amx4 series diagnostics

216

Click here to load reader

Upload: luis-serralta

Post on 27-Oct-2014

312 views

Category:

Documents


72 download

TRANSCRIPT

Page 1: Amx4 Series Diagnostics

GE Medical Systems

TechnicalPublications

���������������� ��������� �

� ����� ����

� ������������� ���������

� ����������������� �� �� ��!��� �" ��

����� ����� �#������������ ��$����

Direction 46–017207Revision 11

�%&'(����������� �����

Copyright� )*++,�)*+*,�)**-,�)**),�)**.,�1997, 1998, 1999 By General Electric Co.

Page 2: Amx4 Series Diagnostics
Page 3: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

i

� THIS SERVICE MANUAL IS AVAILABLE IN ENGLISH ONLY.

� IF A CUSTOMER’S SERVICE PROVIDER REQUIRES A LANGUAGE OTHERTHAN ENGLISH, IT IS THE CUSTOMER’S RESPONSIBILITY TO PROVIDETRANSLATION SERVICES.

� DO NOT ATTEMPT TO SERVICE THE EQUIPMENT UNLESS THIS SERVICEMANUAL HAS BEEN CONSULTED AND IS UNDERSTOOD.

� FAILURE TO HEED THIS WARNING MAY RESULT IN INJURY TO THE SERVICEPROVIDER, OPERATOR OR PATIENT FROM ELECTRIC SHOCK, MECHANICALOR OTHER HAZARDS.

� CE MANUEL DE MAINTENANCE N’EST DISPONIBLE QU’EN ANGLAIS.

� SI LE TECHNICIEN DU CLIENT A BESOIN DE CE MANUEL DANS UNE AUTRELANGUE QUE L’ANGLAIS, C’EST AU CLIENT QU’IL INCOMBE DE LE FAIRETRADUIRE.

� NE PAS TENTER D’INTERVENTION SUR LES ÉQUIPEMENTS TANT QUE LEMANUEL SERVICE N’A PAS ÉTÉ CONSULTÉ ET COMPRIS.

� LE NON-RESPECT DE CET AVERTISSEMENT PEUT ENTRAÎNER CHEZ LETECHNICIEN, L’OPÉRATEUR OU LE PATIENT DES BLESSURES DUES À DESDANGERS ÉLECTRIQUES, MÉCANIQUES OU AUTRES.

� DIESES KUNDENDIENST–HANDBUCH EXISTIERT NUR IN ENGLISCHERSPRACHE.

� FALLS EIN FREMDER KUNDENDIENST EINE ANDERE SPRACHE BENÖTIGT,IST ES AUFGABE DES KUNDEN FÜR EINE ENTSPRECHENDE ÜBERSETZUNGZU SORGEN.

� VERSUCHEN SIE NICHT, DAS GERÄT ZU REPARIEREN, BEVOR DIESESKUNDENDIENST–HANDBUCH NICHT ZU RATE GEZOGEN UND VERSTANDENWURDE.

� WIRD DIESE WARNUNG NICHT BEACHTET, SO KANN ES ZU VERLETZUNGENDES KUNDENDIENSTTECHNIKERS, DES BEDIENERS ODER DES PATIENTENDURCH ELEKTRISCHE SCHLÄGE, MECHANISCHE ODER SONSTIGEGEFAHREN KOMMEN.

� ESTE MANUAL DE SERVICIO SÓLO EXISTE EN INGLÉS.

� SI ALGÚN PROVEEDOR DE SERVICIOS AJENO A GEMS SOLICITA UN IDIOMAQUE NO SEA EL INGLÉS, ES RESPONSABILIDAD DEL CLIENTE OFRECER UNSERVICIO DE TRADUCCIÓN.

� NO SE DEBERÁ DAR SERVICIO TÉCNICO AL EQUIPO, SIN HABERCONSULTADO Y COMPRENDIDO ESTE MANUAL DE SERVICIO.

� LA NO OBSERVANCIA DEL PRESENTE AVISO PUEDE DAR LUGAR A QUE ELPROVEEDOR DE SERVICIOS, EL OPERADOR O EL PACIENTE SUFRANLESIONES PROVOCADAS POR CAUSAS ELÉCTRICAS, MECÁNICAS O DE OTRANATURALEZA.

WARNING

AVERTISSEMENT

WARNUNG

AVISO

Page 4: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

ii

� ESTE MANUAL DE ASSISTÊNCIA TÉCNICA SÓ SE ENCONTRA DISPONÍVELEM INGLÊS.

� SE QUALQUER OUTRO SERVIÇO DE ASSISTÊNCIA TÉCNICA, QUE NÃO AGEMS, SOLICITAR ESTES MANUAIS NOUTRO IDIOMA, É DARESPONSABILIDADE DO CLIENTE FORNECER OS SERVIÇOS DE TRADUÇÃO.

� NÃO TENTE REPARAR O EQUIPAMENTO SEM TER CONSULTADO ECOMPREENDIDO ESTE MANUAL DE ASSISTÊNCIA TÉCNICA.

� O NÃO CUMPRIMENTO DESTE AVISO PODE POR EM PERIGO A SEGURANÇADO TÉCNICO, OPERADOR OU PACIENTE DEVIDO A‘ CHOQUES ELÉTRICOS,MECÂNICOS OU OUTROS.

� IL PRESENTE MANUALE DI MANUTENZIONE È DISPONIBILE SOLTANTO ININGLESE.

� SE UN ADDETTO ALLA MANUTENZIONE ESTERNO ALLA GEMS RICHIEDE ILMANUALE IN UNA LINGUA DIVERSA, IL CLIENTE È TENUTO A PROVVEDEREDIRETTAMENTE ALLA TRADUZIONE.

� SI PROCEDA ALLA MANUTENZIONE DELL’APPARECCHIATURA SOLO DOPOAVER CONSULTATO IL PRESENTE MANUALE ED AVERNE COMPRESO ILCONTENUTO.

� NON TENERE CONTO DELLA PRESENTE AVVERTENZA POTREBBE FARCOMPIERE OPERAZIONI DA CUI DERIVINO LESIONI ALL’ADDETTO ALLAMANUTENZIONE, ALL’UTILIZZATORE ED AL PAZIENTE PERFOLGORAZIONE ELETTRICA, PER URTI MECCANICI OD ALTRI RISCHI.

ATENÇÃO

AVVERTENZA

Page 5: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

���

TABLE OF CONTENTS

�"#/�� #/#�� ����

REVISION HISTORY xiii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 INTRODUCTION 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 General 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Diagnostics Identification 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Diagnostics Menu Items 1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 Sys Diagnostics 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Data Log 1–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 Error Log 1–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 Charge Batteries 1–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 ENTERING DIAGNOSTICS 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Entering Diagnostics 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ����� �������� ������ ���������������������������������������������������������������������������������������������������� ����� ������ ���������������������������������������������������������������������������������������������������

3 SYSTEM DIAGNOSTICS FOR AMX–4 UNITS WITH:PROMS 46–302688G1/46–302687G1 OR 46–303272G1/46–303273G1AND CPU BOARDS 46–232828 OR 46–264974 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 System Block Test 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ����� ������������������� ��� �����������������������������������������������������������������������������������3-2 Op Switch Test 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ����� ������!"�����#� ��� ��$��������������������������������������������������������������������������������������3-3 Display Controller 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Battery Voltage 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Loop Test 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Demonstration Procedure 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��%�� ������&��"� ��� ��'����������������������������������������������������������������������������������������������������%�� �� �� ����� ���(��������������������������������������������������������������������������������������������������������%�� )���� #����� � ����������������������������������������������������������������������������������������������������

4 SYSTEM DIAGNOSTICS FOR AMX–4 UNITS WITH:PROMS 46–303815G1/46–303816G1, 46–316685G1/46–316686G1, OR 46–329187G1 or G2/46–329188G1 or G2 AND CPU BOARD 46–264974 4–14-1 System Block Test 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $���� ������������������� ��� $����������������������������������������������������������������������������������4-2 Op Switch Test 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $���� ������!"�����#� ��� $�$��������������������������������������������������������������������������������������4-3 Display Controller 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Battery Voltage 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Loop Test 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 Demonstration Procedure 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $�%�� ������&��"� ��� $�'��������������������������������������������������������������������������������������������������$�%�� �� �� ����� $��(������������������������������������������������������������������������������������������������������$�%�� )���� #����� � $���������������������������������������������������������������������������������������������������

Page 6: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

��

TABLE OF CONTENTS (Cont.)

�"#/�� #/#�� ����

5 I/O PORTS 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Introduction 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Selected Functions 5–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 Charger and Drive Status 5–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 On–Board Status 5–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 A/D Converter 5–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Operator I/O Status 5–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 Generator and AEC Status 5–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 Generator Control 2 5–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 Charger and Drive Control 5–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 AEC Control 5–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 Generator Control 1 5–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 A/D Control 5–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 Set Back–Up Time 5–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14 On–Board Control 5–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 Right Speed Command DAC 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 Left Speed Command DAC 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17 Charge Current DAC 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18 Leakage Current Compensation DAC 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19 Programmable Timer 5–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20 Filament Current Demand DAC 5–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 KVP Demand DAC 5–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22 Watchdog Timer 5–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23 Variables Unique To PROMS 46–302688G1/46–302687G1

and 46–303272G1/46–303273G1 5–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24 kVp/mAs Display After Exposure 5–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25 Critical Status 5–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26 Force the Use of 137 kV in Tapcal 5–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27 Force an Extended Charge Cycle 5–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 DATA LOG 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 Introduction 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 Enter Data Log 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %���� ������*���� � �&� %��������������������������������������������������������������������������������������������%���� ������+�� �,��� � �&� %�$��������������������������������������������������������������������������������������6-3 Load Data Log 6–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 ERROR LOG 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 Introduction 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Entering Error Log 7–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -���� *���������&�� -������������������������������������������������������������������������������������������������������-���� +�� �,��������&�� -�$����������������������������������������������������������������������������������������������7-3 View Histograms 7–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 Initialize Histograms 7–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 Error List 7–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 7: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

TABLE OF CONTENTS (Cont.)

�"#/�� #/#�� ����

8 CHARGER 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 Introduction 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 Entering Charger 8–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 DATA BASE ACCESS 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 Introduction 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 Entering Data Base Access 9–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '���� �������� ������ '����������������������������������������������������������������������������������������������'���� ����)�#����.# ��� '������������������������������������������������������������������������������������������9-3 Data Base Display 9–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 Selecting Data Base Address 9–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 Changing Data Base Values 9–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 Check Sum and Limit Errors 9–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 Demonstration Procedure 9–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '�-�� ������� � �� ���/����� '�0������������������������������������������������������������������������������������'�-�� .# ���1����&#��!�� �� '�%������������������������������������������������������������������������������'�-�� ����.# �� '�%������������������������������������������������������������������������������������������������������'�-�$ ������. �2� ��� '�-������������������������������������������������������������������������������������������������'�-�0 .# ���1����&#��!�� �� '�-������������������������������������������������������������������������������'�-�% ����.# ���/ � '�-��������������������������������������������������������������������������������������������'�-�- ������� � �� ���/����� '�3������������������������������������������������������������������������������������'�-�3 !��4����!�� '�3����������������������������������������������������������������������������������������������������'�-�' ������� #��!�� ��* ��� '�3����������������������������������������������������������������������������������9-8 Floor Scuffing 9–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 DATA BASE FOR AMX–4 UNITS WITH:PROMS 46–302688G1/46–302687G1 OR 46–303272G1/46–303273G1AND CPU BOARDS 46–232828 OR 46–264974 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 Calibratible X–Ray Parameters 10–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 Auto Cal Filament Current 10–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 Filament Current Calibration Table 10–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 Turns Ratio Taps 10–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 System Resistance Taps 10–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 Drive Parameters 10–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 Charge Parameters 10–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 Battery Parameters 10–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 Field Light Parameters 10–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 8: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

��

TABLE OF CONTENTS (Cont.)

�"#/�� #/#�� ����

11 DATA BASE FOR AMX–4 UNITS WITH:PROMS 46–303815G1/46–303816G1, 46–316685G1/46–316686G1, OR 46–329187G1 or G2/46–329188G1 or G2 AND CPU BOARD 46–264974 11–111-1 Calibratible X–Ray Parameters 11–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 Filament Current Calibration Table 11–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3 Turns Ratio Taps 11–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4 System Resistance Taps 11–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 Drive Parameters 11–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 Charge Parameters 11–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7 Battery Parameters for PROMS 46–303815G1/46–303816G1

or 46–316685G1/46–316686G1 11–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 Battery Parameters for PROMS

46–329187G1 or G2/46–329188G1 or G2 11–16. . . . . . . . . . . . . . . . . . . . . . . 11-9 Field Light Parameters for PROMS

46–303815G1/46–303816G1 or 46–316685G1/46–316686G1 11–18. . . . . . 11-10 Field Light Parameters for PROMS

46–329187G1 or G2/46–329188G1 or G2 11–19. . . . . . . . . . . . . . . . . . . . . . . 11-11 Auto Cal Filament Table 11–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12 Monitor Zero Capacity Millivolts for PROMS 46–303815G1/

46–303816G1 or 46–316685G1/46–316686G1 11–21. . . . . . . . . . . . . . . . . . . 11-13 Battery Aging Capacity Offset for PROMS 46–329187G1 or G2/

46–329188G1 or G2 11–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 ERROR CODES 12–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 Introduction 12–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 Applications Error Handling Overview 12–1. . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3 Circular Error Buffer 12–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4 Histogram Of Errors 12–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 THEORY 13–113-1 Power–up Diagnostics 13–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 Visual Indication Of Testing 13–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 Power Up Tests 13–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 80C31 Microcontroller Tests (test – 00) 13–2. . . . . . . . . . . . . . . . . . . . . . . . . . 13-5 EPROM Checksum Test (test – 01) 13–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 Ram Battery Test (test – 02) 13–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7 External Ram Test (test – 03) 13–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8 Calibration Data Checksum Test (test – 04) 13–2. . . . . . . . . . . . . . . . . . . . . . ���3�� .#����������" �� ������������������������������������������������������������������������������������������������13-9 Watchdog Timer Test (test – 05) 13–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-10 Programmable Interval Timer Test (test – 06) 13–4. . . . . . . . . . . . . . . . . . . . . 13-11 A/D Converter Circuitry Test (test – 07) 13–4. . . . . . . . . . . . . . . . . . . . . . . . . . 13-12 Application Mode 13–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13 Charge Control 13–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ������� .# ���.�������/����#��5�����!6��$%��(�%337�8$%��(�%3-7�9

$%��(��-�7�8$%��(��-�7�� ���$%��(�3�07�8$%��(�3�%7� ���0����������������������������������� .# ���.�������/����#��5�����!6��$%���%%307�8$%���%%3%7� ���-����������������������������� .# ���.�������/����#��5�����!6��

$%���'�3-7�����7�8$%���'�337�����7� ���'������������������������������������������������������������

Page 9: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

���

TABLE OF CONTENTS (Cont.)

�"#/�� #/#�� ����

13-14 Battery Charge Diagnostics 13–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ����$�� � ������.# �������� ���� ������ ����0��������������������������������������������������������������������$�� .# ���� ���������"� ��:/""���������!6��$%���%%307�8

$%���%%3%7�� ���& ���; ����0������������������������������������������������������������������������������������13-15 Drive 13–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ����0�� ��<��.������ ����0����������������������������������������������������������������������������������������������������������0�� ��<��� ������ ����%��������������������������������������������������������������������������������������������������0�� ��<��.���������5�� ��� #���� ����3����������������������������������������������������������������������������13-16 Generator Control 13–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ����%�� 7���� ����.�������/����#� �����������������������������������������������������������������������������������������%�� �������� #�����"���=*"���� �� �������������������������������������������������������������������������������%�� �������� #�����"��� "���� ��.��2� ��� ���������������������������������������������������������������%�$ �������� #�����"���1� �����.���������� �� �����������������������������������������������������������%�0 /����. �2� ��� ���������������������������������������������������������������������������������������������������������%�% 7���� ����.�������� �������:1 ������������; �������������������������������������������������������13-17 Field Light Control 13–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-18 Bar Graph Control For Version 46–302688G1/46–302687G1 13–23. . . . . . . 13-19 Bar Graph Control For Version 46–303272G1/46–303273G1

or 46–303815G1/46–303816G1 13–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20 Bar Graph Control For Version 46–316685G1/46–316686G1 13–25. . . . . . . 13-21 Battery Aging for Firmware 46–316685G1/46–316686G1

and Earlier 13–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-22 Bar Graph Control For Version 46–329187G1 or G2/46–329188G1 or G2

(SMART GAUGE) 13–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ������� ���# ���&� �� ����%������������������������������������������������������������������������������������������������������� ���������. " ��� ����3������������������������������������������������������������������������������������������������� ���# ����# ��� ����3����������������������������������������������������������������������������������������������������$ *��� ��.��"��� ��� ���������������������������������������������������������������������������������������������������0 � ������/�� �������������������������������������������������������������������������������������������������������������% � ������/� ���������������������������������������������������������������������������������������������������������13-23 Heat Storage Tube Protection 13–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24 Service Mode 13–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-25 Calibration 13–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ����0�� ��<��> �����. �2� ��� ���������������������������������������������������������������������������������������������0�� � ������.# ����. �2� ��� �����������������������������������������������������������������������������������������0�� � ������*��������� . �2� ��� ����$����������������������������������������������������������������������������������0�$ 7���� ����. �2� ��� ����$��������������������������������������������������������������������������������������������0�0 �/��. �2� ��� ����$������������������������������������������������������������������������������������������������������0�% �*"�. �2� ��� ����$������������������������������������������������������������������������������������������������������0�- "���� ��. �2� ��� ����0����������������������������������������������������������������������������������������������0�3 1� �����.�������:?�� �� �2��.# � ��������;�. �2� ��� ����0����������������������������������������0�' 1����&#��!�� ���. �2� ��� ����%��������������������������������������������������������������������������13-26 Extended Diagnostics And Service Tools 13–36. . . . . . . . . . . . . . . . . . . . . . . . 13-27 Data Log Access 13–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-28 Data Base Access 13–36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 10: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

����

TABLE OF CONTENTS (Cont.)

