP) Then 1498

1416 IF S8< 38@ Then 15$0

142p I F S83~308 Then 1518

143$ S 9 = 5@ GOT0 1520

1448 S 9 = 75 GOT0 1528

1450 S 9 o I @ $ GOT0 1528

1468 S9 = 125 GOT0 1528

1470 S 9 = 158 GOT0 1528

148g S 9 = 175 GOT0 1528

1490 S9 r 288 GOT0 1528

157g Rem "Check for Shearu

158$ V = $3.6 E D2 +t L1

1590 Vl = 8.75 iw SQR (F2) u D3

16@@ IB (V14V) Then 60

16l$ Rem "Cost Slabw

167p PRINT H, F2, F 3 , D, CS, C6, C7

1680 END

44.

WSLhBl

PRINT "Design of Waffle Slabs1'

PRINT ltSarc 68@, 788, 888, 900, 1888, it@@, 1200 + 13BB, 1408"

PRINT v ' ~ Are 1@PJ, 12@, l3$, 140, 150, 160, 2$gN

PRINT "F2 Are 2P, 25 , 3fl, 48, 58"

PRINT lfD A r e , 10, 12, 16, 28, 25, 32, 40"

PRINT lgF3 Are, 259, 410, 425, 469, SgI$" , INPUT S , B , F 2 , F3, D

Rem 'lLoading Per Waffle"

D l = 4 * B

45,

K 1 = (Q.45 - BoB984 e SQR f FZ) & ~2

K2 1 - (#.45 sc F2/K1) w ( 0 , 5 k 2 f 3 2 2 8 )

R e m "Design as a F l a t Slab"

M 1 = F 1 ie L2 K (L1 - 0 .93 ) u (L1 - 8,93)/8 Z ( 3 - LGT (F2))/1.2 C1 = 1 0 A Z

D3 n D4 -C1 - D/2

Rern "Middle S tr ipqa

M2 = 6.20625 n M l

N 1 n I$P)@fd#$. JC M2/B/D3/D3/F2

X = 1

M7 = 6.4 x B bt F 2 XX K (D3 - K2 K X )

IP (M7 2 lB0P)PIBB x M2) Thcn 350

X = X + 1 @ GOTO 32g

I F ( N 1 9 0 . 1 5 ) Then,) 380

A 2 = 1jl$9)$10 -X M2/a087/F3/CD3 - K2 +t X )

N 4 s 4 * k2/PI/D/D

S 2 = 1 N S N N 4 dc L1 +c ~ 2 / ( 1 . 1 M 5 ) 8 GOT0 450

A3 = ( la@@@@$ K M2 - B.15 F2 B x (03 - K2 * 3) * ( 0 3 - K 2 * x ) / g 0 7 2 / F 3 / ( D 2 - K2 * X )

N 3 = 4 k3/PI/D/D

L3 = 1000 N 3 * L1 +t ~ 2 / ( 1 . 1 at S )

A2 = (0.2 n Fa B (D3 - K 2 R X ) + 0.72 x F3

x k 7 ) / l l / 8 7 / F 1

46.

N4 = 4 M k2/PI/D/D

L4 = 1000 * N 4 r L 1 uL2/(1.1 * S )

L2 = L 3 + L4

W2 = 0.886165 sc. D K 9 3+ L2

A1 = PI ae D * D n )44/4

P = 100 n kl/B/D3

IF (F3 = 25g) Then 53fl

IF (F3 = 41@) Then 54$

IF (F3 = 425) Then 558

IF (F3 r 468) Then 56$

IF ( F 3 = 500) Then 57@

E = EXP (0.77 - 0 356 *LOG (P)) - 1 @ GOT0 580

E = EXP (0.3 - 0.2 RLOG (P)) - 0.34 8 GOT0 58b

E = EXP (0.27 - 0.31 E LOG ( P ) ) - 0.35 @ GOTO 588

E o EXP (0.19 - 0.32 +C LOG (P)) - 0.4 @ GOTO QSB

E s EXP (0.12 - 0.28 -X LOG (PI) - 0.25 El = 26 a E e D4

Hem "Column Strip (CAP)"

M3 = 0.65 w MI - M2 XI .r 1

M 4 = 1000 F2 * XI % BD3 - K 2 n XI)

IF ( M 4 3 1000000 M M3) Thcn 668

XI = X1 + 1 @ GOT0 638

1,s = 1000000 +t M3/0/87/F3/(D3 - K2 H XI)

47.

