update on modelling the vermilion river basin - rdrwa.ca · vermilion river basin • agricultural,...

Post on 13-Aug-2019

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Modelling the Impact of Wetland Drainage on the Vermilion River Basin

John Pomeroy, Xing Fang, Kevin Shook, Cherie Westbrook Centre for Hydrology, University of Saskatchewan, Saskatoon

www.usask.ca/hydrology

Objective

• Develop a model that can demonstrate the role of surface water storage on the hydrology of Prairie river basins.

• Apply the model to simulate streamflow in the sub-basins of the Vermilion River basin.

• Modify the representation of wetlands in the model to show the impact of restoration and drainage on basin hydrology.

Vermilion River Basin • Agricultural, sub-humid, cold regions river basin near

Edmonton, Alberta, Canada • Gross drainage area 7,863 km2

– contributing area to streamflow is much smaller and highly variable

• Peak runoff normally from snowmelt over frozen soils • Groundwater system poorly connected to surface

water; baseflow small to non-existent. • Numerous internally drained wetlands from post-

glacial topography • Wetland drainage in much of basin and streamflow

control structures in lower basin strongly affect basin hydrology

Basin Topography

ASTER 25 m DEM

Basin Vegetation Cover

Drainage Network and Wetlands

Weather and Streamflow Data

Canadian Prairie Runoff Generation Snow Redistribution to Channels

Spring melt and runoff

Water Storage in Wetlands Dry non-contributing areas to runoff

Typical prairie wetlands

Wetland 1

Wetland 2

sill

Prairie Hydrological Connectivity

Lack of groundwater connections in this landscape – heavy tills

The ‘fill and spill’ hypothesis

Prairie Runoff Non-Contributing Areas

Vermilion River Smith

Creek

Alberta Saskatchewan

Manitoba

Ontario

United States

British Columbia

Vermilion Non-contributing Area

Median annual runoff 1 in 2 year flow

Typical prairie “basin”

High Flow Event: Saskatchewan April 2011

Prairie Wetlands in the Vermilion

Undrained Drained

Model Setup • Cold Regions Hydrological Modelling Platform (CRHM) • Used to simulate the hydrological cycle in prairie, mountain and

arctic basins • Developed to focus on impact of wetland drainage and restoration

as the “CRHM Prairie Model” with testing at Smith Creek, Saskatchewan, ~800 km to the east.

• Modules selected to describe hydrological processes operating in the basin. – Snow accumulation and melt – Wetland storage – Soil moisture storage, evapotranspiration and runoff – Stream routing

• Sub-basins broken into “hydrological response units” HRU corresponding to land use, drainage and soil zones.

• Sub-basins aggregated via routing module to describe total basin behaviour

Prairie Wetland/Soil Module

Ifpond

Snowmelt Rainfall

Snowmelt Infiltration

Rainfall Infiltration

Recharge Zone

Soil Column

Evapotranspiration

SubsurfaceDischarge

Groundwater GroundwaterDischarge

Ifsoil column

is full

Yes

No

No Yes

Saturated OverlandFlow = 0

SaturatedOverland

Flow

Ifdepression

NoRunoff

YesRunoff to

Depression

Depression

Evaporation

GroundwaterGroundwaterDischarge

SubsurfaceDischarge

Ifdepression

is full

NoNo fill-and-spill

Yesfill-and-spill

Snowmelt Rainfall

Snowmelt Infiltration

Rainfall Infiltration

Wetland Pond

Evaporation

Groundwater

Ifpond is full

No fill-and-spill

No

Yesfill-and-spill

SubsurfaceDischarge

GroundwaterDischarge

Surface Runoff

CRHM Prairie Model Structure

HRU Delineation

HRU Hydraulic Routing

Note, blowing snow aerodynamic routing from smooth to rough land covers

Sub-basin Hydraulic Routing Sequence

Initial Model Set-up

• Used CRHM - Prairie structural configuration. • Attempted to estimate maximum depressional

storage from ASTER-based DEM. • Assigned initial depressional storage at 30% of

maximum for wetlands, 0 for uplands. • Where local information was unavailable,

used Smith Creek parameter values. – NO CALIBRATION

Initial Model Tests – Spring Snowpack

Initial Model Tests – Soil Moisture Daily Soil Moisture at Stubble Fields in Sub-basin 4,