�"#/�� #/#�� ����

14 TROUBLESHOOTING HINTS AND SERVICE AIDS 14–1. . . . . . . . . . . . . . . . . . . . . . 14-1 Isolating Battery Problems 14–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �$���� *��� �����"�@�����&� � �$��������������������������������������������������������������������������������������14-2 CPU Dip Switch Positions 14–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3 Generator Cal 14–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �$���� �2���"��������A./&+��/ �� /��B �$�������������������������������������������������������������������$���� ?�� ��)����&��������A./&�1+&�.@�� �&B �$���������������������������������������������������������$���� ������� #��!��������"����������A./&+��/ ���*"B �$����������������������������������������14-4 Synchronizing Internal Capacity Meter to Capacity Displayed

(Firmware 46–329187G1 or G2 and 46–329188G1 or G2 Only) 14–4. . . . .

15 BLOCK DIAGRAMS 15–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 Illustration Listing 15–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

APPENDIX DECIMAL, HEXADECIMAL AND BINARY EQUIVALENTS A–1. . . . . . . . . . . . . . . . .

Page 11: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

��

��0//���1/#��2

��0 ��#� ����������"1����

� ������ �� ������� ��������

������ �� ��������������������

� ������ � !��������������������"������

# $���� � %�&'()� �������������"������

* $������ %�&'()� ����������������������"������+����&����������������,����&'()� ,�� �����-�������������,��-���.����

� �����/� # +����&'()� */0#//��12*/0#//�/1�+�������%3�����*/0#�/ ������-��������,�����������������'()� */0�4 ��/1 2*/0�4 ��1�������"�����.����*/0�#��*�1&"��"��������������"�,�����+�� ������#0�0#�5-����������� �,�&���6"����7�������58�,�9(��"�-�����3�����������&7��������� ��������

/ -���4� # +��'()� */0#� �412*/0#� ��1�+�������*/0#� �/4 ������+���"�����.����*/0���4�/1�

4 ����4� 4 �����������������3������������������������������ �������

� ������ 4 �"�����������5+�:0* �����-����������;7�������� �����/ #/����������,,��������< ������0=�

$3��*� 4 >������ ��������0�*����0�/�

� +����� >������ �������*0��*0/0��*0/0#�40#� 040� 040�� 040�� 0404�+������,���������,���&���*/0#� �41����*/0#� ��1�,��)�����0����3���

� +���������# >������,�����,��+������0��������?����

�/#��������"#/0������

���� ��0//�� ���� ��0//�� ���� ��0//��

�!%3�� �!%3�� �!%3�� �!%3�� �!%3�� �!%3��

6����'���

��"�3���

0�"�30/

�0�"�3�0*

#0�"�3#0�

*0�"�3*0�

�0�"�3�0/

/0�"�3/0*

40�"�340�

�0����0�

0�"�3 0�

�0�"�3�0�

0�"�30��

�0�"�3�0��

#0�"�3#0#/

*0�"�3*0*

�0�"�3�0�*

+0���+0�

Page 12: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 13: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

xi

Direction 46–017207Revision 11

AMX–4 Series Diagnostics

IMPORTANT! . . . X-RAY PROTECTION

X-ray equipment if not properlyused may cause injury.Accordingly, the instructionsherein contained should bethoroughly read and understoodby everyone who will use theequipment before you attempt toplace this equipment inoperation. The General ElectricCompany, Medical SystemsGroup, will be glad to assist andcooperate in placing thisequipment in use.

Although this apparatusincorporates a high degree ofprotection against x-radiation otherthan the useful beam, no practicaldesign of equipment can provide

complete protection. Nor can anypractical design compel theoperator to take adequateprecautions to prevent thepossibility of any persons carelesslyexposing themselves or others toradiation.

It is important that everyone havinganything to do with x-radiation beproperly trained and fully acquaintedwith the recommendations of theNational Council on RadiationProtection and Measurements aspublished in NCRP Reportsavailable from NCRP Publications,7910 Woodmont Avenue, Room1016, Bethesda, Maryland 20814,and of the International Commission

on Radiation Protection, and takeadequate steps to protect againstinjury.

The equipment is sold with theunderstanding that the GeneralElectric Company, Medical SystemsGroup, its agents, andrepresentatives have noresponsibility for injury or damagewhich may result from improper useof the equipment.

Various protective material anddevices are available. It is urged thatsuch materials or devices be used.

CAUTION: United States Federallaw restricts this device to use by oron the order of a physician.

Page 14: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

xii

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 15: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

xiii

CERTIFIED ELECTRICAL CONTRACTOR STATEMENT

All electrical installations that arepreliminary to positioning of theequipment at the site prepared for theequipment shall be performed bylicensed electrical contractors. Inaddition, electrical feeds into thePower Distribution Unit shall beperformed by licensed electricalcontractors. Other connectionsbetween pieces of electricalequipment, calibrations, and testing

shall be performed by qualified GEMedical personnel. The productsinvolved (and the accompanyingelectrical installations) are highlysophisticated, and specialengineering competence is required.In performing all electrical work onthese products, GE will use its ownspecially trained field engineers. All ofGE’s electrical work on theseproducts will comply with the

requirements of the applicableelectrical codes.

The purchaser of GE equipment shallonly utilize qualified personnel (i.e.,GE’s field engineers, personnel ofthird-party service companies withequivalent training, or licensedelectricians) to perform electricalservicing on the equipment.

DAMAGE IN TRANSPORTATION

All packages should be closelyexamined at time of delivery. Ifdamage is apparent, have notation“damage in shipment” written onall copies of the freight or expressbill before delivery is accepted or“signed for” by a General Electricrepresentative or a hospitalreceiving agent. Whether noted orconcealed, damage MUST bereported to the carrier immediately

upon discovery, or in any event,within 14 days after receipt, and thecontents and containers held forinspection by the carrier. Atransportation company will not paya claim for damage if an inspectionis not requested within this 14 dayperiod.

Call Traffic and Transportation,Milwaukee, WI (414) 827–3449 /

8*285–3449 immediately afterdamage is found. At this time beready to supply name of carrier,delivery date, consignee name,freight or express bill number, itemdamaged and extent of damage.

Complete instructions regardingclaim procedure are found inSection “S” of the Policy &Procedure Bulletins.

6/17/94

If you have any comments, suggestions or corrections to the information in this document,please write them down, include the document title and document number, and send them to:

GENERAL ELECTRIC COMPANY MEDICAL SYSTEMS

MANAGER – INFORMATION INTEGRATION,AMERICAS W–622P.O. BOX 414MILWAUKEE, WI 53201–0414

Page 16: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

xiv

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 17: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0

DIAGNOSTICS

SECTION 1INTRODUCTION

ILLUSTRATION 1–1AMX–4 IDENTIFICATION

�����

����

1-1 GeneralSee Illustration 1–1. The AMX–4 Series (henceforth, in this publication, called AMX–4) isidentified on the rating plate located on the top cover by Model Numbers 46–270157Gx,46–315161Gx, 46–329267Gx, 2115090–x, 2169360–x, 2236420–x and any other modelnumber associated with the AMX–4 Series mobile x–ray equipment.

This book is not intended to be read from cover to cover like a novel. It is intended to intro-duce you to the AMX–4 Diagnostics Service Tools and provide reference material to helpyou isolate problems.

You should be familiar with the operation and capabilities of Diagnostics before you needthem. This book can help you with the process. Read Section 1 Introduction. It provides abrief overview of the diagnostics. Read Section 3-5 Loop Test or Section 4-5 Loop Test, asappropriate for the PROMS in this unit, and Section 9 Data Base Access. You will learn howto operate AMX–4 Diagnostics and gain some insight into it’s capabilities by performingthe Demonstration Procedures.

You will need to change values between decimal, hexadecimal, and binary equivalentswhen using diagnostics. Many pocket calculators have functions to perform the conver-sions for you. However, a calculator is not always available when needed. Appendix 1 willhelp with conversions up to 16 bits or 4 hexadecimal characters when you are unable to useyour calculator.

Page 18: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

The AMX–4 contains operating safeguards providing maximum safety. Before servicing,be certain proper operating procedures are being used. Refer to Direction 46–017291AMX–4 Operation for Model Numbers 46–270157G1, G2, G3, and G50. For ModelNumbers 270157G4 and G5, refer to Direction 46–017334, AMX–4 (Japanese) Operation.For Model Numbers 46–315161 and 46–329267 Series, refer to Direction 46–017531,AMX–4 International Operation Manual (46–315161 & 46–329267 Series). For modelnumbers 2169360–x and 2236420–x, refer to Direction 2166913–100, AMX–4+ OperationManual, and to Direction 2166911–100, AMX–4+ International Operation Manual.

ILLUSTRATION 1–2PROM LOCATIONS ON CPU BOARDS

CALIBRATIONPROM

DIAGNOSTICS& APPLICATION

PROM

���������������� ����������������

U6U36

U51U104

1-2 Diagnostics Identification

Diagnostics are compatible with AMX–4 Model Numbers 46–270157, 46–315161,46–329267, 2169360–x and 2236420–x Series. The PROM locations and identificationnumbers are shown in Illustration 1–2, PROM Locations On CPU Boards, and listed inTable 1–1, CPU Boards, Proms And Locations.

TABLE 1–1CPU BOARDS, PROMS AND LOCATIONS

CPU BOARD ��������� ���������

PROMS Diagnostics/Application Calibration

� ���� ���� �� ������ ���� ���� � �����

� ���� ���� ���� ������ ���� ���� ��� �����

PROMS Diagnostics/ApplicationCalibration

� ��������� �� ������ ��������� � �����

� ��������� ���� ������ ��������� ��� �����

PROMS Diagnostics/ApplicationCalibration ������������

� ��������� ���� ������ ������ �� ��� �����

PROMS Diagnostics/ApplicationCalibration ������������

� ��� ���� ���� ������ ��� � �� ��� �����

PROMS Diagnostics/ApplicationCalibration ������������

� ��������� ���� ������ ��������� ��� �����

PROMS Diagnostics/ApplicationCalibration ������������

� ��������� ���� ������ ��������� ��� �����

Page 19: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0#

TABLE 1–2RELATED FMI’S

PROMS RELATED FMI’S

46–302688G1/46–302687G1 FMI 10271

46–303272G1/46–303273G1 FMI’S 10289 & 10291

� ����������� ������ �� ���

� ��� ������ ��� � �� ���� �������!�����

� ����������� ��������� ���

� ����������� ��������� ���

ILLUSTRATION 1–3DIAGNOSTIC PROGRAM STRUCTURE

�������� �������

�������������

�� "��

������� ����

����������� � ������ ������� ������������

��#�����

1-3 Diagnostics Menu Items

The Diagnostics program bypasses the applications program and operator console controlfunctions, providing control for fault isolation. Illustration 1–3 is a diagram of the Diagnos-tics program structure.

The Diagnostics Menu has four choices:

� ����������� � �,�&�����3����������,�3������������

�� ������ 8����������&��������������@����,�"�-���8��

Page 20: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0*

�$ ������� A��&��������������@����,�"�����������������"��������,�����

*� ������������ �"�������������&"���"�+�:�����,3��������������A�������� ��� �"������3�� �������������

ILLUSTRATION 1–4SYS DIAGNOSTICS STRUCTURE

����������� �

������ �����

������ ����� ���� ��������

��������������

��������

1-4 Sys Diagnostics

As shown on Illustration 1–4, Diagnostics has the following menu items:

�$ ������ ����� �"��B�������������B��,����3�����

�$ ������ ����� -��������"������,���������������������&���"���&���"���"������������

�$ ���� �������� !�����������������������������B��3������"�������������������������

�$ ������������� -����������������������

�$ �������� ������3�3�����������&�������������,�����������

Page 21: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

ILLUSTRATION 1–5DATA LOG FUNCTIONS

������

�������������������� ����������

1-5 Data Log

As shown on Illustration 1–5, there are three Data Log functions:

� � !" A��&-���8�� ��,���������

�� �# $ %& '! ������-���8����,����������@����

#� �(%)�%$%&(* '3� ��,�������� ���� �����,��-���8�����C������

Page 22: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0/

ILLUSTRATION 1–6ERROR LOG FUNCTIONS

�������

������������������

1-6 Error Log

As shown on Illustration 1–6, there are two Error Log functions:

� � +$(*,%-+ A��&�����������@��"�D����������

�� �,,(,� +$ A��&�����������@��"�!����8����

1-7 Charge Batteries

Charge Batteries does not have additional menu selections.

Follow the displayed prompts.

Page 23: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

SECTION 2ENTERING DIAGNOSTICS

ILLUSTRATION 2–1SERVICE SWITCH LOCATION

������

"��%������

���

&�'� "��%

ÉÉÉÉÉÉÉ

2-1 Entering Diagnostics

Before using Diagnostics you must start the diagnostic program. To start the diagnostic pro-gram, perform the following steps:

� ���"���������&���"�"�&������3���������03����"���������������������

�� (�����"�+�:0*3��������,�"�,����&������"����

� If power is off, turn the Key Switch to the ON position.

� If power is on and the top cover is installed, turn the power key OFF for more thantwo seconds, then back ON again.

� If power is on and the top cover is removed, providing access to the processorboard, press the processor reset switch (AMX1 A2 A1 S183 for CPU Board46–264974 or AMX1 A2 A1 S29 for CPU Board 46–232828).

#� E"���'�&��>����������3����������"���������&���"��&����"�����������������

When the diagnostic program is ready the ������� .���� menu selection appearson the Message Display.

Page 24: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

ILLUSTRATION 2–2DIAGNOSTIC MENU SELECTION

������������

/�0 �/�0 �

�����

�-�+

������������

/�0 �/�0 ������

�-�+

�������� �������

�������������

�� "��

������� ����

����������� � ������ ������� �����

��#�����

After ������� ����appears on the display, you must reach the ��������

����� menu selection.

Illustration 2–2 shows diagnostics selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select ��1

�����������$

� '�������"��/�0� ��/�0� 3�����"�����������������3�����������������

�� '����-�+��6"��������"���������������������������������"��-���.���+������������������

2-1-1 Entering Password

Enter password. If password is not available, contact Service Engineering. After enteringthe password, the prompt changes to ����������� � indicating that Diagnostics hasbeen entered.

When an invalid password is entered, the display changes to ������������ followedby ������������, then to �������������$Press -�+� to re–enter Diag-nostics.

If the password is not available, press -�+2� until the prompt ������������ appears.

The processor halts after three invalid entry attempts. Reset the processor by turning thekey switch off.

Page 25: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

2-1-2 Exit Diagnostics

To exit �������������press -�+2� when one of the menu selections shown onIllustration 2–2 displays.

The prompt changes to ������������then to ������������� indicatingthat Diagnostics is not active. Return to the applications program by performing the follow-ing steps:

� '�������"��/�0� ��/�0�4 6"��������� ��������3������������������

�� '����-�+��6"��������"����������� �������

#� ���"���������&���"3����"��3����������6"��������"������� � ��

������� ��63���"���&��B��)��,�������"���&����������"�����B)%������

*� �"��B���,3���������3&��B��������B��3���"�������������������

Page 26: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 27: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0

SECTION 3SYSTEM DIAGNOSTICS FOR AMX–4 UNITS WITH:PROMS 46–302688G1/46–302687G1 OR46–303272G1/46–303273G1 AND CPU BOARDS 46–232828 OR 46–264974

System Diagnostics allows you to display the battery voltage, check for stuck switches, andcheck blocks of circuitry.

