wireless lans - university of...

Post on 18-Apr-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Wireless LANs

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 2

Outline

• Benefits

• Applications

• Technologies

• Issues

• Configurations

• Overview of 802.11 Standard

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 3

Outline II

• MAC layer protocols

• PHY layer protocols

• Implementation concerns

2

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 4

Introduction

• Standard vs. Proprietary protocols– Interoperable hardware

– Interoperable software

– Reduced prices

– New applications and uses

Benefits

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 6

Wireless LAN Benefits

• Mobility• Simple/fast installations

– Temporary connectivity– Difficult to wire situations

• Reliability– Immunity from cable plant problems

• Reduced TCO for MAC’s– Moves, adds and changes

3

Applications

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 8

Wireless LAN Applications

• Retail

• Warehousing

• Healthcare

• Hotel & Restaurant

• Conference Hosting

• SOHO’s

• Certain Enterprise LANs

Technologies

4

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 10

Wireless LAN Technologies

• IEEE 802.11– 1 Mbps and 2 Mbps– 2.4GHz spectrum– 2-PHYs FHSS, DSSS

• IEEE 802.11b– Most common– Extended data rates thru 11 Mbps– 2.4 Ghz

• IEEE 802.11a– Up to 54 Mbps– 5 GHz spectrum– OFDM PHY modulation

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 11

Wireless LAN Technologies

• HiperLAN/1– Up to 24 Mbps

– QoS support

– 5 GHz specturm

• HiperLAN/2– in development

– Up to 54 Mbps– QoS support

– Ethernet, ATM and IP transport standards

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 12

Wireless LAN Technologies

• HomeRF SWAP– Shared Wireless Access Protocol

– Support communications between PCsand consumer devices

– 1 to 2 Mbps support

– FHSS modulated PHY

– 10 Mbps in developent

5

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 13

Wireless LAN Technologies

• Bluetooth–Radio-based wireless PAN

– PAN: personal area network

– FHSS modulated PHY

– 2.4Ghz spectrum

Issues

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 15

Wireless LAN Issues

• Multipath propagation

Office WallTx

Office Furniture

Rx

6

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 16

Wireless LAN Issues

• Hidden terminal problem

TerminalA

TerminalB

Barrier

Access Point

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 17

Wireless LAN Issues

• Path loss• Signal interference

– Inward interference–Outward interference

• Battery life

InwardW

OutwardW

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 18

Wireless LAN Issues

• Interoperability• Network Security

Property A Property B

Bldg Bldg

Public Road

7

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 19

Wireless LAN Issues

• Application Connectivity Problems– Addressing

– Connection reliability

• Installation IssuesOmnidirectional antenna radiation

Configurations

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 21

Ad-Hoc Networks (Peer to Peer)

Single CellRadio LAN

PC Client

PC Client

PC Client

8

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 22

Overlapping Cells

Wired Network

Cell A Cell B Cell C

AccessPoint

AccessPoint

AccessPoint

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 23

General LAN Configuration

Wired Network

AccessPoint

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 24

Wireless Bridges

Network B

Local Bridge

Remote Bridges

Network A

Network C

9

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 25

Infrared LAN Configuration

CeilingInfraredLight

802.11 Overview

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 27

Goals of 802.11

• Asynchrounous, time-bounded delivery

• Continuity of servic via distribution network

• Transmission speeds of 1 Mbps and 2 Mbps

• Wide application support

• Multicast services

• Network management services

• Registration and authentication

10

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 28

802.11 Overview

• Target Environments– Inside buildings– Select outdoor areas

• Target concerns– Power management– Bandwidth efficiency– Security– Addressing

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 29

Benefits of 802.11

• Appliance interoperability

• Fast product development

• Stable future migration

• Price competition

• Silo avoidance

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 30

IEEE 802.11 Topology

• 2 standard topologies composed ofstations, access points, distribution systemsportals.