Vermilion River Basin

05

101520253035404550

1-M

ay

8-M

ay

15-M

ay

22-M

ay

29-M

ay

5-Ju

n

12-J

un

19-J

un

26-J

un

3-Ju

l

10-J

ul

17-J

ul

24-J

ul

31-J

ul

7-A

ug

14-A

ug

21-A

ug

28-A

ug

2006

Volu

met

ric S

oil M

oist

ure

(%) recharge layer (observed) recharge layer (simulated)

soil column (observed) soil column (simulated)

Daily Soil Moisture at Stubble Fields in Sub-basin 4,Vermilion River Basin

05

101520253035404550

1-M

ay

8-M

ay

15-M

ay

22-M

ay

29-M

ay

5-Ju

n

12-J

un

19-J

un

26-J

un

3-Ju

l

10-J

ul

17-J

ul

24-J

ul

31-J

ul

7-A

ug

14-A

ug

21-A

ug

28-A

ug

2007

Volu

met

ric S

oil M

oist

ure

(%) recharge layer (observed) recharge layer (simulated)

soil column (observed) soil column (simulated)

Daily Soil Moisture at Stubble Fields in Sub-basin 4,Vermilion River Basin

05

101520253035404550

1-M

ay

8-M

ay

15-M

ay

22-M

ay

29-M

ay

5-Ju

n

12-J

un

19-J

un

26-J

un

3-Ju

l

10-J

ul

17-J

ul

24-J

ul

31-J

ul

7-A

ug

14-A

ug

21-A

ug

28-A

ug

2008

Volu

met

ric S

oil M

oist

ure

(%) recharge layer (observed) recharge layer (simulated)

soil column (observed) soil column (simulated)

Daily Soil Moisture at Stubble Fields in Sub-basin 4,Vermilion River Basin

05

101520253035404550

1-M

ay

8-M

ay

15-M

ay

22-M

ay

29-M

ay

5-Ju

n

12-J

un

19-J

un

26-J

un

3-Ju

l

10-J

ul

17-J

ul

24-J

ul

31-J

ul

7-A

ug

14-A

ug

21-A

ug

28-A

ug

2009

Volu

met

ric S

oil M

oist

ure

(%) recharge layer (observed) recharge layer (simulated)

soil column (observed) soil column (simulated)

(a)

(d)(c)

(b)

Discharge Tests at WSC Stations Sub-basin Numbers Marked

13

17

4

10

Initial Tests – Sub-basin 13 near Bruce

Daily Discharge of Vermilion River Tributary near Bruce (05EE006)

00.20.40.60.8

11.21.41.6

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2009

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River Tributary near Bruce (05EE006)

0

0.5

1

1.5

2

2.5

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2008

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River Tributary near Bruce (05EE006)

00.20.40.60.8

11.21.41.61.8

2

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2007

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River Tributary near Bruce (05EE006)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2006

Disc

harg

e (m

3 /s)

ObservationSimulation

(a)

(d)(c)

(b)

??