ILLUSTRATION 3–1SYSTEM BLOCK TEST

����������� �

������ �����

������ ������ ���� ��������

��������������

��������

������������

/�0 �/�0 �

������-�+

3-1 System Block Test

System Block Test checks the digital to analog and analog to digital converters. It alsochecks the tap selection circuitry.To check the D/A and A/D converters, DAC U332 on CPU46–232828 or U355 on CPU 46–264974 is set up so that it will send a ������3 signal tothe Filament and kVp Control Board. The signal is received by the Filament and kVp Con-trol Board at J2 pins 11 and 12, schematic location 2–D1. The signal leaves this board unal-tered as ������4��3 at J2 pins 13 and 14, schematic location 2–E4, and returns to theCPU Board on connector J5 pins 13 and 14, schematic location 5–E1. Analog buffer AR398on CPU 46–232828 or AR392 on CPU 46–264974 conditions the signal for multiplexerU406 on CPU 46–232828 or U342 on CPU 46–264974. The signal is ultimately read by theprocessor and compared with the output signal. If they agree the test passes.

Page 28: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

Taps are checked by individuals selecting ���56 through ���76 signals at the GeneratorControl 2 Port, schematic location 4–B9 on CPU board. The six tap signals go to six identi-cal circuits on the 1kHz Driver Board, schematic sheet 2. On the 1kHz Driver Board thesesignals are converted to 110 volt coil driving signals and tap feed back logic signals. ���5

4��� through ���74��� return to the CPU board Generator and AEC Status port,schematic location 3–E7. Tap select and feedback signals are compared. If they agree thetest passes.

By examining the tap feedback circuit, you can see that a shorted coil will produce a feed-back signal. Keep this in mind when running System Block Test. You should hear six (seenote) equally spaced clicks of the relays being selected when the tap test is running. If youdon’t, and the test passes, check the relays.

Note that with this firmware, ����6 is not tested.

3-1-1 Running System Block Test

Illustration 3–1 shows Block Test selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select ���

��� ������8

� '�������"��/�0� ��/�0� 3�����"������� ���������3�����������������

�� '����-�+��6"��������������3��6"��������"������������������"�������������,�"������������������������,����"���������,�"�����,����4�����������,����"��������

E"��6��6����3�����3�"�3��"�������F3��������������B��,�"���������������������

#� !�� �����.���B6������'����������"������-�+�3�����"����������������B����"�����������(������-�+��6"�������B����������"��B��"���"��������"������������� �����������������"������"��������������������,����"�-�������������3�

Page 29: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#

ILLUSTRATION 3–2SWITCH TEST

����������� �

������ �����

������ ������ ��� ��������

�������������

��������

������������

/�0 �/�0 �

������-�+

3-2 Op Switch Test

Op Switch looks for closed switches. When a closed switch is found, its name appears onthe message display. If all switches are open the display prompts with ������ �

�������. When more than one switch is pressed, they display tone after the other. Fol-lowing is a list of switches checked, their signal names, and CPU Schematic locations:

������ �����$�0����#�"���# ��������.04��3������,���

������ ��$�����*�"���#���������0�

���� ������$�������"���# ��������.04��3������,��������� ��$�����*�"���#���������0�

4�������� 4�������������4���������������������������������$#����4�����D��� &���"�����������$����������*�"���#���������0���������������������

�"��3�"(�����������.����+�:+#+���"�����

����������� ��������������������������$������4������"���#��������-0�

���������� ������������������������������$�����#���*�"���#���������0

��� ����� ��� �������� ������ $�� ��������

�"���*��������D0/�

������������ ������������������������������$#����/���4�"���#���������0��6"���������������"��3�"(�C

����������.����+�:+#+��"�����

������ ������6$������"����-�����������.����+�:+�+$���������"���*��������!0�

����� ��� ���������$���/���"���#��������+0�

������ �����$/�����"���#���������0� &���"����-������.����+�:++��"�������������

Page 30: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0*

������� �������$/���#�"���#���������0� &���"����-������.����+�:++��"�������������

������� �������$/���4�"���#���������0� &���"����-��C

����.����+�:++��"�������������

������ �����$/�����"���#���������0� &���"����-������.����+�:++��"�������������

3-2-1 Running Op Switch Test

Illustration 3–2 shows OP Switch selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select ��

���� �����$

� '�������"��/�0� ��/�0� 3�����"�������� ��������3�����������������

�� '����-�+��6"��������"������������� �������������������"���"��������3������

�,��&���"����������"������,�"��&���"����������"����������������

#� !���"�)� &���"6�����'�������-�+��6"��������������������-�+

� &"����������3��"������������ ����������������"������"����C����������������,����"�-�������������3����"���"��+��&���"��,3��C�����������������

Page 31: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

ILLUSTRATION 3–3DISPLAY CONTROLLER TEST

����������� �

������ �����

������ ������ ��� ��������

�������������

��������

������������

/�0 �/�0 �

������-�+

3-3 Display Controller

This test checks the Display Controller Module. Each display is checked to see that seg-ments are not shorted, then they are checked to see that each segment lights. This is a visualtest.

Illustration 3–3 shows Display Controller Test selection using the /�0�, /�0�, and-�+.� switches. Shaded boxes illustrates the selection path. Use the following steps toselect ���� ��������$

� '�������"��/�0� ��/�0� 3�����"����� �����������3�����������������

�� '����-�+��6"��������������3��

#� '�������"���-�+��E"��������������������B���������"��&���"�6"��������"����������� �������������������"������"��������������������,����"�-�������������3�

Page 32: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0/

ILLUSTRATION 3–4BATTERY VOLTAGE

����������� �

������ �����

������ ����� ���� ��������

��������������

��������

������������

/�0 �/�0 �

������-�+

3-4 Battery Voltage

Battery Voltage displays on the kVp and mAs Display. This may be used instead of remov-ing covers to check battery voltage. The displayed voltage should match the actual voltagewithin +0.2 volts. Correct the display by using the calibration procedure Calibrate Voltme-ter. Generator calibration must be done after calibrating the volt meter, if the voltage differ-ence is more than 0.2 volts.

Illustration 3–4 shows Battery Voltage selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select��������������$

� '�������"��/�0� ��/�0� 3�����"������������������3�����������������

�� '����-�+��6"��������"�����������������������.�����������������������"�BA�����+�-�������!��"������3�����-�+���"�������������������������������������

#� '�������"��/�0� ��/�0� ����B���3��������������,����"�-������C�������3�

Battery voltage stays on the display until the display controller is reset by some other func-tion.

Page 33: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#04

ILLUSTRATION 3–5LOOP TEST

����������� �

������ �����

������ ����� ���� ��������

��������������

��������

������������

/�0 �/�0 �

������-�+

��4����������

–WRITE– –READ–

DATA

3-5 Loop Test

Loop Test continuously reads a selected address, or writes data that you specify to a selectedaddress. The prompt ������ appears on the Message Display while the test is running.Data being read or written appears on the kVp and mAs Display. Any CPU address bus loca-tion can be accessed with this test.

5������� ���%������ ��������"���$��� �������3���,�� ���������"���6

���� 4�"���$��� ������7������������� ����4����������� ������ ��� �

#����� �����/8��� ����������������� ��9�:����������������� $���4

Loop Test can be used to check circuits that are not tested by other portions of diagnostics.Command signals may be set, and feedback checked to see if circuits are functioning. Youmay use Loop Test for signal tracing by setting selected signals to a known state. When apotential fault is discovered, Loop Test may be used to set the signal high and low to verifythe fault.

Exit Diagnostics and turn the AMX OFF when you finish using Loop Test. This resets thesystem and makes sure the CPU Port Latches are properly set for other tests. (Setting theService Switch up and down will also reset the latches.)

"�!#/��

Page 34: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

Illustration 3–5 shows Loop Test selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrate the selection path. Use the following steps to select��������$

� '�������"��/�0� ��/�0� 3�����"������������3�����������������

�� '����-�+��6"���������4��������������������"��������-��C���������������������������"�BA�����+�-�������6�����&��"�3������C������������������-�+��6"��������"���������������������"�������������

ILLUSTRATION 3–6HEXADECIMAL REPRESENTATION

Addresses and data are changed starting with the left, or most significant, hexadecimalcharacter and moving right to the least significant character. Notice the difference betweenhexadecimal B and 6 as shown on Illustration 3–6. It is easy to mistake a B for a 6.

Address or Data appearing on the mAs and kVp display is entered when either -�+.� ispressed to enter the selection, or when -�+.� is pressed to change the last value.

#� �"�������������,������������-�+.���"����������/�0���/�0� �������� �"�������"�������������3��+,��� �"���F3�������3���������������-�+.���������"����3�����������"������"��������6"��������"�������������&"���"��������3����"������

*� >���� ���"��/�0� ��/�0�� ������������ �� ���� �"� ������� �����������&�������"���������

�� '����-�+.� ���"������������������"��������"������������1

������()�*++,)--�*.+�+*/*�*00)*,�1.�/()�2�0�*.+�3�-�+4-05*6$��*/*7455�8(*.9)�4:�/()�;4/�0*//),.�1.�/()�01,/�8(*.9)-$

/� '����-�+.� ���"������������������"��������"������������

�"����������,������������-�+��&��������"����������/�0���/�0����������"�������"�������������3��+,����"���F3�������3���������������-�+.���������"����3�����������"������"��������6"��������"����������������7().�/()�5*-/�<*5=)�4-�8(*.9)+$�()�*++,)--�*.+�+*/*�*0>0)*,�1.�/()�2�0�*.+�3�-�+4-05*6$

4� !���"���������������-�+.��6"��������"����������������������C����"������"��������������������,����"�-�������������3�

Page 35: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0

ILLUSTRATION 3–7LOOP TEST DISPLAY

ËËË-�+��

-�+

�������������

/�0��

/�0

/�0���-�+�������

����

����

/�0 -�+

Address Data

Promptsand

ErrorsIncrease Value

DecreaseValue

Enter Valueor

Shift Data Entry

Exit

3-6 Demonstration Procedure

During this demonstration you will learn to operate Loop Test. You will see that Loop Testcontinually addresses a port.

3-6-1 Enter Loop Test

Illustrations 3–5 and 3–7 show Loop Test selection. Shaded boxes illustrate the selectionpath.

See Illustration 3–7. Loop Test prompts appear on the Message Display. Address and dataappear on the kVp and mAs display. Address and data are the Hexadecimal equivalent of aDecimal number. Enter Loop Test by performing the following steps:

� !�����"� ��������������������"���������&���"3����"����������������C��������3���"�3���)%�E"���'�&��>����������3�������� �"���������&���"��&����"�����������������+,���������������&��3��������������"���������"�������������� �����

�� -�������"�����������������3�����������'�������/�0��

#� !����-��������������������-�+��6"��������"����������������1

�������

*� !�����"�����&����6"��������"������������������ ��

�� !���� �����-��������������������-�+.��6"��������"�����������

��� ������

/� �����8���6���,����"� �����-�������������3����������/�0��6"��������"�����������������

4� !����8���6�������������-�+.��6"��������"����� �����4�����1

������������������9999D������������"�BA�����+���������G�3�����&�������3��8���6����

Page 36: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

ILLUSTRATION 3–8READ PORT DISPLAY

ËËËËËË

-�+��

-�+

�������������

/�0��

/�0

/�0���-�+�������

��������

/�0 -�+

1000 Data

Promptsand

ErrorsIncrease Value

DecreaseValue

Enter Valueor

Shift Data Entry

Exit

3-6-2 Read a Port

You will read the Charger and Drive Status Port at location 1000 Hex. This port is read byOp Switch Test to display a closed switch. Refer to Section 5-3 Charger and Drive Statusfor signal identification. By pressing switches you will see that the port is continually beingread and the result displayed. Read the Charger and Drive Status Port by performing thefollowing steps:

� !����8���6���������������� ������#C/C��������������4

�� '����/�0����/�0��G�3"����H�����������"������������"���"�������

#� ������"�,�����"�����������������-�+��

*� '����/�0����/�0������"�&�"�,������������"��������"�������"���"��������5�6"��������5999D���"�3������������"�&������3��������#0��

�� ������"��������"�����������������-�+.��'����/�0����/�0������"�&�"���������������"��������"������"���"��������9�

/� ��������"������&��"�����������������"������������������-�+.��"���������6"��������"��������������

4� '���� /�0 � ��� /�0 �� 6"� ������ �"����� ���&��� ������ ����������� ����� ������ ��� ����� -�+.�$� 6"� ������ �"����� �����������6"������������������������"�BA�����+�-�������

Data may indicate that the Left Stall or Right Stall signals are active. This is normal becausethe processor did not reset the Drive Control Board.

�� '�����"�-����!����� &���"�63��'��B�� &���"����.3�����-����"�����&"������,�"��&���"��������.����������"��&���"����3�"�3���������������,���3����,�"���"�������������3�3�������������D�������������3����C�������

Page 37: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0

3-6-3 Write Then Read

You will activate tap relays by writing to the Generator Control 2 Port located at 1000 Hex.By reading the Generator and AEC Status Port at 1600 Hex you will see that the relays areactive. Refer to Section 5-8 Generator Control 2 and Section 5-7 Generator and AEC Statusfor signal identification. These two ports are used by Block Test when it checks the tap re-lays.

Select Port 1000 Hex.

� !����8���6���������������� ������#0/0��������������4

�� ������"�,�����"��������,�"����������������������-�+.��

#� �"�����"���"���������5����������/�0���/�0��

*� ��������"������&��"�����������������"������������������-�+.��"���������6"��������"��������������

Enter 38 Hex, energizing tap selection relays 1, 2, and 3.

�� �"�����"��������������������������/�0���/�0.��

/� ������"�,�����"�����������������-�+.��&�������

4� �"�����"�,�����"��������������������/�0���/�0�:�"�������-�+.����������"��������"��������

�� �"�����"��������"������������"��������"����3�����������-�+.��6"��������3��������"������������������������

� !���8���6�������������-�+.��6"��������"����������������(�C�����������3����������3���"���������"&�����������

Re–enter Loop Test and read the Generator and AEC Status Port at 1600 Hex.

�� !����8���6���4

� ������"�1�����������+!� ���3�'�������������/��D��3����/�0��/�0�����-�+.��

�� (����"�����������������"������������������������-�+.��

Depending on the status of bit 7, �� �����, the data will either be 07 Hex or 87 Hex.

Reset the Generator Control Port by writing 00 Hex to location 1000 Hex. You will hear therelays drop out when the data is written to the port.

Page 38: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 39: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0

SECTION 4SYSTEM DIAGNOSTICS FOR AMX–4 UNITS WITH:PROMS 46–303815G1/46–303816G1, 46–316685G1/46–316686G1, OR 46–329187G1/46–329188G1 OR46–329187G2/46–329188G2AND CPU BOARD 46–264974

System Diagnostics allows you to display the battery voltage, check for stuck switches, andcheck blocks of circuitry.

ILLUSTRATION 4–1SYSTEM BLOCK TEST

����������� �

������ �����

������ ������ ���� ��������

��������������

��������

������������

/�0 �/�0 �

������-�+

4-1 System Block Test

System Block Test checks the digital to analog and analog to digital converters. It alsochecks the tap selection circuitry.To check the D/A and A/D converters, DAC U355 onCPU 46–264974, is set up so that it will send a ������3 signal to the Filament and kVpControl Board. The signal is received by the Filament and kVp Control Board at J2 pins 11and 12, schematic location 2–D1. The signal leaves this board unaltered as ������

4��3 at J2 pins 13 and 14, schematic location 2–E4, and returns to the CPU Board onconnector J5 pins 13 and 14, schematic location 5–E1. Analog buffer AR392 on CPU46–264974 conditions the signal for multiplex U342 on CPU 46–264974. The signal is ulti-mately read by the processor and compared with the output signal. If they agree the testpasses.

Page 40: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0�

Taps are checked by individuals selecting ���56 through ����6 signals at the GeneratorControl 2 Port, schematic location 4–B9. The six tap signals go to six identical circuits onthe 1kHz Driver Board, schematic sheet 2. On the 1kHz Driver Board these signals are con-verted to 110 volt coil driving signals and tap feed back logic signals. ���54��� through����4��� return to the CPU board Generator and AEC Status port, schematic location3–E7. Tap select and feedback signals are compared. If they agree the test passes.

By examining the tap feedback circuit, you can see that a shorted coil or stuck contacts willproduce a feedback signal. Keep this in mind when running System Block Test. You shouldhear seven equally spaced clicks of the relays being selected when the tap test is running. Ifyou don’t, and the test passes, check the relays.