6 7 8 S 1 = 258 x P I * 0 * D/n5

688 I F ( S 1 < 75) Then 770

69111 I F ( S 1 4 I$@) Then 78515

788 I F ( s l 4 1 2 5 ) Then 79@

718 I F (S1 r IS@) Then 88515

22$ I F ( S 1 4 175) Then 81$

730 I F (31 C 2@@) Then 8 2 9

74$ I F ( S l X 258) Then 83jB

75515 I F ( S 1 K 3P0) Then 88$

76(6 I F ( S l ' 7 o 300) Then 85111

770 S2 = %O @ GOT0 860

789 S 2 = 75 @ GOT0 860

798 S2 = 1 0 0 @ GOT0 860

888 S 2 = 125 @ GOT0 860

818 S2 = 150 @ GOT0 860

820 S 2 = 175 @ GOT0 860

8 3 8 S 2 = 200 @ GOT0 860

840 S 2 = 250 @ GOT0 860

858 52 = 300

860 ii6 =t 250* P I * D +t D/S2

48.

87f3 N 6 = 5000/S2

889 L6 = 2-5 N N 6

89P) W6 = 0,006165 x D D D D L6

900 Rcm "Column S t r i p Midw

910 M7 = 0.35 * M I - M2

92$ K 2 = 1000000 w M'7/2500/D3/D3/F2

930 X2 = 1

949 M 8 = 1000 M F2 +t X 2 (D3 - K 2 * ~ 2 ) @

95P) I F ( M 8 3r 1000000 +t M7) Then 940

968 X 2 = X2 + 1 @ GOT0 940

978 I F (K7 )0 ,15 ) Then 1010

98$ A7 r 1000000 N ~ 7 / 0 . 8 7 / F 3 / ( ~ 3 - K2 +t X2)

998 N5 = 10 ( 4 w i ~ 7 / /D/D) * (2500/1.1/S)

L7 -- ( L 1 - 2,s) w N 5 @ GOT0 1080

l@l@ ti8 = (1000000 xM7 - 0.15 x F2 K B x ( D 3 - K2 *X2)

Oe72/F3/(D3 - K2 u X 2 )

1028 N 8 = (4 +t AS/ X /U/D> +e (2500/1.1/5)

1938 L8 = ( L l - 2,s ) .K N 8

1@4$ A7 = (0.2 * F2 -n B +c (03 - K2 x x 2 ) + 0.72 M F3 +t ~ 8 )

/0087/F3

la5P) N5 = ( 4 +e k 7 / X / U / D ) -#t (2500/1.1/S)

49.

1860 L5 = ( L l - 2.5) K N 5

l$7$ L7 = L 8 +L5

1P)8@ W7 = 0.006165 * D * D * L7

1$90 Rcm " P u n c h i n g Shear"

l1$@ V 1 = F1 * L i wL2 - 96.39

1110 V2 3 1.25 % V1/2388/Pl/U3

112P P 1 = 100 117/B/D3

113$ I F ( F 2 = 20) Then 1170

1143 I F ( F 2 = 25) Then1180

1150 I F (F2 = 30) T h e n 1190

1168 I F (F2 7 = 40) Then 1200

117$ E2 = 0.6 H P I A 0.415 8 GOT0 1210

118$ E2 s 0.6 x- PI A 0.42 8 GOT0 1210

1190 E2 = 0.65 + P I A 0-43 8 GOTO 1210

12$$ E 2 = 0.65 dt P I A 0 . 5 3

121P) I F (V2 7 E2) Then 7$

1220 Rcrn "Cost Slabtg

123$ W 8 = W2 + W6 +W7

124$ C 8 = 1.5 w W8

125$ V4 = V * L 1 * L2/1.1/S/1000000000

1268 C 4 = 180 +t V4

1270 C9 = C8 + C4

1289 PRINT S t 5 , F2, F3, D t C 8 ? C4, C9

A - n f n r r r r n

CHAPTER FOUR

4.1 OUTPUT:

T a b l e 1: Table Showing I n f l u e n c e of S t e e l T e n S i l c S t r e n q t h on Cost of S o l i d S l a b

INPUT

*Cos t of Beam is n o t i n c l u d e d .