• IBSS- Independent Basic Service Set– Standalone BSS with no backboneinfrastructure

• ESS- Extended Service Set– Multiple BSS’s interconnected by accesspoints and a distribution system

11

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 31

IEEE 802.11 Topology

• Station– any device that contains functionality of the802.11 protocol– The functions named in the standard physically reside in theNIC

• Access point– an addressable station providing aninterface to the distribution system for stations located invarious BSS’s

• Distribution system– network element used to connectBSSs within the ESS via access points

• Portals– logical point of entry and exit for 802.11 frames– The access point for 802-type distribution systems

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 32

IBSS Topology

Station A

Station B

Basic Service Set(BSS)

Single CellPropagationBoundary

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 33

ESS Topology

BSS 1

DistributionSystem

BSS 2

AccessPoint

AccessPoint

12

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 34

IEEE 802.11 Topology

• BSS configurations within an ESS– Partially overlap

• Contiguous coverage, no disruption

– Physically disjointed• Non-contiguous coverage, possible disruption

– Physically co-located• Used for redundancy and high performance

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 35

IEEE 802.11 Topology

• Mobility Support– No-transition

• Fixed or “local” stations only

– BSS-transition• Stations move between BSSs of the same ESS

– ESS transition• Stations move between BSSs of different ESSs

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 36

IEEE 802 Family

• Local and Metropolitan Area NetworkStandards Committee

IEEE 802.2Logical Link Control (LLC)

IEEE802.3

CarrierSense

IEEE802.4TokenBus

IEEE802.5TokenRing

IEEE802.11

Wireless

MAC

PHY

OSI Layer 2(Data Link)

OSI Layer 1(Physical)

13

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 37

802.11 Services

• Functions required by the LLC to sendMAC SDUs

• 2 types– Station services

– Distribution services

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 38

802.11 Station Services

• Authentication– Open systems– Shared key

• De-authentication– Irrefutable

• Privacy – optional– All data frames– Some management frames

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 39

Optional Privacy Service

Encryption

Decryption

Plain Text

Cipher Text

Plain Text

WirelessMedium

14

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 40

Network Join

• Passive scanning—– Listen for access point beacons with correctSSID

• Active scanning-– Probe request packet with SSID of desirednetwork

– Probe response– Probe broadcast packet to have allreachable network respond

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 41

802.11 Distribution Services

• Association– Station associates with single access point– Access point can associate with multiple stations

– First step to support station mobility

– Indicates whether a station is pollable

• Disassociation– When leaving network

– When going offline

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 42

802.11 System Services

• Distribution– Transmission of MAC frame across distributionnetwork

• Integration– Media and address translation for non-802.11LANs

• Reassociation– Initiated by mobile station to support BSS-transitions

15

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 43

Station State Transition

Class 1, 2 & 3Frames Permitted Class 1 & 2

Frames Permitted

State 1(Unauthenticated,

Unassociated)

State 2(Authenticated,Unassociated)

State 3(Authenticated,

Associated)

Class 1Frames Permitted

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 44

Station State Transition

State 1(Unauthenticated,

Unassociated)

State 2(Authenticated,Unassociated)

State 3(Authenticated,

Associated)

Class 1Frames Permitted

Class 1, 2 & 3Frames Permitted Class 1 & 2

Frames Permitted

SuccessfulAuthentication

DeauthenticationNotification

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 45

Station State Transition

State 1(Unauthenticated,

Unassociated)

State 2(Authenticated,Unassociated)

State 3(Authenticated,

Associated)

Class 1Frames Permitted

Class 1, 2 & 3Frames Permitted Class 1 & 2

Frames Permitted

SuccessfulAuthentication

DeauthenticationNotification

Successful Association,Reassociation

DisassociationNotification

16

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 46

Station State Transition

State 1(Unauthenticated,

Unassociated)

State 2(Authenticated,Unassociated)

State 3(Authenticated,

Associated)

Class 1Frames Permitted

SuccessfulAuthentication

DeauthenticationNotification

Successful Association,Reassociation

DeauthenticationNotification

DisassociationNotification

Class 1, 2 & 3Frames Permitted Class 1 & 2

Frames Permitted

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 47

Frame Types

• Class 1 Frames– Control Frames –

• RTS/CTS, ACK, Contention-free

– Management Frames –• Probe request/response, beacon,

• Authentication, deauthentication

• Announcement traffic indication message

– Data Frame

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 48

Frame Types

• Class 2 Frames– Management Frames

• Association request/response• Reassociation request/response• Disassociation

• Class 3 Frames– Data & Management Frames– Deauthentication– Control Frames– Power Save Poll

17

Physical Layer

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 50

Physical Layer Management

• Convergence Procedure (PLCP)– Communicates with MAC layer to handleTx and Rx of wireless frames

• Media Dependent Sublayer (PMD)– Provides actual Tx and Rx functions

– De/Modulates on wireless medium

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 51

Physical Layer Management

• Operations– Carrier Sense

– Transmit

– Receive

18

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 52

Physical Layer Management

• Carrier Sense function at multiple levels– MAC level performs “clear channelassessment”