4-1-1 Running System Block Test

Illustration 4–1 shows Block Test selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select ���

��� ������8

� '�������"��/�0� ��/�0� 3�����"������� ���������3�����������������

�� '����-�+��6"��������������3��6"��������"������������������"�������������,�"������������������������,����"���������,�"�����,����4�����������,����"��������

E"��6��6����3�����3�"�3��"���������F3��������������B��,�"���������������������

#� !�� �����.���B6������'����������"������-�+�3�����"����������������B����"�����������(������-�+��6"�������B����������"��B��"���"��������"������������� �����������������"������"��������������������,����"�-�������������3�

Page 41: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0#

ILLUSTRATION 4–2SWITCH TEST

����������� �

������ �����

������ ������ ��� ��������

�������������

��������

������������

/�0 �/�0 �

������-�+

4-2 Op Switch Test

Op Switch looks for closed switches. When a closed switch is found, its name appears onthe message display. If all switches are open the display prompts with ������ �

�������. When more than one switch is pressed, they display tone after the other. Fol-lowing is a list of switches checked, their signal names, and CPU Schematic locations:

������ �����$�0����#�"���# ��������.04��3������,��������� ��$�����*�"���#���������0�

���� ������$�������"���# ��������.04��3������,��������� ��$�����*�"���#���������0�

4�������� 4�������������4���������������������������������$#����4�����D��� &���"�����������$����������*�"���#���������0����������������������"��3�"(�����������.����+�:+#+��"�����

����������� ��������������������������$������4������"���#��������-0�

���������� ������������������������������$�����#���*�"���#���������0

��� ����� ��� �������� ������ $�� ���������"���*��������D0/�

������������ ������������������������������$#����/���4�"���#���������0��6"���������������"��3�"(�C����������.����+�:+#+��"�����

������ ������6$������"����-�����������.����+�:+�+$���������"���*��������!0�

����� ��� ���������$���/���"���#��������+0�

������ �����$/�����"���#���������0� &���"����-������.����+�:++��"�������������

Page 42: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0*

������� �������$/���#�"���#���������0� &���"����-������.����+�:++��"�������������

������� �������$/���4�"���#���������0� &���"����-��C����.����+�:++��"�������������

������ �����$/�����"���#���������0� &���"����-������.����+�:++��"�������������

4-2-1 Running Op Switch Test

Illustration 4–2 shows OP Switch selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select ��

���� �����$

� '�������"��/�0� ��/�0� 3�����"�������� ��������3�����������������

�� '����-�+��6"��������"������������� �������������������"���"��������3������

�,��&���"����������"������,�"��&���"����������"����������������

#� !���"�)� &���"6�����'�������-�+��6"��������������������-�+

� &"����������3��"������������ ����������������"������"����C����������������,����"�-�������������3����"���"��+��&���"��,3��C�����������������

Page 43: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0�

ILLUSTRATION 4–3DISPLAY CONTROLLER TEST

����������� �

������ �����

������ ������ ��� ��������

�������������

��������

������������

/�0 �/�0 �

������-�+

4-3 Display Controller

This test checks the Display Controller Module. Each display is checked to see that seg-ments are not shorted, then they are checked to see that each segment lights.

Illustration 4–3 shows Display Controller Test selection using the /�0�, /�0�, and-�+.� switches. Shaded boxes illustrates the selection path. Use the following steps toselect ���� ��������$

� '�������"��/�0� ��/�0� 3�����"����� �����������3�����������������

�� '����-�+��6"��������������3��

#� '�������"���-�+��E"��������������������B���������"��&���"�6"��������"����������� �������������������"������"��������������������,����"�-�������������3�

Page 44: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0/

ILLUSTRATION 4–4BATTERY VOLTAGE

����������� �

������ �����

������ ����� ���� ��������

��������������

��������

������������

/�0 �/�0 �

������-�+

4-4 Battery Voltage

Battery Voltage displays on the kVp and mAs Display. This may be used instead of remov-ing covers to check battery voltage. The displayed voltage should match the actual voltagewithin +0.2 volts. Correct the display by using the calibration procedure Calibrate Voltme-ter. Generator calibration must be done after calibrating the volt meter, if the voltage differ-ence is more than 0.2 volts.

Illustration 4–4 shows Battery Voltage selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select��������������$

� '�������"��/�0� ��/�0� 3�����"������������������3�����������������

�� '����-�+��6"��������"�����������������������.�����������������������"�BA�����+�-�������!��"������3�����-�+���"�������������������������������������

#� '�������"��/�0� ��/�0� ����B���3��������������,����"�-������C�������3�

Battery voltage stays on the display until the display controller is reset by some other func-tion.

Page 45: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*04

ILLUSTRATION 4–5LOOP TEST

����������� �

������ �����

������ ����� ���� ��������

��������������

��������

������������

/�0 �/�0 �

������-�+

��4����������

SELECTHEXADECIMAL OR BINARY FOR-

MAT

–WRITE– –READ–

DATA

4-5 Loop Test

Loop Test continuously reads a selected address, or writes data that you specify to a selectedaddress. The prompt ������ appears on the Message Display while the test is running.Data being read or written appears on the kVp and mAs Display. Any CPU address bus loca-tion can be accessed with this test.

5������� ���%������ ��������"���$��� �������3���,�� ���������"���6

���� 4�"���$��� ������7������������� ����4����������� ������ ��� �

#����� �����/8��� ����������������� ��(�:����������������� $���4

Loop Test can be used to check circuits that are not tested by other portions of diagnostics.Command signals may be set, and feedback checked to see if circuits are functioning. Youmay use Loop Test for signal tracing by setting selected signals to a known state. When apotential fault is discovered, Loop Test may be used to set the signal high and low to verifythe fault.

Exit Diagnostics and turn the AMX OFF when you finish using Loop Test. This resets thesystem and makes sure the CPU Port Latches are properly set for other tests. (Setting theService Switch up, and then down will also reset the latches.)

"�!#/��

Page 46: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0�

Illustration 4–5 shows Loop Test selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrate the selection path. Use the following steps to select��������$

� '�������"��/�0� ��/�0� 3�����"������������3�����������������

�� '����-�+��6"���������4��������������������"��������-��C���������������������������"�BA�����+�-�������6�����&��"�3������C������������������-�+��&����6"��������"���������������������"�������������

ILLUSTRATION 4–6HEXADECIMAL REPRESENTATION

Addresses and data are changed starting with the left, or most significant, hexadecimalcharacter and moving right to the least significant character. Notice the difference betweenhexadecimal B and 6 as shown on Illustration 4–6. It is easy to mistake a B for a 6.

Address or Data appearing on the mAs and kVp display is entered when either -�+.� ispressed to enter the selection, or when -�+.� is pressed to change the last value.

#� �"�������������,������������-�+.���"����������/�0���/�0� �������� �"�������"�������������3��+,��� �"���F3�������3���������������-�+.���������"����3�����������"������"��������%����"���"������������"�����&���,���"�

*� 6"���������5�+ >',��D!:7�5�+ -%,��.�%7&���������������"���������'��������+ �&������������"����������,������'��������+ �&�����������������������,������

�� 6"������� �"����� ���������>�������"��/�0���/�0�� �������������������"�������������������&�������"���������

/� '����-�+.� �� �"������������������"��������"������������1������()�*++,)--�*.+�+*/*�*00)*,�1.�/()�2�0�*.+�3�-�+4-05*6$��*/*7455�8(*.9)�4:� /()�;4/�0*//),.�1.�/()�01,/�8(*.9)-$�.56�+*/*�7455�*00)*,� 4:

;4.*,6�:1,3*/�4-�-)5)8/)+$

4�'����-�+.� ���"������������������"��������"������������

�"����������,������������-�+��&��������"����������/�0���/�0����������"�������"���������������������3��+,����"���F3�������3����C�����������-�+.���������"����3�����������"������"��������6"������&��� ,���"� 6"� ������ �"����� �� ���������7().� /()� 5*-/� <*5=)� 4-8(*.9)+$�()�*++,)--�*.+�+*/*�*00)*,�1.�/()�2�0�*.+�3�-�+4-05*6$�.56

+*/*�7455�*00)*,�4:�;4.*,6�:1,3*/�4-�-)5)8/)+$

��!���"���������������-�+.��6"��������"��������������������������"������"��������������������,����"�-�������������3�

Page 47: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0

ILLUSTRATION 4–7LOOP TEST DISPLAY

ËËË-�+��

-�+

�������������

/�0��

/�0

/�0���-�+�������

����

����

Address and Data

Promptsand

ErrorsIncrease Value

DecreaseValue

Enter Valueor

Shift Data Entry

Exit

Data

�4.*,6��1+)����1,���%)?*+)843*5��1+)

4-6 Demonstration Procedure

During this demonstration you will learn to operate Loop Test. You will see that Loop Testcontinually addresses a port.

4-6-1 Enter Loop Test

Illustrations 4–5 and 4–7 show Loop Test selection. Shaded boxes illustrate the selectionpath.

See Illustration 4–7. Loop Test prompts appear on the Message Display. Address and dataappear on the kVp and mAs display. Address and data are the Hexadecimal equivalent of aDecimal number. Enter Loop Test by performing the following steps:

� !�����"� ��������������������"���������&���"3����"����������������C��������3���"�3���)%�E"���'�&��>����������3�������� �"���������&���"��&����"�����������������+,���������������&��3��������������"���������"�������������� �����

�� -�������"�����������������3�����������'�������/�0��

#� !����-��������������������-�+��6"��������"����������������1

�������

*� !�����"�����&����6"��������"������������������ ��

�� !���� �����-��������������������-�+.��6"��������"�����������

��� ������

/� �����8���6���,����"� �����-�������������3����������/�0��6"��������"�����������������

4� !����8���6�������������-�+.��6"��������"����� �����4�����1

������������������9999D������������"�BA�����+���������G�3�����&�������3��8���6����

Page 48: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0�

ILLUSTRATION 4–8READ PORT DISPLAY

ËËËËËË

-�+��

-�+

�������������

/�0��

/�0

/�0���-�+�������

����

����

/�0 -�+

1000 Data

Promptsand

ErrorsIncrease Value

DecreaseValue

Enter Valueor

Shift Data Entry

Exit

4-6-2 Read a PortYou will read the Charger and Drive Status Port at location 1000 Hex. This port is read byOp Switch Test to display a closed switch. Refer to Section 5-3 Charger and Drive Statusfor signal identification. By pressing switches you will see that the port is continually beingread and the result displayed. Read the Charger and Drive Status Port by performing thefollowing steps:

� !����8���6���������������� ������*C/C��������������4

�� '����/�0����/�0��G�3"����H�����������"������������"���"�������

#� ������"�,�����"�����������������-�+��

*� '����/�0����/�0������"�&�"�,������������"��������"�������"���"��������5�6"��������5999D���"�3������������"�&������3��������*0��6"������������"�����&���,���"�

�� ������"��������"�����������������-�+.��'����/�0����/�0������"�&�"���������������"��������"������"���"��������9�

/� ��������"������&��"�����������������"������������������-�+.��"���������6"���������5�+ >',��D!:7�5�+ -%,��.�%7&��������C�������"���������'��������+ �&������������"����������,������'����C����+ � &�����������������������,������

4� 6"� ������ �"����� ��������� '���� /�0� ��� /�0�� 6"� �������"����� ���&��� ������ ��� �������� ����� ������ ��� �����-�+.�$�6"��������"����������������6"������������������������"�BA�����+�-�������

Data may indicate that the Left Stall and/or Right Stall signals are active. This is normalbecause the processor did not reset the Drive Control Board.

�� '����-����!����� &���"�63��'��B�� &���"� ���.3�����-��� �"�����&"������,�&���"��������.����������&���"����3�"�3���������������,���3����,�"��������������3�3�������������D�������������3�����������

Page 49: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0

4-6-3 Write Then Read

You will activate tap relays by writing to the Generator Control 2 Port located at 1000 Hex.By reading the Generator and AEC Status Port at 1600 Hex you will see that the relays areactive. Refer to Section 5-8 Generator Control 2 and Section 5-7 Generator and AEC Statusfor signal identification. These two ports are used by Block Test when it checks the tap re-lays.

Select Port 1000 Hex.

� !����8���6���������������� ������*C/C��������������4

�� ������"�,�����"��������,�"����������������������-�+.��

#� �"�����"���"���������5����������/�0���/�0��

*� ��������"������&��"�����������������"������������������-�+.��"���������'�������� ,��D�����������'�������� ,��.������6"��������"��������������

Enter 38 Hex, energizing tap selection relays 1, 2, and 3.

�� �"�����"��������������������������/�0���/�0.��

/� ������"�,�����"�����������������-�+.��&�������

4� �"�����"�,�����"��������������������/�0���/�0�:�"�������-�+.����������"��������"��������

�� �"�����"��������"������������"��������"����3�����������-�+.��6"��������3��������"������������������������

� !���8���6�������������-�+.��6"��������"����������������(�C�����������3����������3���"���������"&�����������

Re–enter Loop Test and read the Generator and AEC Status Port at 1600 Hex.

�� !����8���6���4

� ������"�1�����������+!� ���3�'�������������/��D��3����/�0��/�0�����-�+.��

�� (����"�����������������"������������������������-�+.��

Depending on the status of bit 7, �� �����, the data will either be 07 Hex or 87 Hex.

Reset the Generator Control Port by writing 00 Hex to location 1000 Hex. (Setting the Ser-vice Switch up and down will also reset the Generator Control Port) You will hear the relaysdrop out when the data is written to the port.

Page 50: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 51: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

SECTION 5I/O PORTS

5-1 Introduction

This section contains listings of CPU Port addresses, signal names, and schematic loca-tions. Using Loop Test, you can read from and write to these ports.

Tables 5–1 and 5–2 cross reference the read and write port select signals with the hex ad-dress, port name, and section where signal descriptions are located. These signals originateat U78 on CPU 46–232828 or U170 on CPU 46–264974 and U139 on CPU 46–232828 orU24 on CPU 46–264974. Signal names appear along the right edge of CPU Schematic pagetwo.

TABLE 5–1READ PORTS

Signal Address PortName Hex Name Section

RDP0* 1000 Charger and Drive Status 5–3RDP1* 1100 On Board Status 5–4RDP2* 1200 A/D Converter 5–5RDP3* 1300 Not UsedRDP4* 1400 Operator I/O Status 5–6RDP5* 1500 Programmable Timer Not DescribedRDP6* 1600 Generator and AEC Status 5–7

TABLE 5–2WRITE PORTS

Signal Address PortName Hex Name Section

WRP0* 1000 Generator Control 2 5–8WRP1* 1080 Not UsedWRP2* 1100 Charger and Drive Control 5–9WRP3* 1180 AEC Control 5–10WRP4* 1200 Generator Control 1 5–11WRP5* 1280 A/D Control 5–12WRP6* 1300 Set Backup Time 5–13WRP7* 1380 On Board Control 5–14WRP8* 1400 Right Speed Command DAC 5–15

1401 Left Speed Command DAC 5–16WRP9* 1480 Charge Current DAC 5–17

1481 Leakage Compensation DAC 5–18WRP10* 1500 Programmable Timer 5–19WRP11* 1580 Filament Current Demand DAC 5–20

1584 kVp Demand DAC 5–21WRP12* 1600 Watchdog Timer 5–22WRP13* 1680 Not UsedWRP14* 1700 Not UsedWRP15* 1780 Not Used

Page 52: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

5-2 Selected Functions

This table lists selected functions with their address and data. You may activate these func-tions by writing the data value to the address listed for the function. When finished, alwaysreset any port that you wrote to by writing 00 Hex to it, or resetting the CPU.

TABLE 5–3SELECTED FUNCTIONS PORT

Address DataFunction Hex Value Hex Value

��%@��5182- ���� ��

=,.-�1.� ��%@�85182-�/1� ��%@�

�.<),/),$

�2�%@��5182- ���� ��

=,.-�1.��2�%@�85182-�/1�/()��2�%@�

�.<),/),$

�2�%@��5182- ���� ��

=,.-�1.��2�%@�*.+�� 2�%@�85182-�

/1�/()��2�%@��.<),/),$

�4)5+��49(/� ���� ��

=,.-�1.�/()��15543*/1,��4)5+��49(/$

�2�%@��45*3)./��.<),/), ���� ��

=,.-�1.�/()��2�%@�:45*3)./�4.<),/),�

*/��$���30-$

=,.�/()��1/1,�.

�4,-/�)./), ���� ��

().�)./), ���� ��

�=55�4.� *:)/6��1./*8/1, ���� ��

�,)--�/()������-74/8(

�(*,9)�*/��$���30-

�5=9�4.�8(*,94.9�81,+

�4,-/�)./), ���� ��

().�)./), ���� ��

Page 53: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

5-3 Charger and Drive Status

Read only port with address location 1000 hex. Schematic location; sheet 3, 1–A to 1–D.Port select signal is���96.