FCU I FY

50 250

Table 2: T a b l e Showinq I n f l u e n c e of S l a b T h i c k n e s s H on Cost of S o l i d S lab:

D

12

INPUT COST

P4T - *Not S a t i s f i e d

N o t S a t i s f ' e d

909.828

1050.885

1158,885 I. *These d e s i g n s d i d n o t s a t i s f y t h e L i m i t s ta te

requ irement s f u l l y .

Table 3: Table Showinq I n f l u e n c e o f Concrete Compressive S t r e n q t h on C o s t , o f ,.Solid S l a b

T a b l e 4: Table Showinq I n f l u e n c e of Rod Diameter On Cost o f S o l i d S l a b

I BST S /N

1

2

3

4

5 I

INPUT

H

175

FCU FY I D

20 250

17 5

17 5

17 5

175 1 I I I I I

250

250

250

250

25

30

40

50

16 1187.22

16

16

16

16

1187,80

1188.20

1188.72

1189.05

T a b l e 5: T a b l e Showinq I n f l u e n c e o f Rod Diameter On C o s t o f F l o o r ( S o l i d S l a b + B e a m )

INPUT

T a b l e 6: T a b l e Showinq I n f l u e n c e o f C o n c r e t e S r e n q t h On C o s t of F l o o r ( S o l i d S l a b + ~ e a m )

H I

600

600

600

600

600

FCU

50

50

50

50

50

S/N

1

2

3

C

FY

500

500

500

500

GOO

D

10

12

16

20

25

PiT

F u Q l L i m i s t a t e C o n 2 i t i o n Not s a t i s f i e d

1849.4

1818.6

INPUT

1805.02 500

H

175

175

175

175

FCU

20

25

30

40

50

e

H I

500

500

500

500

FY

250

250

250

250

250

D

l6

16

16

16

16

T a b l e 7: - T a b l e Showinq I n f l u e n c e o f S l , a b T h i c k p e s s , Ol'd C o s t of F l o o r ( S o l i d Slab + Beam,) --

1 1 INPUT

9 / N H H1 FCU FY D

1 100 500 50 500 12

2 12 5 500 50 50 0 12

3 150 500 50 500 12 1

4 175 SO0 50 500 12

5 200 500 50 500 12

L i m i t S t a t e

C o n d i t i o n s n o t f u l l y Satisfied 136i),9

T a b l e 8: T a b l e Shwinq Influence of Steel T e n s i l e ~ t r e n ~ c h o n Cost of F l o o r (Solid S l a b + B e 9 d

S/N

1

2

3 4

5

I

3 iT * -

INPUT - D

___L_1"_Y__

R T H l I F C U -

I

FY

250

4 10

42 5

460

500

-- -

12

12

12

12

12

- - -

50

50

50

50

50

- -- - -

200

200

200

200

200

1844,O

1643.52

1635-91

1620.08

1604.69

500

500

500

500

500

-

T a b l e 9: T a b l e S h o w i n q I n f l u e n c e o f R i b T h i c k n e s s R , o n C o s t o f W a f f l e F l o o r

-*

Size of Mou 1 d s

INPUT - R i b J T h i c k n e s

FCU

Diameter

I

C o s t

HT

1196.18

1123,284

1069.52

6026.5

991.8

89S009

T a b l e 10: T a b l e Showinq I n f l u e n c e of Mould S i z e o n C o s t of W a f f l e F l o o r -

S i z e o f Mould

S 7-

600

700

800

900

1000

1100

1200

1300

1400

INPUT

T a b l e 11: - T a b l e Showinq I n f l u e n c e o f Concrete C o m p r e s i v e S t r e n q t h on C o s t o f W a f f l e F l o o r D___-

T a b l e 12: T a b l e Showinq I n f l u e n c e o f S t e e l S t r e n q t h on C o s t of Waffle F l o o r

k

S/N r

1

2

3

4

INPUT

600 120 I 30 500 I

S

600

D I WT

16

FCU

30

B

12 0 16

16

16

16

1072-83

FY

250 2145-67

1296-99

1257-18

1153.26

410

42 5

460

600

600

600

" ~ 2 0 i 30

120 1 30

1-2 0 1 30

T a b l e 13: T a b l e ShowJnq J n f l u e n c e o f Rod Diameter on C o s t o f W a f f l e F l n o r

f NPUT

FCU

T a b l e 14: T a b l e Showing I n f l u e n c e o f Deam Depth on C o s t o f Beam