Initial Tests: Vermilion at Vegreville (Sub-basin 17)

Daily Discharge of Vermilion River at Vegreville (05EE009)

0

5

10

15

20

25

30

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2009

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River at Vegreville (05EE009)

0

10

20

30

40

50

60

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2008

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River at Vegreville (05EE009)

0

5

10

15

20

25

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2007

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River at Vegreville (05EE009)

0

5

10

15

20

25

30

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2006

Disc

harg

e (m

3 /s)

ObservationSimulation

(a)

(d)(c)

(b)

Control Structures

Initial Tests: Vermilion at Range Road 105 (Sub-basin 4)

Daily Discharge of Vermilion River at Range Road 105 (05EE010)

0

20

40

60

80

100

120

140

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2009

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River at Range Road 105 (05EE010)

0

10

20

30

40

50

60

70

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2008

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River at Range Road 105 (05EE010)

05

101520253035404550

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2007

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River at Range Road 105 (05EE010)

0

5

10

15

20

25

30

35

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2006

Disc

harg

e (m

3 /s)

ObservationSimulation

(a)

(d)(c)

(b)

Note impact of Morecambe Structure on flow retention – not modelled

Initial Tests: Vermilion near Marwayne (Sub-basin 10)

Daily Discharge of Vermilion River near Marwayne (05EE007)

0

20

40

60

80

100

120

140

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2009

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River near Marwayne (05EE007)

01020304050607080

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2008

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River near Marwayne (05EE007)

0

10

20

30

40

50

60

70

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2007

Disc

harg

e (m

3 /s)

ObservationSimulation

Daily Discharge of Vermilion River near Marwayne (05EE007)

05

1015202530354045

1-M

ar

15-M

ar

29-M

ar

12-A

pr

26-A

pr

10-M

ay

24-M

ay

7-Ju

n

21-J

un

5-Ju

l

19-J

ul

2-A

ug

16-A

ug

30-A

ug

13-S

ep

27-S

ep

2006

Disc

harg

e (m

3 /s)

ObservationSimulation

(a)

(d)(c)

(b)

Note impact of control structures in moderating or delaying discharge

So what do we know now?

Smith Creek, Saskatchewan

• East of Yorkton, Assiniboine River Basin • ~400 km2 • Cultivated parkland • Extensive wetland

drainage

Wetlands and Drainage Network 1958

Wetlands and Drainage Network 2000

Wetland Change in Low Discharge Volume Year

Scenarios of Smith Creek Spring Discharge near Marchwell

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

11-Feb 20-Feb 29-Feb 09-Mar 18-Mar 27-Mar 05-Apr 14-Apr 23-Apr 02-May

2000

Daily

Mea

n Di

scha

rge

(m3 /

s)

"Normal Condition"high natural wetland extentminimum wetland extent

2000 Drought: Lowest Discharge Volume on Record

Wetland Change in High Discharge Volume Year

Scenarios of Smith Creek Spring Discharge near Marchwell

0

5

10

15

20

25

30

01-Mar 10-Mar 19-Mar 28-Mar 06-Apr 15-Apr 24-Apr 03-May 12-May 21-May 30-May

1995

Daily

Mea

n Di

scha

rge

(m3 /

s) "Normal Condition"high natural wetland extentminimum wetland extent

1995 Flood: Record High Discharge Volume

Sensitivity of Spring Discharge Volume to Land use and Drainage

-10

-8

-6

-4

-2

0

2

4

6

0 5 10 15 20 25 30 35 40

Spring Discharge Volume (1000 dam3)

Cha

nge

in d

isch

arge

vol

ume

(100

0 da

m3)

Agricultural Conversion

Forest Conversion

Wetland Restoration

Wetland Drainage

Long-term Impact of Land Use and Drainage Change

Conclusions • Consideration of snow, frozen soil and surface storage

processes are essential to calculating spring runoff in the Prairies.

• Depressional storage is exceedingly difficult to calculate in this flat, poorly drained environment .

• It is possible to model prairie snowpack, soil moisture and streamflow without calibration using physically based simulations that aggregate landscape scale hydrological cycle calculations, if high resolution information is available on catchment characteristics.

• There is moderate sensitivity of streamflow volumes to changes in agricultural and forest land use.

• There is strong sensitivity of streamflow volumes to wetland drainage and restoration.

top related