TABLE 5–4CHARGER AND DRIVE STATUS PORT

BIT SIGNAL NAME DESCRIPTION

0 LINE SENSE Logic 1 charger is plugged in to a live socket.

1 OPTION SW 3 Logic 1 selects English prompts.Logic 0 selects French prompts.

2 OPTION SW 4 (Not used)

3 BUMPER Logic 1 bumper switch is engaged, something was hit.

4 TUBE PARKED SW Logic 1 x–ray tube arm is locked in place.Logic 0 x–ray tube arm is not locked in place.

5 LEFT STALL Logic 1 left drive motor has overheated or stalled.

6 RIGHT STALL Logic 1 right drive motor has overheated or stalled.

7 DRIVE ENA SW Logic 1 drive enable bar is activated.

Page 54: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

5-4 On–Board Status

Read only port with address location 1100 hex. Schematic location; sheet 4, 7–F to 7–H.Port select signal is���56.

TABLE 5–5ON–BOARD STATUS PORT

BIT SIGNAL NAME DESCRIPTION

0 BU TMR OKAY Logic 1 back–up exposure timer has not timed out

1 EXP CMND STATUS Indicates the status of the hardware synchronizedSTART EXP CMND signal

2 A/D STATUS Logic 1 conversion is in progress 3 XMIT OK Logic 1 sending data to the display without flicker

Logic 0 sending data to display causes flicker

Note that this bit toggles while displayed.This is a normal condition.

4 DISPLAY OK Logic 1 display controller is scanning

5 BAUD RATE SW Logic 1 selects 375k BaudLogic 0 selects 187.5k Baud

6 OPTION SW 1 ** Logic 1 enable +24, �15V testsLogic 0 disable +24, �15V tests

7 SERVICE SW Logic 1service mode requested

** Do not select for CPU board 46–232828.

Page 55: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

5-5 A/D Converter

Port select signal is����6.

����+'$���" ����� �

Read only port with address location 1201 hex. Schematic location; sheet 5. Reading fromthis address with the �����;� signal = “0”,starts an 8–bit conversion (data read in thiscase is irrelevant).

����);'$���" ����� �

Read only port with address location 1200 hex. Schematic location; sheet 5. Reading fromthis address with the �����;� signal = “0”, starts a 12–bit conversion (data read in thiscase is irrelevant).

������8��%3

Read only port with address location 1200 hex. Schematic location; sheet 5. Reading fromthis address with the �����;� signal = “1”, reads the 8 most significant bits of the A/Doutput.

������8���3

Read only port with address location 1201 hex. Schematic location; sheet 5. Reading fromthis address with the �����;� signal = “1”, reads the 4 least significant bits of the 12–bitA/D output followed by the 4 trailing zeroes in the least significant nibble.

Page 56: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0/

5-6 Operator I/O Status

Read only port with address location 1400 hex. Schematic location; sheet 3, 1–D to 1–H.Port select signal is����6.

TABLE 5–6OPERATOR I/O STATUS PORT

BIT SIGNAL NAME DESCRIPTION

0 SER PORT EN Logic 1 serial port is to be enabled

1 KEY SWITCH ON Logic 1 key switch is in the ON position.

2 OPTION SW 2 Logic 1 cycles CPU at Power–Up.Logic 0 normal run mode.

3 FIELD LIGHT SW Logic 1 field light switch is pressed.

4 MAS UP Logic 1 MAS UP switch is pressed

5 MAS DOWN Logic 1 MAS DOWN switch is pressed

6 KVP UP Logic 1 KVP UP switch is pressed

7 KVP DOWN Logic 1 KVP DOWN switch is pressed.

Page 57: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�04

5-7 Generator and AEC Status

Read only port with address location 1600 hex. Schematic location; sheet 3, 5–D to 1–H.Tap feedback signals originate on the 1 kHz driver board. Tap selection is through the Gen-erator Control 2 port. Tap numbers and tap selection relay numbers are the same. Tap 6 andrelay K6 should not be active during applications. Port select signal is����6.

TABLE 5–7GENERATOR AND AEC STATUS PORT

BIT SIGNAL NAME DESCRIPTION

0 TAP 1 FDBK Logic 1 tap 1 signal was received by the 1khz inverter

1 TAP 2 FDBK Logic 1 tap 2 signal was received by the 1khz inverter

2 TAP 3 FDBK Logic 1 tap 3 signal was received by the 1khz inverter

3 TAP 4 FDBK Logic 1 tap 4 signal was received by the 1khz inverter

4 TAP 5 FDBK Logic 1 tap 5 signal was received by the 1khz inverter

5 TAP 6 FDBK Logic 1 tap 6 signal was received by the 1khz inverter

6 AEC ON Logic 1 when Automatic Exposure Control is selected.Allows AEC EXP EN to terminate exposure.

7 AEC EXP EN Logic 1 exposure allowed when AEC ON is active.Logic 0 exposure stops when AEC ON is active.Logic 1 when AEC is not installed.

TABLE 5–8KVP TAP SELECTION RELAY

HEX msb–K6 K5 K4 K3 K2 lsb–K1

Page 58: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

00H 0 0 0 0 0 0

01H 0 0 0 0 0 1

02H 0 0 0 0 1 0

03H 0 0 0 0 1 1

04H 0 0 0 1 0 0

05H 0 0 0 1 0 1

06H 0 0 0 1 1 0

07H 0 0 0 1 1 1

08H 0 0 1 0 0 0

09H 0 0 1 0 0 1

0AH 0 0 1 0 1 0

0BH 0 0 1 0 1 1

0CH 0 0 1 1 0 0

0DH 0 0 1 1 0 1

0EH 0 0 1 1 1 0

0FH 0 0 1 1 1 1

10H 0 1 0 0 0 0

20H 1 0 0 0 0 0

30H 1 1 0 0 0 0

40H = AEC ON

80H = AEC EXP EN

C0H = AEC ON and AEC EXP EN

Page 59: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

5-8 Generator Control 2

Write only port with address location 1000 hex. Schematic location; sheet 4, 9–B. Port se-lect signal is���96.

TABLE 5–9GENERATOR CONTROL 2 PORT

BIT SIGNAL NAME DESCRIPTION

0 TAP 6 Logic 1 selects tap relay 6

1 ROTOR SELECT Logic 1 pulls in a relay which enables current to flow through the stator. If this relay is not pulled in, the field lamp circuit is enabled.

2 SAFETY CONT ENB Logic 1 pulls in a relay whose contacts pull in the safety contactor which supplies power to the 1 khz inverter. In addition,the prep switch must be depressed in order to pull in the safetycontactor.

3 TAP 1 Logic 1 selects tap relay 1

4 TAP 2 Logic 1 selects tap relay 2

5 TAP 3 Logic 1 selects tap relay 3

6 TAP 4 Logic 1 selects tap relay 4

7 TAP 5 Logic 1 selects tap relay 5

Page 60: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

5-9 Charger and Drive Control

Write only port with address 1100 hex. Schematic location; sheet 4, 11–D to 11–F. Port se-lect signal is����6.

TABLE 5–10CHARGER AND DRIVE CONTROL PORT

BIT SIGNAL NAME DESCRIPTION

0 TRIP BREAKER Logic 1 trips the circuit breaker.

1 CHARGE SCALE–SELECT Logic 1 sets charger to trickle charge rate.Logic 0 sets charger to full charge rate.

2 CHARGER RELAY Logic 1 connects isolation transformer to charger.

3 REVERSE ONLY Logic 1 motion is allowed in reverse only.

4 FULL SPD ENA Logic 1 enables peak drive speed.Logic 0 limits drive speed.

5 MOTOR ENA Logic 1 connects the motor drives to the motorsand releases the brakes.

6 DRIVE RESET Logic 1 resets the drive boards.

7 BAT V & CHARGE CUR SEL Logic 1 selects charge current feedback.Logic 0 selects battery voltage feedback.

Page 61: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

5-10 AEC Control

Write only port with address location 1180 hex. Schematic location; sheet 3, 5–A. KVP0 toKVP4 gives the selected KVP when prep is entered. Port select signal is����6.

TABLE 5–11AEC CONTROL PORT

BIT SIGNAL NAME DESCRIPTION

0 KVP0

1 KVP1

2 KVP2

3 KVP3

4 KVP4

5 KVP5 Not Used

6 KVP6 Not Used

7 GEN READY Not Used

TABLE 5–12KVP SELECTION

kVp HEX kVp4 kVp3 kVp2 kVp1 kVp0

50 02H 0 0 0 1 052 03H 0 0 0 1 154 04H 0 0 1 0 056 05H 0 0 1 0 158 06H 0 0 1 1 060 07H 0 0 1 1 162 08H 0 1 0 0 064 09H 0 1 0 0 166 0AH 0 1 0 1 068 0BH 0 1 0 1 170 0CH 0 1 1 0 072 0DH 0 1 1 0 174 0EH 0 1 1 1 076 0FH 0 1 1 1 180 10H 1 0 0 0 085 11H 1 0 0 0 190 12H 1 0 0 1 095 13H 1 0 0 1 1

100 15H 1 0 1 0 0105 15H 1 0 1 0 1110 16H 1 0 1 1 0115 17H 1 0 1 1 1120 18H 1 1 0 0 0125 19H 1 1 0 0 1

Page 62: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

5-11 Generator Control 1

Write only port with address location 1200 hex. Schematic location; sheet 6, 7–B. Port se-lect signal is����6.

TABLE 5–13GENERATOR CONTROL 1 PORT

BIT SIGNAL NAME DESCRIPTION

0 60HZ EN Logic 1 enables both 60Hz phase 1 and 2 clocks

1 1kHZ EN Logic 1 enables both 1 kHz phase 1 and 2 clocks to the1 kHz inverter

2 2kHz EN Logic 1 enables both 2 kHz phase 1 and 2 clocks and 16 kHz clock to the Filament control board.

3 LOW RESOLUTION Logic 1 selects low timer resolution for mAs >=12.5Logic 0 selects high timer resolution for mAs <12.5

4 60 Hz RELAY Logic 1 brings power to the 60 Hz Inverter.

5 PREHEAT Logic 1 turns on filament preheat; boosts the filament

6 START EXP Logic 1 initiates the exposure hardware synchronizes this signal to the 1 kHz clock. This signal must be pulsed <10mS.

7 STOP EXP Logic 1 terminates the exposure hardware synchronizes this signal to the 1 kHz clock. This signal must be pulsed <10mS.

Page 63: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

5-12 A/D Control

Write only port with address 1280 hex. Schematic location; sheet 5 6–E. AMUX0 throughAMUX3 determine which of 16 possible A/D inputs are selected. See the A/D Input Selecttable below. Port select signal is���76.

TABLE 5–14A/D CONTROL PORT

BIT SIGNAL NAME DESCRIPTION

0 AMUX0

1 AMUX1

2 AMUX2

3 AMUX3

4 spare

5 spare

6 READ A/D Logic 1 enables A/D output read when the A/D output is readLogic 0 allows an A/D conversion when the A/D output is read

7 HOLD Logic 1 places the A/D sample and hold device into the hold modeLogic 0 puts it into the sample mode

TABLE 5–15A/D INPUT SELECT

SELECTED INPUTHEXAMUX3AMUX2 AMUX1AMUX0

Spare 00H 0 0 0 0Spare 01H 0 0 0 1RGT MAN TDS OUT 02H 0 0 1 0LFT MAN TDS OUT 03H 0 0 1 1Spare 04H 0 1 0 0RIGHT DRV FDBK 05H 0 1 0 1LEFT DRV FDBK 06H 0 1 1 0KVP DMN FDBK 07H 0 1 1 1FIL FDBK 08H 1 0 0 0LEAKAGE COMP FDBK 09H 1 0 0 1Spare 0AH 1 0 1 0Spare 0BH 1 0 1 1+40V V.F. DISP SUPPLY 0CH 1 1 0 0SIGNAL GROUND 0DH 1 1 0 1+24V VF SUPPLY 0EH 1 1 1 0+5V LOGIC SUPPLY 0FH 1 1 1 1

Page 64: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

5-13 Set Back–Up Time

Write only port with address location 1300 hex. Port select signal is����6. Schematiclocation; sheet 6, F–3. Writing to this port just before an exposure sets the back–up time asfollows:

Back–Up Counts = ((MAS � 60) � 70 + 5)The actual back–up time is equal to (Back–Up Count � 16.67) millisec since the back–uptimer is clocked at 60Hz.

5-14 On–Board Control

Write only port with address location 1380 hex. Port select signal is����6. Schematiclocation; sheet 5, 9–B. 4��<4���9 and 4��<4���5 select which frequency feed-back the 80C31 frequency counter looks at. See Frequency Feedback Select table below.

TABLE 5–16ON–BOARD CONTROL PORT

BIT SIGNAL NAME DESCRIPTION

0 UART MUX CNTRL Logic 1 selects spare data as serial output and input%��3������'>*/0�/* 4* Logic 0 selects Display data as serial output and switch

data as serial input

1 PWR DOWN RST HOLDOFF Logic 0 advanced power down signal resets processorLogic 1 holds off the reset.

2 DISP RST Logic 1 resets the display controller

3 spare

4 spare

5 FREQ FDBK 0

6 FREQ FDBK 1

7 FREQ FDBK 2

TABLE 5–17FREQUENCY FEEDBACK SELECT

SELECTED FEEDBACK HEX FDBK 2 FDBK 1 FDBK 0

mAs from Filament Control PWB 00H 0 0 0Battery Voltage / Charging Current 01H 0 0 1Output 0 from the Programmable Timer 02H 0 1 0Output 1 from the Programmable Timer 03H 0 1 1Output 2 from the Programmable Timer 04H 1 0 0Spare 05H 1 0 1Spare 06H 1 1 0Spare 07H 1 1 1

Page 65: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

5-15 Right Speed Command DAC

Write only port with address location 1400 hex. Port select signal is����6. Schematiclocation; sheet 4, D–2. The data written to this address is the Right Wheel Speed Command,where: 0 = full forward 127 = zero speed 255 = full reverse

5-16 Left Speed Command DAC

Write only port with address location 1401 hex. Port select signal is����6. Schematiclocation; sheet 4, D–2. The data written to this address is the Left Wheel Speed Command,where: 255 = full forward 127 = zero speed 0 = full reverse

5-17 Charge Current DAC

Write only port with location 1480 hex. Port select signal is����6. Schematic location;Sheet 4, F–2. Data written to this address controls the Charging Current. When the��� ��� ���� bit is set to “0”, 0 to 255 gives 0 to 5 Amps of charge current. With��� ��� ���� set to “1”, 0 to 255 gives 0 to 0.5 Amps of charge current.This DAC also is used in the DRIVE mode to check the integrity of the Handle Circuitry.

255 – enables handle transducer signal.0 – forces the handle signal to 0.6V (diode drop).

5-18 Leakage Current Compensation DAC

Write only port with address location 1481 hex. Port select signal is����6. Schematiclocation; sheet 4, F–2. Data written to this address is the Leakage Current Compensation.

5-19 Programmable Timer

Writing to the following addresses controls the timer as listed below. Port select signal is���596. Schematic location; sheet 6, D–6. Note that access to this timer occurs only dur-ing system initialization.

ADDRESS DESCRIPTION

1500H Writes data to counter 01501H Writes data to counter 11502H Writes data to counter 21503H Writes data to the Control Word Register

Page 66: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0/

5-20 Filament Current Demand DAC

Write only port with the following address locations; 1580H low nibble, 1581 medium nib-ble, 1582H high nibble, 1583H control (load command) nibble. Port select signal is���556. Schematic location; sheet 4, B–2. Data written to this address is the FilamentCurrent Demand. 0H = filament current of approximately 4.5A and 4096H = filament cur-rent of approximately 5.5A

5-21 KVP Demand DAC

Write only port with the following address locations; 1584H low nibble, 1585H middle nib-ble, 1586H high nibble, 1587H control (load command) nibble. Port select signal is���556. Schematic location; sheet 4, B–2. Data written to this address is the kVp De-mand. 0H = 0kVp and 4095H = 145kVp

5-22 Watchdog Timer

Write only port with address location 1600 hex. Port select signal is���5�6. Schematiclocation; sheet 2, E–2. Writing to this port retriggers the watchdog timer. Data is irrelevant.This port must be written to once every 30ms or the watchdog will timeout.

5-23 Variables Unique To PROMS

46–302688G1/46–302687G1 and

46–303272G1/46–303273G1

52DH–52EH Monitor_zero_cap_millivolts Corresponds to 0% on bar graph544H Recycle time Time between charge cycles546H No_trickle_counter # of times since last full charge547H Trickle_lmt # of cutoff cycles before full charge548H–549H No_trickle–counter_mem total # of charge cycles

Page 67: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�04

���� ���9';(,�9';9,�9';<�����9';=�� ����%&'(�!�����:���>

� ���(<'.-.+)9�)8(<'.-.+)<�)���������,�����"�!�3 ���(<';<(*=(4

5-24 kVp/mAs Display After Exposure

� ��> 6"��,3���������������&��" �������C�/,3����������&������"���"����"���������������������)�������,�"���,3������������3�����������

If the customer would want to inhibit the feature that stops the kVp/mAs display from flash-ing after exposure, then do as follows:

Load – Location C98 hex with 79HLoad – Location C99 hex with 63H

To place the system back to normal, load these locations with something other than 7963H(e.g., 0000H).