INPUT

FCU

C o s t

t4T

Not S a t i s f i e d

Not S a t i s f i e d

Not S a t i s f i e d

817.56

650.44

509.834

529.486

570.011

PHOGRAMME FLON FOR DESIGN OF OIJE,&WAY, (INTERNAL) R.C. SLABS;

Print "Design of R O C e S l a b s - One Wayt'

H 100, 125, 156, 175 , 200

F2 20, 25, 30 , 40, 50

F3 25,0, 410', 425, 46$, 58,0

D 1 $ , 1 2 , 1 6 , 2 0 , 2 5

H = 175, F2 = 3,0, F3 = 250, D = 16

L 1 = 4 . p - 6

L2 = 6.@9

B = 35$

D5 = 8

S 1 = 4.236 x 175 x 4 = 16,52

F 1 = 1.5 x 4 = 6

D l = 22.52

I 1 = 3 x 4 = 1 2

D2 a 1.4 x 22.52 + 1.6 x 12 = 50.73

Z = 1.26

C1 = 18.5

D 3 = 175 - 18,s - 8 = 148.5

R e m "Design Span 2-3"

M2 = 5p.73 x 4/14 = 14.49

K 1 = 12.119

K2 = 0.45

X = i

M 1 = 1,78 x 1@6

14.49 x 1p6 7 1.78 x 1p6

x = 9

Z1 = 144.45

A1 = 461.2

S2 = 435.9

S3 = 3Qd

A 1 = 67P.2

R e m " C h e c k for D e f lect ionfl

P = 67p02/1(I/148.5 = g.45

F3 = 256

E = 1-86

E l = 26 x 1.86 x 148.5 = 7181.46

7181,4 7 40041

R e m " C h e c k for C r a c k W i d t h f 1

C = 44505

3ew L 445.5

N1 = 19.9

L4 = 63.7

W1 o 166.5

A4 E 2 lB

726 S4 = 239.3

886 S5 = 200

910 N2 = 19.8

920 L5 = ll8,8

93pI N2=46.9

94,0 Rern **Support Momentsw

950 M3 = 22.54

99a R e m *@Design S u p p o r t s 243"

1df.M Xl = 1

1glkf M4 = 1.78 x 196

1920 1.78 x 1$6 dl 22.54 x 166

103d XI = 1

1f&B 22 = 142.2

1p58 A3 = 728,77

1960 S6 = 275.89

114pI 25d L S6 L 30[J

12353 s7 = 258

1250 A5 = 8d4.2

126@ R e m "Check C r a c k width"

127$ C2 = 445,s

128pl 25g h 445.5

1290 N3 = 23.85

13fl6 L6 = 57.36

1520 N4 = 21-33

1536 L7 = 127.98

156p W 4 = 50.5

1576 Rem "Check f o r S h e a r t 1

1588 V = 121-75

1590 V1 = 6U.42

1680 121.75 L 6ld.92

1610 Rem "Cost Slabn

162.0 W5 = 288.43

163P C5 = 432.64

1640 V2 = 4.2

1650 C6 = 756

166g C7 = 1188.64

4.3: PROGRAMME FLOW FOR BEAMS

70 H = 158, H1 = 6$g, F2 5 3$, F3 = 4116, D = 2$

L1 = 4.$$

L2 = 6.a$

l$$ B1 = 250

11g P = 3 4 4 = 1 2

F = 1 . 5 ~ - 4 = 6

S1= 14,16

S2 = 2,655

S = 14.16 + 2.655 + 6 = 22,815

169 Dl = 1.4 n 22,815 + 1,6 R 12 = 51.141

17$ Rem "Design As S.S. Beamw

3 MI = 51.41 x 6 - / 8 = 234,13

Z = 1.26

C1 = 18.58

D2 - W H - 18.58 - l.0 = 571.5

K 1 = 12,119

K2 = &451

K = 8,0939

X = 1, M2 = 1.7 x 1d6

X = 148, M2 = 2135 w 10'6

X = 150, M2 = 226-7 w 106

X = 154, M2 = 231.9 w 1$6

A 1 = 1285,8/8rnrn 2

N4 = 4.169

L5 = 1.84 x- 4.P9 a 6 = 45.159

W 1 = 111.36kg

Rem "Check for D e f l e c t i o n

P 1 = K 8 9 9

E = 1 . 0 3

E l = 15.314

R e m 'lCheck for Sheart1

53 = 22.815 x 6/2 = 68.445

V l = d 4 7 9

I F ( V 1 7 4.1_8)

