viii. viscous flow and head loss. contents 1. introduction 2. laminar and turbulent flows 3....

Post on 17-Dec-2015

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

VIII. Viscous Flow and Head LossVIII. Viscous Flow and Head Loss

ContentsContents

1.1. IntroductionIntroduction

2.2. Laminar and Turbulent FlowsLaminar and Turbulent Flows

3.3. Friction and Head LossesFriction and Head Losses

4.4. Head Loss in Laminar FlowsHead Loss in Laminar Flows

5.5. Head Loss in Turbulent Flows Head Loss in Turbulent Flows

6.6. Head Loss of Steady Pipe FlowsHead Loss of Steady Pipe Flows

7.7. Minor LossesMinor Losses

8.8. ExamplesExamples

1. Introduction1. Introduction

Shear stress due to fluid viscosityShear stress due to fluid viscosity

uy

t m¶

0F =rD’Alembert D’Alembert

ParadoxParadox

2 2

1 22 2V p V p

z zg g

a ag g

é ù é ùê ú ê ú+ + = + +ê ú ê úë û ë û

2

2Vg

2

2Vg

pg

2

2Vg

p g

wh

whwh

2 2V g

pg

2

2Vg

pg

For real fluid flowsFor real fluid flows

2 2

upstream downstream

02 2 w

V p V pz z h

g g g ga a

r r

æ ö æ ö÷ ÷ç ç+ + ÷ - + + ÷ = >ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

Head Loss

Head Loss:

Losses due to friction

Minor Losses

entrance and exit

sudden change of cross sections

valves and gates

bends and elbows

……

2. Laminar and Turbulent Flows2. Laminar and Turbulent Flows

Reynolds’ ExperimentReynolds’ Experiment

Laminar Flows:

Movement of any fluid particle is regular

Path lines of fluid particles are smooth

Turbulent Flows:

Movement of any fluid particle is random

Path lines of fluid particles are affected by mixing

Transition from Laminar to Turbulent Flow:

for different fluid

for different diameter of pipe

Head Loss due to laminar and turbulent flowsHead Loss due to laminar and turbulent flows

fh

log V

log h f

Turbulent Flows:

Laminar Flows: fh Vµ

( )

( )

2

1.75

Rough wall

Smooth wall

fh V

V

µ

µ

Critical Condition

2300UdUd

Rr

n m= = =

Reynolds Number

3. Friction and Head Losses3. Friction and Head Losses

2

2Vg

1pg

2pg

1z 2z

wh

Momentum EquationMomentum Equation

1 2 sin 0pA pA AL PLg a t- - - =

A : area of the cross-A : area of the cross-

section section

P: wetted perimeterP: wetted perimeter

1 2 sin 0pA pA AL PLg a t- - - =

2 1sinz z

La

-=

( )1 22 1

p p PLz z

At

g g g- - - =

f

h

h PL A R

t tg g

= =

Hydraulic radius

2

2f

VC

rt =

f

h

h

L Rt

g=

2

2ffh

L Vh C

R g=

2

2f

L Vh f

D g= Darcy-Weisbach equation

4. Head Loss in Laminar Flows4. Head Loss in Laminar Flows

x

( )

0

0

u u r

v

w

=

=

=

cos

sin

x x

y r

z r

q

q

=

=

=

0u v wx y z

¶ ¶ ¶+ + =

¶ ¶ ¶

2 2 2

2 2 2

1u u u p u u uu v w

x y z x x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

%

2 2 2

2 2 2

1v v v p v v vu v w

x y z y x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

%

2 2 2

2 2 2

1w w w p w w wu v w

x y z z x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

%

0ux

¶=

2 2

2 2

1 p u ux y z

nr

æ ö¶ ¶ ¶ ÷ç= + ÷ç ÷÷çç¶ ¶ ¶è ø

%

0py

¶=

¶%

0pz

¶=

¶%

2 2

2 2

sin sincos cos

cossin sin

r ry z y r y y r y

r rz r z z r z

r r r r

r r

q qq q

q qq q

q qq q

q q

qq

q

æ öæ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶÷ ÷ç ç+ = + +÷ ÷ç ç÷ ÷÷ ÷ç çç ç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è øè ø

æ öæ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶÷ ÷ç ç+ + +÷ ÷ç ç÷ ÷ç çè øè ø¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

