what can neutrinos tell us about npmoriond.in2p3.fr/ew/2006/transparencies/c.pena garay.pdfmarch 15,...

Post on 31-Jan-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

March 15, 2006 Rencontres de Moriond, EW and UT, La Thuile

What can Neutrinos tell us about NP ?What can Neutrinos tell us about NP ?

Carlos Pena GarayInstitute for Advanced Study

Princeton

~

Recently confirmedRecently confirmed

Neutrino flavor conversion

leads to

Neutrino mass

Non degenerate massesFlavor and mass eigenstates non equivalent

New Physics : SM + New Physics : SM + ν ν massmass

)9.7( 9.8eV10

0.7 25

2m≤≤ −

)2.2( 6.3eV10

M6.1 23

2

≤≤ −

∆3 σ ranges:

⎟⎟⎟

⎜⎜⎜

−−−−−−−−−

=⎟⎟⎟

⎜⎜⎜

⎛=

81.056.073.043.054.020.082.058.072.042.053.020.020.000.064.049.087.076.0

||||||||||||||||||

||

321

321

321

τττ

µµµ

eee

i

UUUUUUUUU

Solar + KamLANDAtmospheric + K2K CHOOZ

⎟⎟⎟

⎜⎜⎜

−−−−−−−−−

=9992.09990.0043.0037.0014.00048.0044.0039.09744.09730.0227.0221.00045.00029.0227.0221.09751.09739.0

|| CKMiUα

Different pattern for leptons and quarksGonzalez-Garcia et al (2005)

Simplest extension of SMSimplest extension of SMCan neutrino masses and mixings be accommodated in a model ?

SM + 3 singlets (νR) + L conservation

Arbitrary masses and mixings of Dirac neutrinosAnalogous to the quark sector

Unsolved questions :

Why Yukawa matrices are so different?

Why L conservation?

Leading searches :Leading searches :Majorana mass : Neutrinoless double beta decay

Electromagnetic properties

New mixed particles : sterile neutrinos (LSND)

Non standard interactions

Test of fundamental symmetries : LI, EP, CPT

Deep inelastic scattering at very small x

Anomalies : NuTeV, …

Theorem 0Theorem 0νββ νββ MajoranaMajorana massmass

in gauge theories in gauge theories with SSBwith SSB

Schechter, Valle, PRD (1982)

Implications of 0Implications of 0νββνββ

If due to only Majorana mass

Test of mass scale

Seesaw mechanism by heavy Majorana mass

Leptogenesis from heavy Majorana neutrinos

N22 F )( j

jej mU∑∝Γ

Fukugita, Yanagida, (1986)

8

8

Seesaw mechanismSeesaw mechanism

... h.c. 2

y i +++ RicRi

RiiLRi vv

mφννν pL

φ φ

νL νR νR νL

mR

xIntegrating out the heavy fieldνR mR>> <φ>:

LicLieff vv

Ri

2i

2mm pL

Equivalently, diagonalizethe mass matrix in νL-νR basis ⎥

⎤⎢⎣

Rmmm0

Alternative mechanism : radiative masses

Leading searches :Leading searches :Majorana mass : Neutrinoless double beta decay

Electromagnetic properties (decay)

New mixed particles : sterile neutrinos (LSND)

Non standard interactions

Test of fundamental symmetries : LI, EP, CPT

Deep inelastic scattering at very small x

Anomalies : NuTeV, …

Electromagnetic propertiesElectromagnetic properties

Edm and Magnetic dipole moment

... h.c. i ++λρλρνν νσνµ Fj

ijpL

⎟⎠⎞

⎜⎝⎛≈

eV 0.1m

10 3 B20- ν

ν µµ ij

Elastic scattering on electrons : contribution added incoherently

MUNU : µ < 9 10-11 µB at 90% CL

Red giants in globular clusters : µ < 3 10-12 µB

⎟⎟⎠

⎞⎜⎜⎝

⎛−

ν

παµETme

112

22

Leading searches :Leading searches :Majorana mass : Neutrinoless double beta decay

Electromagnetic properties

New mixed particles : sterile neutrinos (LSND)

Non standard interactions

Test of fundamental symmetries : LI, EP, CPT

Deep inelastic scattering at very small x

Anomalies : NuTeV, …

LSND, KARMEN >> LSND, KARMEN >> MiniBooneMiniBoone

LSND : L=30 m, 20<E<60 MeV

3.5 to 7 σ appearance signal depending on analysis 67 signal events in 1030 signal+background

KARMEN : L=17.5 m, 20<E<60 MeV15 events in 15.8 background expected

Not compatible at 36%CL

310 )8.06.2()( −±=→ eνP µν

Combined LSND/KARMEN : Church et al, hep-ex/0203023

2osc 4lmE

∆=

π

How to see sterile neutrinos ?How to see sterile neutrinos ?