F2 = 3d@ GOT0 668

E 2 = #,62$9

If (6 .479 4 8'.6209) t h e n 70g

A7 = 75

N7 = 39.75

L7 = 129.267m

W2 = 79.693

W 8 = 191.0'53

W9 = 1.35m3

C3 = H286,S

C4 = 243

4.4 PROGRAMME FLOW FOR WAFFLE SLAB:

S = 6130

B = 2 d ~

F2 = 3Q/

P 3 e: 419

!D = 1 6

D l = 4 ~ d

L 1 = 8.0'

L2 = 8.6

D4 = 46,g

A = 4356,W

V = 56376D'b~

W = 1.33047 x ljh

D5 = 2.7152

F = 1.$5

D6 a , 3.7652

19pl I1 = 2.1

F 1 = 1.4 % 3,7652 + 1.6 3e2.1 = 8.6312

K 1 = 12.119

K2 = 0.451

230 Rern "Design a s A f l a t Slabw

M 1 = 8.6312 x 8 w ( 7 . 0 7 f 1 / 8 = 431.4

Rem "Middle Stripw

M2 = 88.98

N1 = $A55

X = zjd, M9 r: 83.28 K 206

X = 22g, M9 = 89.232 x d 6

A3 = 376.5

N3 = 1.87

L3 = 181.3

A2 = 879.7mm 2

N4 = 4.375

L4 = 424.2

L2 = 61D5.5

W 2 = B.Og6165 w 16 x 16 x 6g5.5 = 955,6

A1 = 879.64

D = 2.m

F3 = 41d

E = 0'.835

E l = 26 n k7.835 x- 468 = 9986.6

Rem ''Column Strip (Cap)"

M3 = 191.43

X1 = 15, M4 = 193.6 x 106

XI = 14, M 4 = 180.89 x 106

A5 = 1247.3

S1 = 161.19

72d

8W S2 = 15,0

86d A6 = 1 3 4 ~ 6 4

N6 = 33.33

L6 = 83.32

N6 = 131.498

90kf Rern V o l u m n Strip Mid1'

M7 = 62.01

K7 = B.004

X2 = 5, M8 = 65.212 x ld6

X2 = 4, M8 = 52-22 x 10'6

9881 A7 = 399.8mm 2

N5 = 7.53

L7 = 41,415

ad80 W7 = 65.36

I&$ R e m "Punching S h e a r w

V 1 = 456

V2 = fl',d0$18

1128 P I = B.914

11Sg

119$ E2 = 8,625

1220 Rem "Cost Slabv

4.6 INFLUENCE OF VARIOUS PARAMETERS ON COST OF THE FLOOR:

The design permitted the inclusion of most of

the inportant factors affecting or controdHpgt We

selection of design criteria that are in accord'with

the accepted general philosophy of slab design.

The procedures versatility permitted present

design constraints to be changed or new constraints

to be added, or both. This versatility, in conjunction

with automation of the member design, allowed several

designs to be obtained in a relatively short time.

With reference to solid skabs, the graph shows that

the higher the strength of steel, the lower the

cost of slab, There is no marked difference in the

cost of slabs with high yield bars. This might be

due to costing of the steel because the same price

unit was used far all the bar types. Moreover the

F I G 5 -

INFLUENCE . - - - . . . . . . - . . OF . ..... HOD .~ .~. DIAMETER ... . . .. . . . O N . . COST

F IG* B

REF: TABLE IG

OF W A F F L E W A L L

1000 1 I I I I I

80cf [ O W '203 _____t__

Goo 400

R E F : TABLE 1 1

INFLuEUCE OF CONCRETE 3 1 - K E N G T H

R E F : TABLE I?

F I G 16

83.

area o f bars were compensated i n t h e s e l e c t i o n of

s p a c i n g and t h e r e f o r e number o f b a t s i n t h e s l a b .

Smaller a r e a meant s m a l l e r s p a c i n g and l a r g e r number

o f b a r s and v i c e v e r s a .

Fo r t h e s p a n i n q u e s t i o n , t h e g r a p h f o r t h e

e f f e c t o f s l a b t h i c k n e s s on c o s t o f s lab shows a

r e l a t i o n s h i p o f t h e form Y = MX+C. The h i g h e r t h e

s l a b t h i c k n e s s , t h e h i g h e r t h e c o s t o f t h e s l a b .