– CCA causes PLCP to direct PMD to checkwhether the medium is busy or idle

– If station is not transmitting a frame, PLCPsearches for preamble

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 53

Physical Layer Management

• Transmit Function– MAC layer sends data and rate directive toPHY

– PHY sends preamble to antenna within20 msec

• Preamble and header sent @ 1 Mbps

• Payload sent at specified rate

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 54

Physical Layer Management

• Receive Function– PLCP senses busy medium

– PLCP receives error-free header

– PLCP interprets data rate and length field

– PLCP transfers header to MAC

– PLCP receives payload

– PLCP delivers payload to MAC

19

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 55

Physical Layer Management

• 802.11 PHYs 2.4 GHz– Initially 1 or 2 Mbps– FHSS, DSSS or IR

• 802.11b– DSSS extended to HR-DSSS– Employs CCK for 5.5 and 11 Mbps operation

• 802.11a– Uses OFDM for data rates up to 54 Mbps @ 5 GHz– Employs multiple frequencies each supportingmultiple phase and amplitude modulation

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 56

FHSS PHY

• PLCP Frame format

SYNCStart FrameDelimiter PLW PSF

Header ErrorCheck

WhitenedPSDU

80 16 12 4 16 Variable

BITS

PLCPPreamble

PLCPHeader

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 57

FHSS Modulation

• Hop from channel to channel to channel ina pseudo-random sequence.

• Tx/Rx at each frequency for a specificamount of time– dwell time

• Binary 0 is represented by a fixed negativedeviation from the center frequency

• Binary 1 is represented by a positivedeviation of the same magnitude

20

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 58

DSSS PHY

• PLCP Frame format

SYNCStart FrameDelimiter

Signal Service FCS MPDU

128 16 8 8 16 Variable

# BITS

PLCPPreamble

PLCPHeader

Length

PPDU

16

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 59

DSSS Modulation

• Up to 14 channels each 22 MHz wide

• Differential Binary PSK for 1 Mbps

• Differential Quadrature PSK for 2 Mbps

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 60

Infrared (IR) PHY

• PLCP Frame format

SYNCStart FrameDelimiter

DataRate

DC LevelAdjustment

Length FCS

57-73 4 3 32 16 16

Slots

PLCPPreamble

PLCPHeader

PSDU

21

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 61

IR Modulation

• 16 PPM for 1 Mbps transmission– Creates a 16 position encoding for 4 bits– 16 entry table in gray-code order

• Column 1 has the 4 data bit values• Column 2 has the 16 position encoding

– Encoding places a 1 in the position equal to thetable row number. E.g.

• Row 1: 0000 0000000000000001• Row 2: 0001 0000000000000010• Row 3: 0011 0000000000000100• Etc.

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 62

IR Modulation

• 4 PPM for 2 Mbps transmission– Creates a 4 position encoding for 2 bits– 4 entry table in gray-code order

• Column 1 has the 2 data bit values• Column 2 has the 4 position encoding

– Encoding places a 1 in the position equal to thetable row number.

• Row 1: 00 0001• Row 2: 01 0010• Row 3: 11 0100• Row 4: 10 1000

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 63

802.11b PHY (HR-DSSS)

• Same as 802.11 DSSS for 1 and 2 Mbps• Similar frame format

– Shorter sync field 56 bits– Expanded signal field for 5.5 and 11 Mbps– Expanded service field values

• Uses CCK to spread the frequencies• Uses bit-position dependent phases to

signal multiple bits

22

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 64

802.11a PHY (OFDM)

• PLCP frame format

PLCPPreamble

RATE RESERVED PARITY SERVICELEN TAIL TAILPSDU

12 4 1 12 1 6 16 6 V

PAD

V

BITS

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 65

802.11a PHY (OFDM)

• Divide high-speed serial data stream acrossmultiple lower speed sub-signals

• Transmit the multiple sub-signalssimultaneously at different frequencies

MAC Layer

23

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 67

802.11 MAC Layer

• Transimission Services– Asynchronous data service (mandatory)

– Time-bounded service

• Access Methods– CSMA/CA

– Station reservation (hidden terminal)

– Contention-free polling

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 68

802.11 MAC Layer

• Access method Implementation– Distributed Coordination Function (DCF)– Point Coordination Function (PCF)

• Frame Spacing– DIFS– DCF Interframe Spacing

• Lowest priority for asynchronous data

– PIFS– PCF Interframe Spacing• Medium priority for time-bounded data

– SIFS– Short Interframe Spacing• Highest priority for control, polling and acks

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 69

DCF with CSMA/CA

sense thechannel

Txframe

RandomBackoff

NAV=0

Success!