Light spin ½ fermions, blind to SM gauge couplings, mixed with active neutrinos

In oscillations : Neutral currents, Matter effects

BBN : faster expansion ; depletion of νe : ratio n/p

LSS : free streaming of massive neutrinos, sterile contributes to relativistic dof if termalizes

Supernova cooling

Excursion I : Neutrino Oscillations in matterExcursion I : Neutrino Oscillations in matter

After a plane wave pass through a slab, the phase is shifted : p (x+(n-1)R)

Net effect :

⎥⎦

⎤⎢⎣

⎡+=

+≈ ∫∞

−+

pNRfe

edrNRfee

ipx

ipx

Rx

ipxRnxip

)0( 211

)0( 2 ))1((

π

π

2

)0( 21pfNn π

≈−

Only the difference of potential is relevant

Net effect :

eFF NGeevvGH 2)1( )1( 2 55int ⇒−−= γγγγ µµ

i

0

vei

e

Nee

Nee

>=<

>=<

γ

γ

eF NG2 2lmatt

π=

Excursion II : Neutrino Oscillations in matterExcursion II : Neutrino Oscillations in matter

Searches in oscillationsSearches in oscillations

SK, Macro data favor νµ ντ

νµ ννss disfavored ≥ 7σ

Atmospheric neutrinos

Gon

zale

z-G

arci

a, N

ir, re

view

200

2

[ ]221

241

2 08.0sin mm ∆>∆<η

Solar neutrinos : Could they go into other form of ν ?

sae sin cos vvv ηη +→

Bahcall et al PRC(2002)

Bounds on 3+ 1 sterile neutrinosBounds on 3+ 1 sterile neutrinos

Cirelli et al (2004)

Leading searches :Leading searches :Majorana mass : Neutrinoless double beta decay

Electromagnetic properties

New mixed particles : sterile neutrinos (LSND)

Non standard interactions

Test of fundamental symmetries : LI, EP, CPT

Deep inelastic scattering at very small x

Anomalies : NuTeV, …

Non Standard InteractionsNon Standard Interactions

Theory : expected to be smallConstraints from all neutrino data : αβ = {ee, eτ, ττ} can be order one

))(())(( 22

22RRE

mRRRR qqMqqM νννν −− ∝

Is possible to evade SU(2) bounds from l+-?Dirac Neutrinos :

Majorana Neutrinos :

))((v))(( 424RRR

tR qqMqHLLHqM ννσσ −− ∝

rr

Berezhiani, Rossi PLB(2002)

Davidson et al JHEP(2002)

NSI in solar neutrinosNSI in solar neutrinos

Friedland et al PLB (2004)

Surprises possible if εee, εeτ ~ 0.1

NSI in atmospheric neutrinosNSI in atmospheric neutrinos

Friedland et al PRD (2005)

εττ = |εeτ|2 / (1 + εee)

Strong bounds on εµµ, εµτ ~ 0.01Unconstrained comb. of NSI (εττ, εeτ, εee) tested by MINOS

Leading searches :Leading searches :Majorana mass : Neutrinoless double beta decay

Electromagnetic properties

New mixed particles : sterile neutrinos (LSND)

Non standard interactions

Test of fundamental symmetries : LI, EP, CPT

Deep inelastic scattering at very small x

Anomalies : NuTeV, …

CPT boundsCPT bounds

eV10510| )K(- )(K| -10-1800 ⋅=< Kmmm

Lorentz invariance + Hermiticity of the Hamiltonian + locality leads to CPT theorem in relativistic local QFT

20202 eV 25.0| )K(- )(K|or <mm

What about ν ?

2422 eV 101.1| )(- )(| −⋅<∆∆ νν mmDe Gouvea, PG (2004)Murayama (2003)

CPT bounds : Simplified caseCPT bounds : Simplified case

)0( GeV105.1b -20 =⋅< ηδ

βµ

αβµ

α νγν LL b form theof is violationLI Ifisotropic) (CMB frame preferred in theinvariant rotational +

Coleman, Glashow (1999) Colladay, Kostelecky (1997)

basis mass in the diagonal is b +Barger et al (2000)

bEmm δ+∆→∆ 22 :effect Main

Bahcall, PG (2004)

CPT bounds : Simplified caseCPT bounds : Simplified case

)0( GeV105.1b -20 =⋅< ηδ

βµ

αβµ

α νγν LL b form theof is violationLI Ifisotropic) (CMB frame preferred in theinvariant rotational +

Coleman, Glashow (1999) Colladay, Kostelecky (1997)

basis mass in the diagonal is b +Barger et al (2000)

bEmm δ+∆→∆ 22 :effect Main

Bahcall, PG (2004)

ConclusionsConclusions

Flavor conversion leads to neutrino mass

Opened a new territory to search for new physics

Neutrinoless double beta decay will probe majorana mass + hint towards seesaw & leptogenesis

MM, sterile states, NSI : predictions are very far from present bounds.

- large space of parameters to probe experimentally

- not well motivated models predict ranges tested in near future

-Test symmetries : millions of atmospheric neutrinos in Icecube

-Test cross sections : DIS at low x, NuTeV,…

top related