æ öæ ö¶ ¶ ¶ ¶÷ ÷ç ç= + +÷ ÷ç ç÷ ÷ç çè øè ø¶ ¶ ¶ ¶

æ ö¶ ¶ ÷ç+ - ÷ç ÷çè ø¶ ¶

2

2 2

cos

1 1

r r

rr r r r

qq

q

q

æ ö¶ ¶ ÷ç - ÷ç ÷çè ø¶ ¶

æ ö¶ ¶ ¶÷ç= +÷ç ÷çè ø¶ ¶ ¶

cos

sin

y r

z r

q

q

=

=

2 2

2 2

2

2 2

1 1

dp u udx y z

u ur

r r r r

ur

r r r

m

mq

m

æ ö¶ ¶ ÷ç= + ÷ç ÷÷çç¶ ¶è ø

é ùæ ö¶ ¶ ¶÷çê ú= +÷ç ÷çê úè ø¶ ¶ ¶ë ûæ ö¶ ¶ ÷ç= ÷ç ÷çè ø¶ ¶

%

21log

4dp

u r A r Bdxm

= + +%

( ) ( )2 2 2 214 4

dp Ju a r a r

dxg

m m= - - = -

%

( )

( )

0

finite 0

u r a

u r

= =

® ®

p p zg= +%

( )2 2 14 2r a r a

u Ja r J a

r rg

t m m gm= =

é ùé ù¶ ¶ ê ú= = - = -ê ú ê úê ú¶ ¶ë û ë û

f

h

h

L Rt

g= hJ Rt g=

4 2

128 32Q VJ

D Dm m

gp g= =

2

32fh VJ

L Dm

g= =

2642f

L Vh

VD D gm

r=

64f

R=

( )4

2 2

0 02 2

4 128

a a J J DQ ur dr a r r dr

g pgp p

m m

é ùê ú= = - =ê úë û

ò ò

2 4Q

VDp

=

gg r=

5. Head Loss in Turbulent Flows5. Head Loss in Turbulent Flows

Mean flow and fluctuationMean flow and fluctuation

t

B

B

1 t T

tB Bdt

T

+= ò

Mean flow and fluctuationMean flow and fluctuation B B B¢= +

B B=

0BB¢=

BB BB=

0B¢=

0B B¢ ¢¹

BB BB B B¢ ¢= +

B Bx x

æ ö¶ ¶÷ç =÷ç ÷çè ø¶ ¶

1 2 1 2B B B B+ = +

Basic Equations of Turbulent Flows: Basic Equations of Turbulent Flows:

2 2 2

2 2 2

1x

u u u u p u u uu v w f

t x y z x x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

2 2 2

2 2 2

1y

v v v v p v v vu v w f

t x y z y x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

2 2 2

2 2 2

1z

w w w w p w w wu v w f

t x y z z x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

0u v wx y z

¶ ¶ ¶+ + =

¶ ¶ ¶

2 2 2

2 2 2

1x

u u u u p u u uu v w f

t x y z x x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

0u v wx y z

¶ ¶ ¶+ + =

¶ ¶ ¶

2 2 2

2 2 2

1x

u u u u v u wu u v u w u

t x x y y z z

p u u uf

x x y zn

r

¶ ¶ ¶ ¶ ¶ ¶ ¶+ + + + + +

¶ ¶ ¶ ¶ ¶ ¶ ¶

æ ö¶ ¶ ¶ ¶ ÷ç= - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶è ø

2 2 2

2 2 2

1x

u uu uv uw p u u uf

t x y z x x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

Basic Equations of Turbulent Flows: Basic Equations of Turbulent Flows:

2 2 2

2 2 2

1x

u uu uv uw p u u uf

t x y z x x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

2 2 2

2 2 2

1y

v vu vv vw p v v vf

t x y z y x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

2 2 2

2 2 2

1z

w wu wv ww p w w wf

t x y z z x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

0u v wx y z

¶ ¶ ¶+ + =

¶ ¶ ¶

Reynolds’ Average Reynolds’ Average

0u v wx y z

¶ ¶ ¶+ + =

¶ ¶ ¶

0u v wx y z

¶ ¶ ¶+ + =

¶ ¶ ¶

Reynolds’ Average Reynolds’ Average

2 2 2

2 2 2

1x

u uu uv uw p u u uf

t x y z x x y zn

r

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ÷ç+ + + = - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è ø