T h i s c o u l d be a t t r i b u t e d t o t h e f a c t t h a t s m a l l plab

t h i c k n e s s e n t a i l s h i g h e r q u a n t i t y of steel and h i g h e r

s l a b t h i c k n e s s e n t a i l s lower steel q u a n t i t y .

The e x t r a cost f c r . t h e s l a b is u s e d f o r improvement

of r i g i d i t y a n d l i m i t a t i o n o f # f l e c t i o n .

The i n f l u e c e o f c o n c r e t e s t r e n g t h on t h e cost

of t h e s l a b i s d e p i c t e d i n f i g u r e 6. The g r a p h shows

t h a t economy i s a c h e i v e d w i t h l o w c o n c r e t e s t r e n g t h ,

But b e c a u s e o f s h e a r and other l i m i t s t a t e r e q u i r e m e n t s ,

h i g h e r c o n c r e t e s t r e n g t h s i n t h e o r d e r o f FCU = 30U/mm 2

are p r e f e r a b l e , I t w i l l be r e c a l l e d t h a t c o s t i n g

o f c o n c r e t e d i d n o t t a k e c o g n i s a n c e of c o n c r e t e

s t r e n g t h b u t volume of c o n c r e t e , The i n f l u e n c e o f

c o n c r e t e s t r e n g t h on cost o f t h e f l o o r ( S l a b + ~ e a m ) c a n

be s e e n t o f a v o u r t h e u s e o f h i g h e r v a l u e s f o r t h e

ach ievemen t o f lo^ cost slabs. T h i s i s shown i n

84;

For solid slabs, reinforcement should be limited

to samll diameter rods as they make for effective

control of crack widths. Smaller sized rods mean less

spacing of bars while large sized rods entail more

spacing, large area and more distribution bars and

therefore uneconomical.

For waffle floors, economy is achieved when the

rib thickness is made thick. This, firstly, improves

economy as shown in figure 12. Secondly, it makes for b

a more rigid floor espeically when it is intended to

carry large imposed loads, From the graphs, designs should

therefore use a rib thickness in the neighbourhood of

120mm.

The size of mould infleuencesthe cost of the

slab. Availability, though a factor was not taken

into consideration, The graph shows that the size of

mould should be reduced to the barest workable size.

600mm is recommended as ceiling boards come in that

size and for easy fixing of these boards.

For waffle floors, the effect of concrete strength

on its cost is shown in figure 14, For economy,

high concrete strengths are favoured to low ones,

This is so because for effective resistance to shear

8s.

S t r e s s , w e need a c l o s e l y packed and h i g h s t r e n g t h

c o n c r e t e .

High y i e l d s teel i s recommended f o r d e s i g n and

c o n s t r u c t i o n o f w a f f l e f loors. T h i s i s shown i n

f i g u r e 15, I t is n e c e s s a r y b e c a u s e t h e l a r g e c l e a r

s p a n t h a t is i n v o l v e d means h igh t e n s i l e stress on

t h e c o n c r e t e and t h e r e f o r e e n t a i l s t h e u s e o f h i g h

y i e l d steel to c o u n t e r a c t t h e a c t i o n , The h i g h e r

t h e s t r e n g t h o f s t ee l , t h e less t h e r e q u i r e d area

and t h e r e f o r e t h e less t h e number o f b a r s r e q u i r e d

p e r r ib .

With small r o d d i a m e t e r , t h e cost o f t h e f loor

i s s k y r o c k e t e d . B igge r bars b r i n g down t h e cost u n t i l

a d i a m e t e r of 25mm i s r e a c h e d , which i s t h e t ~ k n i n g

p o i n t , W i t h bars g r e a t e r t h a n 25mm, t h e w a f f l e f l o o r

also becomes uneconomica l a g a i n . F i g u r e 1 6 therefore

shows t h a t o p t i r n a l i t y i n d e s i g n i s a c h i e v e d f o r

w a f f l e f l o o r s when t h e b a r s i z e i s 25mm.

I n v e s t i g a t i o n i n t o t h e i n f l u e n c e o f beam d e p t h

on t h e c o s t o f a beam shows t h a t t h e r e i s an optimum

beam d e p t h f o r a n y span . T h i s is i l l u s t r a t e d i n

f i g u r e 1 4 where t h e minimum cost i s a c h i e v e d a t a

d e p t h o f 500mm f o r a 6m span beam.