5-25 Critical Status

Read only port internal to the 8031. Use address FFFF to read this port.

Bit 0 – Prep switchBit 1 – Exp SwitchBit 2 – Tube Pressure SwitchBit 3 – 60Hz OKBit 4 – RotorBit 5 – 1 kHz RDYBit 6 – Fil Shorted

5-26 Force the Useof 137 kV in Tapcal

� ��> 6"����,����,�����������6"��&�3��������������������

� ��> 6"��,3���������������&��" �������C�*,3�����������������"���"����"���������������������)�������,�"���,3������������3�����������

The new code allows Tapcal below 137 kV at low battery voltages. Loading these locationswill force the use of 137 kV as in previous code.

Load location C98 hex with 8AHLoad location C99 hex with 74H

To place the system back to normal, load these locations with something other than 8A74H(e.g., 0000H).

5-27 Force an ExtendedCharge Cycle

Loading this location will force an extended charge cycle. (Refer to Section 13–13.)

Load location CA5 hex with 15H

This extended charge cycle is transparent to the user.

�##��#/��

Page 68: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

/0

SECTION 6DATA LOG

ILLUSTRATION 6–1DATA LOG

6-1 Introduction

To enter the Diagnostics Program, refer to Section 2 Entering Diagnostics. Data Log main-tains a history of AMX–4 operation. As shown on Illustration 6–1 there are three Data Logfunctions:

����������

����������

����������

6-2 Enter Data Log

Illustration 6–1 shows Data Log selection using the /�0 �, /�0 �, and -�+.�switches. Shaded boxes illustrate the selection path.

Exit Data Log by pressing -�+.� at any of the three Data Log function prompts listedabove. The prompt changes to ������, indicating that Data Log is closed and anotherselection may be made from the Diagnostics Menu.

ILLUSTRATION 6–2DATA LOG DISPLAY

ËËËËËËËË -�+��

-�+

�������������

/�0��

/�0

/�0���-�+�������

��������

/�0 -�+

HEX VALUE

Prompts

Increase Value

DecreaseValue

Enter Valueor

Shift Data Entry

Exit

Refer to Illustration 6–2. Data Log items appear on the Message Display directly above thekVp and mAs switches. Values appearing on the kVp and mAs display are a Hexadecimalequivalent of the Decimal number. Numbers are valid only if Data Log has been initialized.Following is a sequential listing of Data Log items:

Page 69: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

/0�

For Proms 46–302688G1/46–302687G1 or 46–303272G1/46–303273G1:

� ������������ – software monitor on time in minutes.

� ��������������– drive time in minutes.

� �������������– charging time in hours.

� ��������������– prep and expose time in seconds.

� ������������� – total on time in hours.

� ����<���= � �� – number of complete equalization cycles. (Appears butis not used.)

� ��� ���� � �� – number of complete charge cycles.

� ��������� �� – amount of charge returned to batteries.

� ������ ��<���=– amount of charge returned to battery since last completeequalization cycle. (Appears but is not used.)

� �������� ��������number of exposures.

� ������������applied energy in Joules.

� ������������ – exposure on time in milliseconds.

Page 70: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

/0#

For Proms 46–303815G1/46–303816G1 and later:

� ������������ – software monitor on time in hours.

� ��������������– drive time in minutes.

� �������������– charging time in hours.

� ��������������– prep and expose time in seconds.

� ������������� – total on time in hours.

� ��� ������� high charge time in hours.

� ��� ���� � �� – number of complete charge cycles.

� ��������� �� – amount of charge returned to batteries.

� ��� ������– number charge cycles initiated.

� �������� ��������number of exposures.

� ������������applied energy in Joules.

� ������������ – exposure on time in milliseconds.

6-2-1 Enter View Data Log

Display Data Log Items and there values.

/�0� /�0� ����������

-�+�������������

/�0�

/�0�

-�+�����������������������4.+48*/4.9�/(*/�/()�+*/*�519�<4)74.9�4-

851-)+�*.+�*.1/(),�-)5)8/41.�3*6�;)�3*+)�:,13�/()�+*/*�519�3).=$

Page 71: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

/0*

6-2-2 Enter Initialize Data Log

Set all data log elements to zero. Initializing the Data Log at installation, just before turningthe unit over, provides a clean buffer from which operating parameters can be followed.

���������8

/�0� /�0� ���������

-�+�

The prompt goes blank, then changes to ���������, 4.+48*/4.9�/(*/��.4/4*54@)��*/*�19�4-�851-)+�*.+�*.1/(),�-)5)8/41.�3*6�;)�3*+)�:,13�/()��*/*��19�3).=$

6-3 Load Data Log

Set the value of a data log element. This is necessary if the X–Ray Tube or batteries arereplaced. (If the X–ray tube is replaced, load zeros in the exposure counter and there is noneed to initialize the Data Log).

/�0� /�0� ����������

-�+�������������

/�0� /�0�

-�+.�

/�0�/�0�

-�+.�/�0�/�0�

The number of digits varies from one item to the next. Repeat this process until the valuehas been entered.

-�+.�����������������������

Page 72: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

40

SECTION 7ERROR LOG

ILLUSTRATION 7–1ERROR LOG

������������

/�0 �/�0 �

������-�+

������������

/�0 �/�0 �

�����

�-�+

�������� �������

�������������

�� "��

������� ����

����������� � ������ ������� �����

��#�����

��������� ���������

7-1 Introduction

To enter the Diagnostics Program, refer to Section 2 Entering Diagnostics.

Error Log maintains an error occurrence history which can be helpful when diagnosingproblems. Calibration errors, and errors encountered when entering Diagnostics are not re-corded. As shown on Illustration 7–1 there are two Error Log functions:

� ��������� �"��������&"��"���������3�����

�� ��������� �"��3�����,���������������3�����

Both the Error List and Histograms can be initialized, setting all data to zero, to establish astarting point from which errors can be monitored.

Initializing the Error List empties the error buffer. This provides a starting point from whicherrors may be tracked. Initializing the error list at installation, just before turning the unitover, provides a clean buffer from which operating errors can be followed.

Page 73: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

40�

ILLUSTRATION 7–2ERROR LOG DISPLAY

ËËËËËËËË -�+��

-�+

�������������

/�0��

/�0

/�0���-�+

�������

����

����

/�0 -�+

Prompts

DisplayNextError

DisplayPrevious

Error

Enter

Exit

00 ���

ERROR CODEHEXADECIMAL

NUMBER OFOCCURRENCES

DECIMAL

7-2 Entering Error Log

Illustration 7–2 shows Error Log selection using the /�0�, /�0�, and -�+.�switches. The prompt ��������� displays when you are in Error Log. Shaded boxesillustrate the selection path.

Exit Error Log by pressing -�+.� at either of the Error Log function prompts. Theprompt changes to �������, 4.+48*/4.9�/(*/���,,1,��19�4-�851-)+�*.+�*.1/(),�-)>5)8/41.�3*6�;)�3*+)�:,13�/()��4*9.1-/48-��).=$

Error log prompts appear on the Message Display directly above the kVp and mAsswitches. Error Codes and the number of times they occurred appear on the kVp and mAsDisplay. Errors display as Hexadecimal numbers, while the occurrence is a decimalnumber.

Page 74: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

40#

ILLUSTRATION 7–3ERROR LIST

�������

��������� ���������

/�0 �

�������������

�������������

�������������

�������������

����������-�+

/�0 �

����

7-2-1 View Error List

Error List tells you the order in which errors have occurred. It has room for 256 errors. Thefirst error to display when viewing the error list is the first error which occurred. This is theoldest error listed. The most recent error is at the end of the list. Each time an error occurs itis logged at the end of the error list. If an error occurs 20 times in secession, it’s code willoccupy 20 consecutive spaces. This appears as if there is no response to stepping up or downthrough the list. You must count the number of steps to determine the number of occur-rences.

Illustration 7–3 shows Error List selection using the /�0� and -�+.� switches. Usethe following procedure to view the Error List:

� '����/�0� 3�����"������������������������

�� '����-�+��6"��������"���������������������

#� '����-�+��6"��������"�������������4�����'����60�������"�������������������3��������������"�BA�����+����������,�"�������������"��������������������������,����&������������������

*� '������� ���"������/�0���60�� ��������������������,�����

�� '�������/�0� ���������"�����������6"�����������4�����������������������&"���"�����,�"�����������"���

/� '�������/�0� ���������"�������3�������

4� '����-�+��6"���������"���������������������"����������1

������������������"���"�������������&������������

�� '�������-�+��6"���������"���������������������������"���"�!����8������������

Page 75: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

40*

7-2-2 Initialize Error List

Initializing the Error List empties the error buffer. This provides a starting point from whicherrors may be tracked. Initializing the error list at installation, just before turning the unitover, provides a clean buffer from which operating errors can be followed.

Illustration 7–3 shows Error List selection using the /�0� and -�+.� switches. Usethe following procedure to initialize the Error List:

� '����/�0� 3�����"������������������������

�� '����-�+��6"��������"���������������������

#� '����/�0��6"��������"���������������������

*� '����-�+��6"���������������B��"������������������������������C�������"���"����������"��������������@���

�� '����-�+��6"���������"����������������$

/� '����-�+��6"���������"�������������������������"���"�!����8������������

Page 76: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

40�

ILLUSTRATION 7–4HISTOGRAM

�������

��������� ���������

/�0 �

�������������

�������������

�������������

�������������

���������

�-�+

/�0 �

����

7-3 View Histograms

Histogram tells you the number of times an error occurred. It is arranged in error code order.Each time an error occurs it is logged in the Histogram. If an error has not occurred, the errorcode will not display. Histogram displays the hexadecimal error code number above kVpand the number of occurrences as a decimal number above mAs.

Illustration 7–4 shows Histogram selection using the /�0� and -�+.� switches. Usethe following procedure to view the Error List:

� '����/�0� 3�����"������������������������

�� '����-�+��6"��������"���������������������

#� '����-�+��99..999����������"�BA�����+���������

*� '�������/�0� ���������"������������,�"�������������"������������

�����������������,����&������������������

�� '�������/�0� ���������"�������3�������

/� '����-�+��6"���������"���������������������"�����������1

�����������������"��D�����������&������������

4� '�������-�+��6"���������"���������������� �����������"���"�D������������������

Page 77: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

40/

7-4 Initialize Histograms

Initializing Histograms empties it’s buffer. This provides a starting point from which youmay track errors. Initializing Histograms at installation, just before turning the unit over,provides a clean buffer from which operating errors can be followed.

Illustration 7–4 shows Histogram selection using the /�0� and -�+.� switches. Usethe following procedure to initialize the Error List:

� '����/�0� 3�����"������������������������

�� '����-�+��6"��������"���������������������

#� '����/�0��6"��������"���������������������

*� '����-�+��6"���������������B��"�������������������������������������"���"�D������������"��������������@���

�� '����-�+��6"���������"����������������$

/� '����-�+��6"���������"�������������������������"���"�D����C��������������

Page 78: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

404

7-5 Error List

Table 7–1 is a complete cross reference of error code numbers to error names. Refer to Table12–1 Power Up Error Codes, and Table 12–3 Applications Error Codes for the probablecause of the error and recommended service actions.

Random RAM patterns appearing to be Error Codes other than those listed in Table 7–1occur when the CPU Board or RAM are replaced. Prevent confusion this misinformationcauses by initializing Error List and Histograms at installation and whenever the CPUBoard or RAM are replaced.

TABLE 7–1ERROR CODE TO ERROR NAME CROSS REFERENCE

Error Error Error ErrorCode Name Code Name

(On Operator Display)

�� �,,1,���� �� �,,1,������ �,,1,���� �� �*//),6�11�%49(�� �,,1,���� �� �*//),6�11��17�� �,,1,���� �� �,,1,������ �,,1,���� �� �,,1,����� �,,1,��� �� �,,1,������ �,,1,���� � �,,1,��� �� �,,1,���� �� �,,1,������ �,,1,���� �� �,,1,������ �):/��,4<)� /*55 �� �,,1,������ �49(/��,4<)� /*55 �� �,,1,������ �,,1,���� �� �,,1,������ �,,1,���� �� �,,1,����� �,,1,��� �� �,,1,������ �,,1,���� �� �,,1,������ �,,1,���� �� �,,1,������ ����� ��%����� � �,,1,�� ��� �,,1,���� � �,,1,�� ��� �,,1,���� � �,,1,�� ��� �,,1,���� � �,,1,�� ��� �4-05*6��,,1,��� � �,,1,�� �A+4-05*6)+�

*:/),�����188=,,).8)-B� �,,1,��� �,,1,�� �� �,,1,���� � �,,1,�� ��� �,,1,���� � �,,1,�� ��� �,,1,���� � �,,1,�� ��� �,,1,���� �� %*5/4.9��,,1,����� �,,1,���� �� )-/�������*45)+�� �,,1,���� �� )-/�������*45)+� �,,1,��� �� )-/�������*45)+�� �,,1,���� �� )-/�������*45)+�� �,,1,���� �� )-/�������*45)+�� �,,1,���� � )-/���� ��*45)+�� �,,1,���� �� )-/�������*45)+�� �,,1,������ �,,1,�����A+4-05*6)+�

*:/),�����188=,,).8)-B

Page 79: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

40�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 80: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

SECTION 8CHARGER

ILLUSTRATION 8–1CHARGER

������������

/�0 �/�0 �

������-�+

������������

/�0 �/�0 �

�����

�-�+

�������� �������

�������������

�� "��

������� ����

����������� � ������ ������� ����

��#�����

��������

8-1 Introduction

To enter the Diagnostics Program, refer to Section 2 Entering Diagnostics.

Charger provides a means by which the batteries may be charged when the AMX is notcompletely calibrated. The Voltmeter and Charger MUST be calibrated before this proce-dure is used. Other calibration procedures may be delayed until batteries are charged.

Charging by this method is identical to charging in the Applications Mode.

3������ ������� ���� ���� ��� "����� ��� ����� :���� ���� 0 ������� ���

"��������� ��� ���������$�����"�!#/��

Page 81: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

8-2 Entering Charger

Illustration 8–2 shows Charger selection using the /�0 �, /�0 �, and -�+.�switches. Shaded boxes illustrate the selection path. The prompt ����� �����

displays when you are in Charger.

Exit Charger at the prompt ����� ����� by turning the key switch off.

ILLUSTRATION 8–2CHARGE BATTERIES

ËËËËËË -�+��

-�+

�������������

/�0��

/�0

����

����

Prompts

Enter

� '����/�0� 3�����"� ��������������������������

�� '����-�+��6"��������"������������ ������

#� '�3� �"� �"������ ���� ���� � ����������� �3����� 6"� ������ �"����� ������ �������

*� ���"� ������ &���"���"�(3����������6"��������"������� ������63���"�B���&���"���"�)�����������

�� >���3��"�����&"�� ���� ����������������������

The ����� prompt appears on the Message Display and the % of charge display is litand functioning. This method of charging is identical to charging in the Applications Mode,however, the bargraph will not update in this mode. It is recommended the voltmeter berecalibrated after charging to reset the bargraph to the actual voltage.

Page 82: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0

SECTION 9DATA BASE ACCESS

��#��/���/%���������#��"���!3?�"#�#1����#/��#�������@

���#���#���&"�/0�����/�#/������/#�"�����%����#1��&'

��2�#!3�4�/#�%�2�"�!��!��&��"#�����/0���������51/"1

"���/�?!���#1�������#��������#1��4�A��5�51�#���!�#

#�� �&��"#� 3������ "1���/��� ��#�� 0��!�4� #�#� 2�!�

"1�����#��%�A��!���#1�2�����"����"#4

9-1 Introduction

Data Base Access provides direct access to the calibration and configuration data base.Data may be checked to see that it is within specified values, and it may be altered to opti-mize operation.

Always record the address and data before making changes so you can return to where youstarted. Always test your changes to make sure they are correct.

Be very careful when altering data. It is possible to enter data that will make the AMX–4operate improperly, causing damage to the unit, injuring a patient, or when attempting todrive the unit, injuring the operator and pedestrians.

ILLUSTRATION 9–1SERVICE SWITCH LOCATION

������

"��%

������ ���

&�'� "��%

ÉÉÉÉÉÉÉ

9-2 Entering Data Base Access

Before using Data Base Access you must start the Service Program, not the DiagnosticsProgram. To start the service program, perform the following steps:

� ���"���������&���"�"�&������3�������� 0��&����"�����������������

�� (�����"�+�:0*3��������,�"�,����&������"����

� If power is off, turn the Key Switch to the ON position.

� If power is on and the top cover is installed, turn the power key OFF for two sec-onds and then back ON again.

5���/��

Page 83: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

� If power is on and the top cover is removed providing access to the processorboard, press the processor reset switch (AMX1 A2 A1 S183 for CPU Board46–264974, or AMX1 A2 A1 S29 for CPU Board 46–232828).