2 2 2

2 2 2

1x

u uu uu uv uv uw uwt x x y y z z

p u u uf

x x y zn

r

¢ ¢ ¢¢ ¢ ¢¶ ¶ ¶ ¶ ¶ ¶ ¶+ + + + + +

¶ ¶ ¶ ¶ ¶ ¶ ¶

æ ö¶ ¶ ¶ ¶ ÷ç= - + + + ÷ç ÷÷çç¶ ¶ ¶ ¶è ø

Reynolds Stresses Reynolds Stresses

xx

yx

zx

R uu

R uv

R uw

r

r

r

¢ ¢= -

¢¢= -

¢ ¢= -

Reynolds Stresses Reynolds Stresses

v¢( )u u y=

x

y

( )xF v u uvr r¢ ¢¢= =Mean flux of horizontal momentum:

Equivalent Shear Stress: yxR-

Reynolds Equations: Reynolds Equations:

2 2 2

2 2 2

1 1 yxxx zxx

u u u uu v w

t x y z

Rp u u u R Rf

x x y z x y zn

r r

¶ ¶ ¶ ¶+ + +

¶ ¶ ¶ ¶

æ ö æ ö¶¶ ¶ ¶ ¶ ¶ ¶÷ ÷ç ç= - + + + + + +÷ ÷ç ç÷ ÷÷ ÷ç çç ç¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø

2 2 2

2 2 2

1 1 xy yy zyy

v v v vu v w

t x y z

R R Rp v v vf

y x y z x y zn

r r

¶ ¶ ¶ ¶+ + +

¶ ¶ ¶ ¶

æ ö æ ö¶ ¶ ¶¶ ¶ ¶ ¶ ÷ ÷ç ç= - + + + + + +÷ ÷ç ç÷ ÷÷ ÷ç çç ç¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø

2 2 2

2 2 2

1 1 yzxz zzz

w w w wu v w

t x y z

Rp w w w R Rf

z x y z x y zn

r r

¶ ¶ ¶ ¶+ + +

¶ ¶ ¶ ¶

æ ö æ ö¶¶ ¶ ¶ ¶ ¶ ¶÷ ÷ç ç= - + + + + + +÷ ÷ç ç÷ ÷÷ ÷ç çç ç¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø

2 2 2

2 2 2

1 1 yxxx zxx

u u u uu v w

t x y z

Rp u u u R Rf

x x y z x y zn

r r

¶ ¶ ¶ ¶+ + +

¶ ¶ ¶ ¶

æ ö æ ö¶¶ ¶ ¶ ¶ ¶ ¶÷ ÷ç ç= - + + + + + +÷ ÷ç ç÷ ÷÷ ÷ç çç ç¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø

1 yxxx zx

x y z

ts tr

æ ö¶¶ ¶ ÷ç + + ÷ç ÷÷çç ¶ ¶ ¶è ø

12

12

xx

yx

zx

ux

v ux y

w ux z

s rn

t rn

t rn

¶=

æ ö¶ ¶ ÷ç= + ÷ç ÷÷çç¶ ¶è ø

æ ö¶ ¶ ÷ç= + ÷ç ÷çè ø¶ ¶

12

12

xx e

yx e

zx e

uR

x

v uR

x y

w uR

x z

rn

rn

rn

¶=

æ ö¶ ¶ ÷ç= + ÷ç ÷÷çç¶ ¶è ø

æ ö¶ ¶ ÷ç= + ÷ç ÷çè ø¶ ¶

Theory of Mixing Length Theory of Mixing Length

( )u u y=

x

y

duu l

dy¢ ¢= v u¢ ¢µ

2

2

uv

ducl

dy

t r

r

¢¢= -

æ ö÷ç¢= ÷ç ÷÷ççè ø

2yx

du dul

dy dyt r=

Logarithmic Velocity Distribution Logarithmic Velocity Distribution

( )u u y=

y

( )0.4l yk k= =

2

2 20

duy

dyt t rk

æ ö÷ç= = ÷ç ÷÷ççè ø

0t t=

0*

duy vdy

tk

r= º

* logv

u y Ck

= +

6. Head Loss of Steady Pipe Flows6. Head Loss of Steady Pipe Flows

Logarithmic Velocity Distribution Logarithmic Velocity Distribution

* logv

u y Ck

= +

*

1log

uy C

v k¢= +

*

*

1log

u vyC

v k n¢¢= +

*R

0

t

l

y

Logarithmic Overlap Layer

Logarithmic Velocity Distribution in a Pipe Logarithmic Velocity Distribution in a Pipe

y

2 0

3 0

1 0

01 01 01 0 1 0 0 0 01 0 0 01 0 01

*vy n

*

uv

*

*

2.5log 5.5u vyv n

= +

*

*

u vyv n

=

Viscous Turbulent

Viscous sublayer:Viscous sublayer: *0 5vyn

< £

Turbulent zone:Turbulent zone:* 70vyn

³

Transition Transition zone:zone:

*5 70vyn

< <

Velocity Distribution in Viscous SublayerVelocity Distribution in Viscous Sublayer

dudy

t m=

20 *vu y y

t rm m

= =

*

*

u vyv n

=

Velocity Distribution in a Pipe Velocity Distribution in a Pipe

y

Blasius’ 7th-root law Blasius’ 7th-root law

17

max 0

u yu r

æ ö÷ç ÷= ç ÷ç ÷çè ø

Valid for R = 3000 Valid for R = 3000 101055

Wall RoughnessWall Roughness

sk

* 5svkn

£

* 70svkn

³

Hydraulically smooth wall:Hydraulically smooth wall:

Roughness height is smaller than the Roughness height is smaller than the

thickness of the viscous sublayerthickness of the viscous sublayer

Hydraulically rough wall:Hydraulically rough wall:

Roughness height is larger than the lower Roughness height is larger than the lower

boundary of the turbulent zoneboundary of the turbulent zone

Hydraulically smooth pipe:Hydraulically smooth pipe:

Hydraulically rough pipe:Hydraulically rough pipe:

*

*

2.5log 5.5u vyv n

= +

*

2.5log 8.5s

u yv k

= +

Velocity Distribution in a PipeVelocity Distribution in a Pipe

Mean velocity in hydraulically smooth pipe:Mean velocity in hydraulically smooth pipe:

( )* *

*

2.5log 5.5 2.5log 5.5u vy v a rv n n

-= + = +

( )* * *2 2 0

22.5log 5.5

a

S

v v v a rV udS rdr

a ap

p p n-é ù

= = +ê úê úë ûò ò

*

*

2.5log 1.75V vav n

= +

Mean velocity in hydraulically rough pipe:Mean velocity in hydraulically rough pipe:

( )

*

2.5log 8.5 2.5log 8.5s s

u y a rv k k

-= + = +

( )* *2 2 0

22.5log 8.5

a

Ss

v v a rV udS rdr

a a kp

p p

é ù-ê ú= = +ê úë ûò ò

*

2.5log 4.75s

V av k

= +

Relation among mean velocity, friction velocity Relation among mean velocity, friction velocity

and friction factor:and friction factor:

2

2f

L Vh f

D g= 0 0

14

f

h

h

L R Dt tg g

= =

20 *

2 2

1 88

vf

V Vtr

= =

* 8V v f=

Friction factor in hydraulically smooth pipe:Friction factor in hydraulically smooth pipe:

( )10

10.884log 0.91

2.04log R 0.91

VDf

f

f

næ ö÷ç= -÷ç ÷çè ø

= -

*

*

2.5log 1.75V vav n

= +

Friction factor in hydraulically rough pipe:Friction factor in hydraulically rough pipe:

( )

( )

2

2

10

1

0.884log 1.68

1

2.04log 1.68

s

s

fa k

a k

=é ù+ê úë û

=é ù+ê úë û

*

2.5log 4.75s

V av k

= +

Experiment of NikuradseExperiment of Nikuradse

sk

Modified friction factor in hydraulically smooth pipe:Modified friction factor in hydraulically smooth pipe:

( )10 10

R12log R 0.8 2log

2.51f

ff

æ ö÷ç ÷= - = ç ÷ç ÷çè ø

10

1 R1.8log

6.9fæ ö÷ç= ÷ç ÷çè ø

0.25

0.316R

f =

( )84000 10R£ £

( )53000 10R£ £

( )Rff=

Modified friction factor in hydraulically rough pipe:Modified friction factor in hydraulically rough pipe:

( )

( )

2

10

2

10

1

2log 1.74

1

2log 3.7

s

s

fa k

D k

=é ù+ê úë û

=é ùê úë û

skffa

æ ö÷ç= ÷ç ÷çè ø

Colebrook Equation:Colebrook Equation:

( )

10

10

10

1 2.512log 0.27

R

2.512log 0, smooth

R

12log R , rough

3.7

s

s

s

kf D f

kf D

kD

æ ö÷ç ÷= - +ç ÷ç ÷çè ø

æ ö æ ö÷ç ÷ç÷® - ®ç ÷ç÷ ÷çç ÷ è øçè ø

æ ö÷ç® - ® ¥÷ç ÷çè ø

Head loss in hydraulically smooth pipe:Head loss in hydraulically smooth pipe:

( )2 2

1.750.25

0.3162 2f

L V L Vh f V

D g D gVD n= = µ

Head loss in hydraulically smooth pipe:Head loss in hydraulically smooth pipe:

2 22

2 2s

f

L V k L Vh ff V

D g D D gæ ö÷ç= = µ÷ç ÷çè ø

Practical pipe: equivalent roughnessPractical pipe: equivalent roughness

sk

7. Minor Losses7. Minor Losses

Head Loss due to Sudden ExpansionHead Loss due to Sudden Expansion

lxh

pz

g+

2

2Vg

Head Loss due to Sudden ExpansionHead Loss due to Sudden Expansion

1 2

1 1 2 2V A V A=( )

2 21 1 2 2

2 21 2 1 2

2

1 2

2 21 1

2

21

2 2

2

2

12

2

lx

x

p V p Vh

g g

p p V Vg g

V V

g

A VA g

Vg

g g

r

V

æ ö æ ö÷ ÷ç ç= + - +÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

- -= +

-=

æ ö÷ç ÷= -ç ÷ç ÷çè ø

=

( ) ( )2 22 2 1 1 1 1 1 2 1 2 2AV AV pA p A A pAr ¢- = + - -

( )2 22 2 1 1 21 2

2 1 22

AV AVp pV VV

Ar

--= = -

1p¢

Head Loss due to Sudden ContractionHead Loss due to Sudden Contraction

ch

2

2p V

zgg

+ +

( )

22

2 1

2lc c

c c

Vh

g

D D

V

V V

=

=

Head Loss at EntranceHead Loss at Entrance

eh

2

2p V

zgg

+ +

2

2le e

Vh

gV=

Head Loss at Bell-Mouthed EntranceHead Loss at Bell-Mouthed Entrance

2

2e e

Vh

gV=

Head Loss in BendHead Loss in Bend

( )

2

2b b

b b

Vh

g

r D

V

V V

=

=

8. An Example8. An Example

20 mH =

1 0.2 mD =2 0.4 mD =

1 80 mL = 2 50 mL =

?Q =

0.05 mmsk =0.05 mmsk =

2 2

2 2 w

A B

p V p Vz z H h

g gg g

æ ö æ ö÷ ÷ç ç+ + - + + = =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è øå

2 2 2 2 21 1 1 1 2 2 2

1 21 22 2 2 2 2w e x o

V l V V l V Vh ff

g D g g D g gV V V= + + + +

0.5eV =

2

1

2

1 0.5625x

AA

Væ ö÷ç ÷= - =ç ÷ç ÷çè ø

1.0oV =

( )1 2

10 1

10.01438

2log 3.7 s

fD k

= =é ùê úë û

( )2 2

10 2

10.01250

2log 3.7 s

fD k

= =é ùê úë û

2 21 1 2 2

1 21 2

2 21 2

2 21 2

2 2

80 500.01438 0.5 0.5625 0.01250 1.0

0.2 2 0.4 2

6.8145 2.56252 2

e x o

l V l VH ff

D g D g

V Vg g

V Vg g

V V Væ ö æ ö÷ ÷ç ç÷ ÷= + + + +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ ö æ ö÷ ÷ç ç= ´ + + + ´ +÷ ÷ç ç ÷÷ çç è øè ø

= +

1 1 2 2 2 10.25V A V A V V= Þ =

1 2

27.50 m s

6.8145 0.25 2.5625gH

V = =+ ´

52 22 6

3 42

1.875 0.47.5 10

10

0.05 10 0.4 1.25 10s

V DR

k D

n -

- -

´= = = ´

= ´ = ´

1 7.50m sV =

2 10.25 1.875 m sV V= =

31 1 2 2 0.2356 m sQ V A V A= = =

top related