CHAPTER F I V E 8 6 ,

eONCLUSION, SUGGESTIONS AND RECOMMENDATIONS FOR FUTUKE WORK

T h e optimum d e s i g n o f r e i n f o r c e d c o n c r e t e f l o o r s

h a s b e e n examined a n d a d e s i g n method u s i n g i t e r a t i o n

s t e p h a s b e e n d e v e l o p e d and t e s t e d , T h e r e s u l t i n g

d e s i g n method h a s b e e n shown t o b e f a s t a n d a c c u r a t e

upon t w o e x a m p l e s c h o s e n and i s c o m p e t i t i v e w i t h

a l l r e s p e c t s w i t h some o p t i m a l i t y c r i t e r i a m e t h o d s ,

One criticism o f thr . o p t i m a l i t y c r i t e r i a )

a p p r o a c h i s t h a t i t i s a p r o b l e m - o r i e n t e d t e c h n i q u e

s o l v i n g o n l y a s p e c i f i c c l a s s o f p r o b l e m s ,

I t e r a t i v e m e t h o d s a r t , f a r more g e n e r a l i n

t h e r a n g e o f a p p l i c a t i o n s , T h i s work h a s shown t h a t

t h e method employed i s a v ~ r y g o c d method f o r s o l v i n g

n o n - l i n e a r o p t i m i z a t i o n p r c 5 l e m s o f t h e t y p e s which

a r i s e f r e q u e n t l y i n s t r u c t u r a l dc - s ign ,

5 .2 SUGGKLTIONS FOR FUTUKE WORK: .- T h e r e s e a r c h was r e s t r i c t e d t o o n e way s l a b s

a n d w a f f l e f l o o r t y p e . F 'utul-e work s h o u l d c o n s i d e r

t h e e f f e c t o f t h e o u t l i n e d p a r a m e t e r s on t h e

r e m a i n i n g t y p e s of f l o o r s so t h a t a g l o b a l s o l u t i o n

c o u l d be worked o u t f o r a p a r t i c u l a r c l a s s o f f l o o r

s y s t e m .

T h e p r o c e d u r e d e v e l o p e d s h o u l d a l s o be e x t e n d e d

t o o t h e r s t r u c t u r a l e l e m e n t s l i k e c o l u m n s a n d

f o u n d a t i o n s .

HECOMMLNUATIONS r

B a s e d upon t h e d i s c u s s i o n s p r e s e n t e d i n t h i s

w o r k , i t w o u l d a p p e a r t ' a t t h c inethod e m p l o y e d

f u r n i s h e s a n a p p r o a c y ti t h e sc u t i o n o f some o p t i m a l

d e s i g n s t r u c t u r a l p r o b l t 11s w h i c I a r e o f p r a c t i c a l

i m p o r t a n c e . T h e p r o b l e m ~ f o b t , i n i n g t h e o r c t l c a l l y

e x a c t s o l u t o n s t o t h e OF_ -imurn t i e s i y n p r o b l e m i s

e x t r e m e l y c o m p l e x . T h i s , e a n s - . h a t t h c d e s i g n s

o b t a i n e d a r e n o t o p t i m a l i n any r e g o r o u s s e n s e , b u t

t h r o u g h t h e g r a p h s , ! t h e t r e n d ; n d e f f e c t of t h e

v a r i o u s p a r a m e t e r s o n t h e i ,os t c - t h e s l a b c a n be

s e e n a n d t h i s i s of r e a l p r a c t i c a l c o n s e q u e n c e ,

I t h a s a l s o b e e n shown t h a t t h e cost o f

m a t e r i a l c a n be e a s i l y i n c o r p o r a t e d i n t o a d e s i g n

p r o c e s s based o n CPIIO t o o b t a i n t h e op t imum d e s i g n

s o l u t i o n ,

N C I M I ~ ~ A L COVER TO MAIN RElpWRceMEN1

MILD EXPOSURE CONDITION

FIG. 43

S I M P L F E D R U L E S FOR CURTA\RMENT Of

B A R S IN B E A M S

M A X I M U M --.- - - PERtvlISS1BLB 'VALUE OF HOMW.I.~L --

ULTIMAE SHEAR S W C S S 0, (&,$rlrn2 ) e c@llO:3:3:G: 1 3 -- --

B o n a s i a . J . J . t tDes ign of P r e s t r e s s e d C o n c r e t e B c a m s b y Compu te r t t , J o u r n a l o f t i rnerican S o c i e t y o f E n g i n ~ e r s ( S t r u c t u f a l D i v i s i o n ) A p r i l 1960.