IDLE ? Collision?

NO NO YES

24

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 70

802.11 MAC Layer

contentionmedium busy next framenext frame

DIFS DIFS

PIFS

SIFS

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 71

802.11 MAC Layer

• Contention Interval Issues– Backoff timer management

• Randomized backoff timer

• Residual backoff timer

– Congestion window management• Load dependent

• Exponential increase 7 .. 255– Light load … short delay

– Heavy load… reduce probability of additional collisions

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 72

BOe B

BOe B

BOe B

BOe B BOrBOe

BOe BOr

DCF with CSMA/CA

Station 1

Station 2

Station 3

Station 4

Station 5

B

DIFS DIFS

BOe BOr

BOe BOr

DIFS DIFS

25

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 73

C B

B

ACK

DCF with CSMA/CA

• Unicast ACKs

Sender

Receiver

OtherStations

DIFS

SIFS

DIFS

data

contention

wait time

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 74

DCF RTS/CTS

• Hidden terminal solution– Two stations unable to sense each other’stransmission that collides at the receiver

• Goal have senders schedule theirtransmission via the NAV

• Collisions possible only at the initial phase

• Threshold based due to overhead

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 75

DCF RTS/CTS

ACKCTS

dataRTSSender

Receiver

OtherStations

DIFS

SIFS SIFS

DIFS

SIFS

defer access

NAV (CTS)

NAV (RTS)

26

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 76

DCF RTS/CTS

• Fragment Solution– May be useful for error-prone environs

– Transparent to LLC and USER

– Send new NAV with each fragment

• Fragment and ACK transmission causeNAV update

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 77

PCF Polling

• SuperFrame concept– Contention-free interval reserved via NAV– Contention interval

• Point Coordinator Frame Types– Data Frame– CF Poll Frame– Data+CF Poll Frame– CF End Frame

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 79

Frame Format

FRAMECONTROL

DurationID

ADDRESS1

ADDRESS3

ADDRESS4

ADDRESS2

SEQCONTROL

CRCDATA

2 2 6 6 6 2 6 [0-2313] 4

BYTES

27

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 80

Frame Control Field

PROTOCOLVERSION

TYPE SUBTYPEFROM

DSRETRY

TODS

MOREFRAG

MOREDATA

PWRMGMT

2 2 4 1 1 1 1 1

BITS

WEP ORDER

1 1 1

Bit 0 Bit 15

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 81

Transmission Types

• Ad hoc network

• Infrastructure network, from AP

• Infrastructure network, to AP

• Infrastructure network, within DS

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 82

Address Interpretation

SADATARA11W/I

DS

-DASABSSID01To AP

-SABSSIDDA10FromAP

-BSSIDSADA00Ad hoc

Addr

4

Addr

3

Addr

2

Addr

1

From

Ds

To

DS

Tx

Type

28

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 83

Station Synchronization

• Distributed clock management

• Infrastructure-based networks– Access point transmits (quasi) periodicbeacon w/ timestamp

• Ad hoc networks– Each station schedules beacon transmission

– Winning station causes others to reschedule

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 86

Power Management

• Goal– Allow stations to enter “sleep” mode toconserve power

– Have senders buffer data for receivers in“sleep” mode

– All stations wake up for beacon

– Delivery outstanding frames

– Allow stations to go back to “sleep”

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 87

Power Management

• Infrastructure networks– TIM– traffic indication map

• Sent with beacon message to identify receiverswith outstanding unicast frames

– DTIM– delivery traffic indication map• Special TIM interval for sending broadcast &

multicast traffic

• Multiple of the the TIM interval

29

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 88

Power Management

• Ad hoc networks– ATIMs- ad hoc TIMs

• Sent by all stations during beacon interval

• Lists all stations with buffered frames

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 91

Power Management

• Issues– TIM, DTIM sizing

• Too small – little power savings

• Too large – many buffered frames

– ATIM scalability• Large number of sleeping stations imply large

ATIM window. See above.

• Large number of stations with large ATIMs implyhigher collision rate

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 92

Mobility Support

• Typical networks require multiple accesspoints to cover all areas

• Access point coverage 10-20m radius

• Moving between access points– Roaming

30

Dr. Michael S. Boykin Spring 02-2 Local Area Networks 93

Mobility Support

• Roaming steps– Scan for access points– Select “best” access point for association

– Transmit association request

– The access point transmits an association response

– Access points updates• Its BSS station database

• the DS to allow it to update its station database

• May inform old access point of update information

top related