When the service program is ready the ������� .���� menu selection *00)*,-�1./()��)--*9)��4-05*6$

ILLUSTRATION 9–2DATA BASE MENU SELECTION

�������������

��������� ' ����������������� ����

������������

/�0 �/�0 �

������-�+

� ���

After ������� ����appears on the display, you must reach the ��������� 1

��� menu selection.

Illustration 9–2 shows Data Base Access selection using the /�0�, /�0�, and -�+.�switches. Shaded boxes illustrates the selection path. Use the following steps to select��������� ���8

� '�������"��/�0� ��/�0� 3�����"���������� ������3�����������������

�� '����-�+��6"��������"���������������������������������"��-���.���+������������������

9-2-1 Entering Password

Enter password. If password is not available, contact Service Engineering. After the pass-word is entered, a hexadecimal address and data value appear on the kVp and mAs display.

When an invalid password is entered, the display changes to ������������ followedby ������������, then to ��������� ���8Press -�+�to re–enter DataBase Access.

If the password is not available, press -�+2� until the prompt ������������ appears.

The processor halts after three invalid entry attempts. Reset the processor by turning thepower off.

Page 84: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0#

9-2-2 Exit Without Changes

To exit ��������� ���press -�+2� when one of the menu selections shown onIllustration 9–2 displays.

The prompt changes to ������������then to ��������� ���indicatingthat ��������� ��� is not active. To return to the applications program, performthe following steps:

� '�������"��/�0� ��/�0� 3�����"��������� ��������3�����������������

�� '����-�+��6"��������"����������� �������

#� ���"���������&���"3����"��3����������6"��������"������� � ��

������� ��63���"���&��B��)��,������������"�����B)%������

*� �"��B���,3���������3&��B��������B��3���"�������������������

ILLUSTRATION 9–3DATA BASE DISPLAY

ËËËË-�+��

-�+

�������������

/�0��

/�0

/�0���-�+�������

����

����

/�0 -�+

Address Data

PromptsAnd

Errors

Increase Value

DecreaseValue

Enter ValueOr

Shift Data Entry

Exit

9-3 Data Base Display

After entering Data Base Access, a hexadecimal address and data value displays on the kVpand mAs display as shown on Illustration 9–3. Data values display as either a two digit or afour digit hexadecimal number. Data Base address locations are sequential hexadecimalnumbers. Section 10 Data Base for AMX–4 Units with: PROMS46–302688G1/46–302687G1 or 46–303272G1/46–303273G1 and CPU Boards46–232828 or 46–264974, or Section 11 Data Base for AMX–4 Units with: PROMS46–303815G1/46–303816G1, 46–316685G1/46–316686G1, or 46–329187G1/46–329188G1 or 46–329187G2/ 46–329188G2 and CPU Board 46–264974 contain acomplete data base listing.

Page 85: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0*

9-4 Selecting Data Base Address

See Illustration 9–3. Pressing /�0� increases the address location and pressing /�0�decreases the address location. You may scroll the address by pressing and holding theswitch, or change one location at a time by pressing and releasing the switch.

When you reach the address location of the data you wish to change, press -�+.�. Theaddress display turns off leaving only data on the kVp and mAs display. To exit the addresslocation without changing data, press -�+.�.

9-5 Changing Data Base Values

Data is changed starting with the left, or most significant, hexadecimal character and mov-ing right to the least significant character. Change data by using /�0� and /�0� toselect the proper hexadecimal value, then press -�+.� to enter the value and move to thenext character. (On units with Proms 46–303815G1/46–303816G1 and later on Board CPU46–264974, the selected digit will flash.)

Data displayed on the mAs and kVp display is entered into the data base either when-�+.� is pressed to exit the address, or when -�+.� is pressed to enter the last value.The address and new data appears on the kVp and mAs display after entering data.

9-6 Check Sum and Limit Errors

You can always read Data Base Access. However, you can write only to areas containing avalid check sum. The area where the check sum error occurred must be re–calibrated beforeaccess is allowed. Why? A new check sum must be calculated every time data changes. Ifyou change the wrong value you could damage the AMX–4, or leave it in a non–compliantcondition.

A Limit Error occurs when a value is entered that is above or below preset limits. A limiterror prompt occurs after out of range data is entered. What happens? The data you enteredis compared with it’s upper and lower limits. If it is outside of the limit, the original value isplaced in the data base instead of the value you entered.

9-7 Demonstration Procedure

During this demonstration you will learn to operate Data Base Access. You will also see therelationship between Calibration and Configuration Data Base. First, you will enter out ofrange data to see the response to a limit error. Then you will use Data Base Access to changedata and test the change. Finally, you will change data using Calibration, test the change andverify the change using Data Base Access.

Let’s look at an example of Data Base Access. Field light on time is used for this demonstra-tion because it presents the fewest problems if things go wrong. If a problem should arise asyou try this example, simply enter calibration and reset the field light on time.

Page 86: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

ILLUSTRATION 9–4HEXADECIMAL REPRESENTATION

9-7-1 Enter Data Base Access

� '�����"���������&���"���"����������������<��&�=����3���"���&�����+,���������������&��3������������� �"���������"����� ���������

�����

�� '����/�0�����������"���������������� �����"�������-�+.��6"��������"�����������������������

#� !�����"�����&����+������������������������"�BA�����+���������'����/�0���"��/�0� �����"�&�"���������"������'����������"�������"��3������������"���������%������"���,,���������&���"����������.���/���"�&������3�������� 0*����������������B��.,���/�

ILLUSTRATION 9–5FIELD LIGHT ON–TIME DISPLAY

ËËËË -�+��

-�+

�������������

/�0��

/�0

/�0���-�+�������

����

����

/�0 -�+

1BB 2E

Promptsand

ErrorsIncrease

Value

DecreaseValue

Enter Valueor

Shift Data Entry

Exit

Page 87: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0/

9-7-2 Change Field Light On–Time

Change the Field Light On–Time to more than 45 seconds. Because one bit equals one sec-ond, this location must be set to 2E Hex or higher to exceed the maximum value. Refer toTable 9–1, Field Light On–Time Values.

��������������������������������� ���� �� ����������������)33�� �������@

���������%&'(4�%�6��������������������� ����$�� ��������������4

� ������"������8��"�)�06����������5���"�&������3�������� 0�$6"��������������������"�����,�"����������'�����/�0���������,����"�����,�"������������"��������'����-�+.�&"���������5�����������6"������������������,����"�BA�����+�����������������"��&������"����C������� ���������������������������������������� ��������������������������������

�� '����/�0���"��/�0� �����"�&�"�,���������"��������"�������"���"�����"���"�����������

%������"���"��������&��������������"���"����&"���"��&���"�����������

#� '����-�+.���������"�,�����"�����������������&����"��������"������������"������'����/�0���"��/�0� �����"�&�"������������"��������"�������"���"�����"���"�����������

*� '����-�+.��6"��������"�������4�������������'����-�+.��6"��������"����������������������

What happened? The value you entered was higher than the maximum value, so the pro-gram returned (restored) the original value to the data base.

�� !�����"�"�����3��-�����������������..�6"����������������������0�����,*���������

9-7-3 Test Change

By going to the application program you will see the changes introduced by entering yourdata.

� !����"� ������'����������������/�0���/�0�3�����"����������

���� ������������

�� '����-�+.��6"��������"����������� �������

#� ���"� ������ &���"���"��3����������6"��������"������� � �����

���� ��

*� 63���"�'�&��I�� &���"�,,��"�����B���'�&��03����������,������

�� '�����"��������������"��3�����6"��������������"�&���������,��*���������+��3������������������������,���"����������������

"�!#/��

Page 88: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

04

9-7-4 Enter Calibration

Enter calibration and check the Field Light On–Time to check the value.

� 63���"�'�&��I�� &���"��)��� ���"� ������ &���"���"������������C�����63���"�'�&��I�� &���"���"�)%���������

�� '����/�0�����������"������� ����������������"�������-�+.��6"��������"������� ��������������

#� '����/�0�3�����"������� ��4�����������������"�������-�+.��6"��������"����������������������������"�������8��"�)�06���"��������������6"������8��"�)�06����,�*��������������"�BA�����+�-�������

9-7-5 Change Field Light On–Time

Now, while still in the calibration mode, change the Field Light On–Time to 15 seconds.This is represented by 0F Hex in the data base.

� ��������������0������"�������"��&���"��&����������"����3���

� Pressing /�0� increases on–time in 0.1 second increments.

� Pressing /�0� decreases on–time in 0.1 second increments.

�� '����-�+� &"�����������6"��������"������� ��4��������8

#� '����-�+��6"��������"������� ���������������

The display shows tenths of a second, but only seconds are saved. If a value greater than 45seconds or less than 5 seconds is entered, the error 4������������displays until -�+

� is pressed, then 4������������� is displayed. The Field Light On–Time is set tothe limit that was exceeded. Press -�+� again to exit.

9-7-6 Test Change Again

By going to the application program you will see that the collimator light will stay on for 15seconds.

� '����/�0� 3�����"�������������� �������������

�� '����-�+��6"��������"����������� �������

#� ���"� ������ &���"3����"���������������������6"��������"������� � ��������� ��

*� 63���"�'�&��I�� &���"�,,��"�����B���'�&��03����������,������

�� '�����"��������������"��3�����6"��������������"�&���������,�����������+��3������������������������,���"����������������

Page 89: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

9-7-7 Enter Data Base Access

Enter Data Base Access to verify the 15 second change. The address 5�� and data 94 ap-pear on the kVp and mAs display indicating that the Field Light on Time is set to 15 sec-onds.

TABLE 9–1FIELD LIGHT ON–TIME VALUES

ON–TIME HEX VALUE ON–TIME HEX VALUE ON–TIME HEX VALUE

5 05 20 14 35 23

10 0A 25 19 40 28

15 0F 30 1E 45 2D

9-7-8 On Your Own

You have used Data Base Access to change a calibration value. Then you tested the changeand you saw the result of entering out of range data. Table 9–1 contains some Field LightOn–Times in seconds and the Data Base hexadecimal values. Enter some of these values tosee that valid data is accepted. Test your changes to see that values from 5 seconds, 05 Hex,to 45 seconds, 2D Hex, are accepted. You may enter a value that is less than 5 seconds to seethat it produces the same results that too long a time produced.

By now you can see that as long as the Data Base Value is within it’s minimum and maxi-mum range, the program will accept it. You have seen that you can do no damage with FieldLight On–Time. With other parts of the data base this is not the case. Improper values candestroy the batteries or X–Ray Tube and most every thing in between. Don’t be afraid ofusing Data Base Access. But when you use it, use it carefully.

9-7-9 Return The Original Value

Enter the original hexadecimal value that you wrote in the margin in Section 9-7-2, ChangeField Light On–Time. Test the unit to make sure it is operating properly before leaving.

9-8 Floor Scuffing

Some units leave marks on the floor when accelerating. Reducing the Acceleration Factorreduces this problem. Refer to �>>!&!,%$ (#4%>$(,�(address 01 6A) in Table 10–6, DriveParameters, or Table 11–5, Drive Parameters (whichever is appropriate for PROMS in thisunit), and experiment with the value until the scuffing is reduced. After the data change, besure to recalibrate the drive handle.

Page 90: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

SECTION 10DATA BASE FOR AMX–4 UNITS WITH:PROMS 46–302688G1/46–302687G1OR 46–303272G1/46–303273G1AND CPU BOARDS 46–232828 OR 46–264974

10-1 Calibratible X–Ray Parameters

This section contains a complete listing of the AMX–4 Data Base.

TABLE 10–1CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

X–RAY BYTES

Counts Per mAs00 00 99 C8 64This value is established during calibration, do not change with Data Base Access. Thenumber of VCO pulses required for 1.0 mAs ofX–ray emission.

Battery Recovery Time 00 01 14 1E 0ATime in seconds that the WAIT message willbe displayed after an exposure. This is thetime it takes the batteries to recover after anexposure so that technique accuracy can beguaranteed.

Max Prep to Exposure Time 00 02 1E 28 0AThe maximum time in seconds that the unitcan remain in “prep” before an exit is forced.

Initial Heat Wait Time 00 03 5A 78 3CThe maximum heat wait time in seconds re-quired after an exposure.

Max Filament Current Change 00 04 0A 10 00The maximum number of DAC counts theAutomatic Calibration Filament Current TableElements can change after most exposures.Used only during auto calibration.

Leakage Current at 50 kVp 00 05 00 64 00The number of leakage current DAC countsrequired at 50kVp to give proper leakage com-pensation.

Page 91: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 10–1 (CONT.)CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Leakage Current at 80 kVp 00 06 0A C8 00The number of leakage current DAC countsrequired at 80kVp to give proper leakage com-pensation.

Leakage Current at 125 kVp 00 07 21 FA 0AThe number of leakage current DAC countsrequired at 125kVp to give proper leakagecompensation.

Last Calibratible Tap 00 08 12 1B 10This value is established during calibration, donot change with Data Base Access. The indexof the last tap combination that could be cali-brated during Tap Cal.

Filament Current Calibrated 00 09 FF FF 00This value is established during calibration, donot change with Data Base Access. Hex value01 indicates the filament current tables havebeen calibrated, any other value is false.

kVp Calibrated 00 0A FF FF 00This value is established during calibration, donot change with Data Base Access. Hex value01 indicates the kVp has been calibrated, anyother value is false.

X–ray Bytes not used: 00B, 00C, 00D, 00E.

X–RAY WORDS

Turn off Delay at 50 kVp 00 0F 03 E8 07 D0 00 FAThis value is established during calibration, donot change with Data Base Access. The timein microseconds between the EXP STOPCMND being given and XRAY ON going low at50kVp. This time is used to determine when toterminate the exposure in order to get the se-lected mAs.

Page 92: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

TABLE 10–1 (CONT.)CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Turn off Delay at 80 kVp 00 11 03 E8 07 D0 00 FAThis value is established during calibration, donot change with Data Base Access. The timein microseconds between the EXP STOPCMND being given and XRAY ON going low at80kVp. This time is used to determine when toterminate the exposure in order to get the se-lected mAs.

Turn off Delay at 125 kVp 00 13 03 E8 07 D0 00 FAThis value is established during calibration, donot change with Data Base Access. The timein microseconds between the EXP STOPCMND being given and XRAY ON going low at120kVp. This time is used to determine whento terminate the exposure in order to get theselected mAs.

Ideal kVp1 Output 00 15 04 C9 05 C3 03 CFThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 52 kVp +3 kVp.

Ideal kVp2 Output 00 17 05 F5 06 EF 04 FBThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 64 kVp +3 kVp.

Ideal kVp3 Output 00 19 08 40 09 33 07 3FThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 85 kVp +3 kVp.

Ideal kVp4 Output 00 1B 0C B2 0D AC 0B BBThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 120 kVp +3 kVp.

Actual kVp1 Output 00 1D 02 08 02 3A 01 D6This value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp1 Output DAC count. This parameteris entered during kVp calibration.

Page 93: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

TABLE 10–1 (CONT.)CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Actual kVp2 Output 00 1F 02 80 02 B2 02 4EThis value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp2 Output DAC count. This parameteris entered during kVp calibration.

Actual kVp3 Output 00 21 03 52 03 84 03 20This value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp3 Output DAC count. This parameteris entered during kVp calibration.

Actual kVp4 Output 00 23 04 BB 04 E2 04 7EThis value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp4 Output DAC count. This parameteris entered during kVp calibration.

mAs Frequency at 100 mA 00 25 3B 92 4E 20 2710This value is established during calibration,do not change with Data Base Access. The100mA frequency from the mA VCO. Thisvalue is calculated during mAs calibration.

Page 94: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

10-2 Auto Cal Filament Current

This table is established during calibration, do not change with Data Base Access. Table10–2 is the first of the two filament look–up–tables giving the relationship between fila-ment current DAC counts at emission current of 90 and 110 mA for all valid kVp stations.This table is updated after most exposures to maintain this relationship.