B r i t i s h S t a n d a r d s X n s t i t u t b o n , I'The S t t b c t u r a l U s e o f C o n c r e t e t t , CPIIO P a r t I , London) 1972

C a r m i c h a e l D.G."S t ruc tu ra l M o d e l l i n g and O p t i m i i a t i b n t * E l , l i s Horwood L t d . , C h i c h e s t e r , 1983.

C l a r k e D.C., "Computer k i d o d S t r u c t u r a l Des ignw 1st E d i t i o n , John Wi l ey a n d S o n s , C h c c h c s t e r , 1980

Dunham,C.M. !'The T h e o r y and P r a c t i c e of R e i n f o r c e d C o n c r e t e , " 4 t h E d i t i o n , McGraw H i l l Book 6 Company, New York , 1966.

Guna ra tnam D . J . a nd Swakumaran, N . S . , ttOptirnum Des ign o f R e i n f o r c e d C o n c r e t e S l a b s " The S t r u c t u r a l E n g i n e e r J o u r n a l , Vol. 5 6 8 , No. 3 , S e p t . 1978 pp. 61-67.

Hughes , B.P., " L i m i t S t a t e T h e o r y f o r ~ t e i n f o r c c d C o n c r e t e Des ign tq , 2nd E d i t i o n , Bi tman P u b l i s h i n g L t d . , London, 1976.

J o n ~ s , G., "Minimum S t e e l Des ign o f D o u b l y R e i n f o r c e d R e c t a n ~ u p ..- BcamsW Cement and C o n c r e t e A s s o c i a t i o n J o u r n a l , S e p t . 1979 , pp. 22-24,

Kong F.K. and Evans, H.H., " R e i n f o r c e d and P r e s t r e s s e d C o n c r e t e " , 2nd E d i t i o n , The E n g l i s h Language Book S o c i e t y and N e l s o n , S u r r e y , 1980.

Kumar S., " T r e a s u r e o f R,C.C. v e s i g n s , " S t a n d a r d Book House , I n d i a , 1980.

L a r g e , G.E., " B a s i c R e i n f o r c e d C o n c r e t e Des iqn t t - -

2nd ~ d i t i o n , The Rona ld P r e s s Company, New York, ? Q C ?

Manning G.P., l ' R e i n f o r c e d C o n c r e t e o c s i g n l ' 2nd E d i t i o n , Longmans, Green and Co L t d . , 1961,

More, M.G. and B o t t o n D.M., " I n t e r a c t i v e Des ign a n d Detailing o f i t r u c t u r a l S t e e l Work, Connections U s i n g a Compute rv7 , S t r u c t u r a l C n g i n e e r J o u r n a l , V o l , 52 , 1974.

Mos l ey L4.H. a n d Bungay J . N . , " R c i n f o b c e d C o n C t c t e Design1 ' , 2nd E d i t i o n , MacMi l lan Press L t d , , London, 1982.

P e r t e r s o n T,M.H, , "Elementary F o r t r a n u MacDonald a n d E v a n s L td . , London, 1976.

Rao K,,S,S., Ranga i ah M and Ranganatham B,V1I "Lower Bound L i m i t A n a l y s i s o f R e c t a n g u l a r S l a b s , " J o u r n a l o f ibmerican S o c i e t y of E n g i n e e r s ( S t r u c t u r a l D i v i s i o n ) Vol. 103 , No. S T I I , &

Nov. 1977

Templeman A.B., "Optimum T r u s s Des ign Us ing ~ i p p r o x i m a t i n g Func t i ons1 ' . IUTAM Symposium, OPTIM/tLkTION I N STRUCTURjiL DESIGN, WARSkW/PGLkND, 1973.

W i n t e r G., " P r o p e r t i e s of Steel a n d C o n c r c t c and t h e B a h a b i o u r o f b t r u ~ t u r e s ~ ~ , J o u r n a l o f ~ i m c r i c a n S o c i e t y of E n g i n e e r s ( S t r u c t u r a l ~ i v i s i o n ) , Feb. 1960.

Z a g a j e s h i r S.W. and Bertero V.V., "Optimum Seismic R e s i s t a n t Des ign of R/C FramesTe J o u r n a l of ~ t m e r i c a n S o c i e t y o f E n g i n e e r s ( S t r u c t u r a l D i v i s i o n ) , V o l . 105 , No, ST5, May, 1979.

top related