TABLE 10–2AUTO CAL FILAMENT CURRENT

kVp at 90 mA 110 mAAddress Default Max Min Address Default Max Min

50 kVp 00 27 08 09 0F 64 03 0C 00 29 0A 18 0F FF 04 EC

52 kVp 00 2B 07 F5 0F 61 02 E1 00 2D 09 FF 0F FF 04 CB

54 kVp 00 2F 07 E1 0F 37 02 B7 00 31 09 E6 0F FE 04 AA

56 kVp 00 33 07 CD 0F 0C 02 8C 00 35 09 CD 0F DD 04 89

58 kVp 00 37 07 B9 0E E2 02 62 00 39 09 B5 0F BC 04 68

60 kVp 00 3B 07 A5 0E D8 02 4C 00 3D 09 9C 0F 9C 04 48

62 kVp 00 3F 07 91 0E CC 02 35 00 41 09 83 0F 7B 04 27

64 kVp 00 43 07 7D 0E B3 02 15 00 45 09 6A 0F 64 04 06

66 kVp 00 47 07 6D 0E 9C 01 F4 00 49 09 59 0F 5A 03 E5

68 kVp 00 4B 07 5E 0E 90 01 DE 00 4D 09 48 0F 4A 03 C4

70 kVp 00 4F 07 4E 0E 83 01 C7 00 51 09 37 0F 3E 03 A4

72 kVp 00 53 07 3E 0E 6D 01 BB 00 55 09 27 0F 31 03 83

74 kVp 00 57 07 2E 0E 56 01 AE 00 59 09 16 0F 1A 03 62

76 kVp 00 5B 07 1F 0E 4A 01 A2 00 5D 09 05 0F 5D 03 41

80 kVp 00 5F 06 FF 0E 31 01 89 00 61 08 E3 0F 4E 03 00

85 kVp 00 63 06 D8 0E 0C 01 6E 00 65 08 B9 0F 40 02 D4

90 kVp 00 67 06 B9 0D DD 01 53 00 69 08 8B 0E FD 02 A9

95 kVp 00 6B 06 9A 0D AE 01 38 00 6D 08 5D 0F 29 02 7D

100 kVp 00 6F 06 7B 0D 80 01 1E 00 71 08 2F 0E D2 02 52

105 kVp 00 73 06 5B 0D 51 01 03 00 75 08 01 0E A6 02 26

110 kVp 00 77 06 3C 0D 22 00 DE 00 79 07 D3 0E 7B 01 FB

115 kVp 00 7B 06 1D 0C F3 00 C7 00 7D 07 A5 0E 4F 01 CF

120 kVp 00 7F 05 FE 0C C5 00 A9 00 81 07 77 0E 24 01 A4

125 kVp 00 83 05 DF 0C 96 00 7A 00 85 07 49 0D F8 01 78

Page 95: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0/

10-3 Filament Current Calibration Table

This value is established during calibration, do not change with Data Base Access. This isthe second of the two filament look–up–tables giving the relationship between filamentcurrent DAC counts at emission current of 90 and 110 mA for all valid kVp stations. Thistable is modified only during filament current table calibration. After calibration it is cop-ied into Table 10–2 Auto Cal Filament Current Table.

TABLE 10–3FILAMENT CURRENT CALIBRATION TABLE

kVp at 90 mA 110 mAAddress Default Max Min Address Default Max Min

50 kVp 00 87 08 09 0F 64 03 0C 00 89 0A 18 0F FF 04 EC

52 kVp 00 8B 07 F5 0F 61 02 E1 00 8D 09 FF 0F FF 04 CB

54 kVp 00 8F 07 E1 0F 37 02 B7 00 91 09 E6 0F FE 04 AA

56 kVp 00 93 07 CD 0F 0C 02 8C 00 95 09 CD 0F DD 04 89

58 kVp 00 97 07 B9 0E E2 02 62 00 99 09 B5 0F BC 04 68

60 kVp 00 9B 07 A5 0E D8 02 4C 00 9D 09 9C 0F 9C 04 4B

62 kVp 00 9F 07 91 0E CC 02 35 00 A1 09 83 0F 7B 04 27

64 kVp 00 A3 07 7D 0E B3 02 15 00 A5 09 6A 0F 64 04 06

66 kVp 00 A7 07 6D 0E 9C 01 F4 00 A9 09 59 0F 5A 03 E5

68 kVp 00 AB 07 5E 0E 90 01 DE 00 AD 09 48 0F 4A 03 C4

70 kVp 00 AF 07 4E 0E 83 01 C7 00 B1 09 37 0F 3E 03 A4

72 kVp 00 B3 07 3E 0E 6D 01 BB 00 B5 09 27 0F 31 03 83

74 kVp 00 B7 07 2E 0E 56 01 AE 00 B9 09 16 0F 1A 03 62

76 kVp 00 BB 07 1F 0E 4A 01 A2 00 BD 09 05 0F 5D 03 41

80 kVp 00 BF 06 FF 0E 31 01 89 00 C1 08 E3 0F 4E 03 00

85 kVp 00 C3 06 D8 0E 0C 01 6E 00 C5 08 B9 0F 40 02 D4

90 kVp 00 C7 06 B9 0D DD 01 53 00 C9 08 8B 0F 29 02 A9

95 kVp 00 CB 06 9A 0D AE 01 38 00 CD 08 5D 0E FD 02 7D

100 kVp 00 CF 06 7B 0D 80 01 1E 00 D1 08 2F 0E D2 02 52

105 kVp 00 D3 06 5B 0D 51 01 03 00 D5 08 01 0E A6 02 26

110 kVp 00 D7 06 3C 0D 22 00 DE 00 D9 07 D3 0E 7B 01 FB

115 kVp 00 DB 06 1D 0C F3 00 C7 00 DD 07 A5 0E 4F 01 CF

120 kVp 00 DF 05 FE 0C C5 00 A9 00 E1 07 77 0E 24 01 A4

125 kVp 00 E3 05 DF 0C 96 00 7A 00 E5 07 49 0D F8 01 78

Page 96: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�04

10-4 Turns Ratio Taps

This table is established during calibration, do not change with Data Base Access. It is alook–up–table giving the effective turns ratio (battery volts to kVp) of the system for eachvalid tap combination. It is calculated during tap calibration.

TABLE 10–4TURNS RATIO TAPS

Relay Tap Selection Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

No Taps 00 E7 02 66 03 B6 00 96

K1 00 E9 02 34 03 C4 00 A4

K2 00 EB 02 4F 03 DF 00 BF

K2, K1 00 ED 02 7D 04 0D 00 ED

K3 00 EF 02 E6 04 76 01 56

K3, K1 00 F1 03 28 04 B8 01 98

K3, K2 00 F3 03 33 04 C3 01 A3

K3, K2, K1 00 F5 03 62 04 F2 04 D2

K4 00 F7 03 4A 04 DA 01 BA

K4, K1 00 F9 03 7F 05 0F 01 EF

K4, K2 00 FB 03 AC 05 3C 02 1C

K4, K2, K1 00 FD 03 E1 05 71 02 51

K4, K3 00 FF 04 25 05 B5 02 95

K4, K3, K1 01 01 04 65 05 91 02 D5

K4, K3, K2, 01 03 04 76 06 06 02 E6

K4, K3, K2, K1 01 05 04 C3 06 53 03 33

K5 01 07 05 21 06 B1 03 91

K5, K1 01 09 05 17 06 A7 03 87

K5, K2 01 0B 05 39 06 C9 03 A9

K5, K2, K1 01 0D 05 6A 06 FA 03 DA

K5, K3 01 0F 05 9A 07 2A 04 0A

K5, K3, K1 01 11 05 EB 07 7B 04 5B

K5, K3, K2 01 13 06 24 07 B4 04 94

K5, K3, K2, K1 01 15 06 8D 08 1D 04 FD

K6, K3 01 17 06 EA 08 7A 05 5A

K6, K3, K1 01 19 06 F3 08 83 05 63

K6, K3, K2 01 1B 07 23 08 B3 05 93

K6, K3, K2, K1 01 1D 07 AF 09 3F 06 1F

Page 97: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

10-5 System Resistance Taps

This table is established during calibration, do not change with Data Base Access. A look–up–table giving the effective system resistance (battery to x–ray tube) for each valid tapcombination. It is calculated during tap calibration.

TABLE 10–5SYSTEM RESISTANCE TAPS

Relay Tap Selection Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

No Taps 01 1F 00 D3 01 9B 00 6F

K1 01 21 00 E1 01 A9 00 7D

K2 01 23 00 C7 01 8F 00 64

K2, K1 01 25 00 D0 01 98 00 6C

K3 01 27 01 37 01 FF 00 6F

K3, K1 01 29 01 54 02 1C 00 8C

K3, K2 01 2B 01 27 02 53 00 96

K3, K2, K1 01 2D 01 34 01 FC 00 9E

K4 01 2F 00 D2 01 9A 00 6E

K4, K1 01 31 00 EA 01 B2 00 86

K4, K2 01 33 00 F9 01 C1 00 95

K4, K2, K1 01 35 01 11 01 D9 00 AD

K4, K3 01 37 01 3A 02 02 00 C2

K4, K3, K1 01 39 01 5F 02 27 00 C3

K4, K3, K2, 01 3B 01 51 02 19 00 C5

K4, K3, K2, K1 01 3D 01 8B 02 53 00 C7

K5 01 3F 01 AC 02 74 00 C8

K5, K1 01 41 01 7C 02 44 00 D2

K5, K2 01 43 01 8F 02 57 00 DB

K5, K2, K1 01 45 01 A7 02 6F 00 DF

K5, K3 01 47 01 C1 02 89 00 F9

K5, K3, K1 01 49 01 FF 02 C7 01 37

K5, K3, K2 01 4B 02 23 02 EB 01 5B

K5, K3, K2, K1 01 4D 02 7C 03 44 01 B4

K6, K3 01 4F 02 B3 03 7B 01 C2

K6, K3, K1 01 51 02 9C 03 64 01 C2

K6, K3, K2 01 53 02 B4 03 7C 01 C2

K6, K3, K2, K1 01 55 03 37 03 E7 01 C5

Page 98: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

10-6 Drive Parameters

TABLE 10–6DRIVE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

DRIVE BYTES

Drive Threshold01 60 0A 14 00Drive command deadband in DAC countsaround the zero output value.

Drive Equal Value 01 61 0A 14 00The maximum difference between the left andright drive output commands in DAC countsfor which the left and right output commandswill be made equal.

Left Output Zero Point 01 62 80 90 70The DAC count which gives a zero left drivecommand.

Left Forward Output Gain 01 63 64 C8 32The left output gain in the forward direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Left Reverse Output Gain 01 64 64 C8 32The left output gain in the reverse direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Right Output Zero Point 01 65 80 90 70The DAC count which gives a zero right drivecommand.

Right Forward output Gain 01 66 64 C8 32The right output gain in the forward direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Right Reverse output Gain 01 67 64 C8 32The right output gain in the reverse direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Page 99: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 10–6 (CONT.)DRIVE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Right Forward Position is Greater 01 68 01 01 00This value is established during calibration, donot change with Data Base Access. Indicatesmagnet polarity of the Hall Effect Drive Sen-sor. A 01 Hex indicates that pushing forwardon the right drive handle results in a more posi-tive transducer voltage than pulling back pro-duces.

Left Forward Position is Greater 01 69 00 01 00This value is established during calibration, donot change with Data Base Access. Indicatesmagnet polarity of the Hall Effect Drive Sen-sor. A 01 Hex indicates that pushing forwardon the left drive handle results in a more posi-tive transducer voltage than pulling back pro-duces.

Acceleration Factor 01 6A C8 FF 28Controls handle sensitivity. The larger thisnumber is the more responsive the unit will beafter the drive handle is calibrated.

Left Minimum Input �/. �� �) �

This value is established during calibration, donot change with Data Base Access. The mini-mum value from the left handle transducer.

Left Maximum Input 01 6C 80 FO 30This value is established during calibration, donot change with Data Base Access. The maxi-mum value from the left handle transducer.

DRIVE WORDS

Left Input Zero Point 01 6D 08 00 0C 00 05 00This value is established during calibration, donot change with Data Base Access. The num-ber of A/D counts with no force applied to thedrive handle on the left side.

Left Forward Input Gain 01 6F 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the left input in the forward direction.The gain is given by (decimal equivalent) �1000. i.e. default of D2 Hex is, decimal 210 �1000 = gain of 0.21.

Page 100: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

TABLE 10–6 (CONT.)DRIVE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Left Reverse Input Gain 01 71 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the left input in the reverse direction.The gain is given by (decimal equivalent) �1000. i.e. default of D2 Hex is, decimal 210 �1000 = gain of 0.21.

Right Input Zero Point 01 73 08 00 0C 00 05 00This value is established during calibration, donot change with Data Base Access. The num-ber of A/D counts with no force is applied to thedrive handle on the right side.

Right Forward Input Gain 01 75 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the right input in the forward direc-tion. The gain is given by (decimal equivalent)� 1000. i.e. default of D2 Hex is, decimal 210� 1000 = gain of 0.21.

Right Reverse Input Gain 01 77 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the left input in the reverse direction.The gain is given by (decimal equivalent) �1000. i.e. default of D2 Hex is, decimal 210 �1000 = gain of 0.21.

Right Minimum Input 01 79 00 80 00 CO 00 10This value is established during calibration, donot change with Data Base Access. The mini-mum value from the right handle transducer.

Right Maximum Input 01 7B 00 80 00 FO 00 30This value is established during calibration, donot change with Data Base Access. The maxi-mum value from the right handle transducer.

Page 101: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

10-7 Charge Parameters

TABLE 10–7CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

CHARGE BYTES

EQUALIZATION AMP HR 01 7D AF C8 32Amount of charge returned to battery beforean equalization cycle is required. (extendedrecharge) (not used with PROMS46–302688G1/46–302687G1).

Maximum High Charge Time 01 7E OF 14 0AThe maximum time in hours that the unit cancharge. If this time is exceeded, an error con-dition is flagged and trickle charge is entered.

Trickle Charge Clamp Voltage 01 7F 7C 80 75The maximum long term voltage allowed during trickle charge.

High Charge High Output 01 80 32 3C 28This value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during chargercalibration.

High Charge Low Output 01 81 19 23 0FThis value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during chargercalibration.

Trickle Charge High Output 01 82 C8 E1 AFThis value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during tricklecharge calibration.

Trickle Charge Low Output 01 83 64 7D 4BThis value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during tricklecharge calibration.

Page 102: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

TABLE 10–7 (CONT.)CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Start Timed Charge Counts 01 84 1A* 34* 10*The DAC count at which the final charge 24** 34** 10**phase begins.

High Charge Clamp Volts 01 85 82 85 7DThe maximum battery voltage in volts allowed during charging. Charging current will decrease in order to clamp the voltage.

* VALUE FOR PROM 46–302688G1/46–302687G1

** VALUE FOR PROM 46–303272G1/46–303273G1

Page 103: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

TABLE 10–7 (CONT.)CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

EQUALIZATION CLAMP VOLTS 01 86 84 8C 80The maximum battery voltage in volts allowedduring the charging equalization cycle. (notused).

EQUALIZATION TIME 01 87 12 40 06The time to ”equalization complete” when theswitch to the trickle charge rate occurs. (notused).

FINAL PHASE TIME 01 88 06* 0C* 00*The time to ”Charge Completed” from the 06** 12** 00**time the switch to the trickle charge rateoccurs.

* VALUE FOR PROM 46–302688G1/46–302687G1

** VALUE FOR PROM 46–303272G1/46–303273G1

Page 104: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 10–7 (CONT.)CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

CHARGE WORDS

Feedback at High Charge High Output 01 89 09 C4 13 88 04 B0This value is established during calibration, donot change with Data Base Access. Thecharge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to High Charge High Outputcounts. This parameter is used to determinewhat the charging current feedback should befor any given charge current demand DACoutput.

Feedback at High Charge Low Output 01 8B 04 4C 05 DC 02 58This value is established during calibration, donot change with Data Base Access. Thecharge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to High Charge Low Outputcounts. This parameter is used to determinewhat the charging current feedback should befor any given charge current demand DACoutput.

mA at High Charge High Output 01 8D 03 E8 04 E2 02 EEThis value is established during calibration, donot change with Data Base Access. Thecharging current in milliamps with the chargecurrent demand DAC set to High Charge HighOutput counts. This parameter is calculatedduring charger calibration. It is used to deter-mine what the charging current is for any givencharge current demand DAC output.

mA at High Charge Low Output 01 8F 01 F4 02 EE 00 FAThis value is established during calibration, donot change with Data Base Access. Thecharging current in milliamps with the chargecurrent demand DAC set to High Charge LowOutput counts. This parameter is calculatedduring charger calibration. It is used to deter-mine what the charging current is for any givencharge current demand DAC output.

Page 105: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0/

TABLE 10–7 (CONT.)CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Feedback at Trickle Charge High Output 01 91 27 10 61 A8 13 88This value is established during calibration,do not change with Data Base Access. The charge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to Trickle Charge High Out-put counts in the trickle charge mode. This pa-rameter is used to determine what the charg-ing current feedback should be for any givencharge current demand DAC output in thetrickle charge mode.

Feedback at Trickle Charge Low Output 01 93 13 88 3A 98 03 E8This value is established during calibration,do not change with Data Base Access. Thecharge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to Trickle Charge Low Outputcounts in the trickle charge mode. This pa-rameter is used to determine what the charg-ing current feedback should be for any givencharge current demand DAC output in thetrickle charge mode.

Maximum Charging mA 01 97 09 C4 0B B8 07 D0The maximum allowable charging current inmilliamps.

Charge Current Feedback Error 01 99 02 EE 03 E8 01 F4The error window on the expected charge cur-rent feedback in VCO pulse counts.

Page 106: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�04

10-8 Battery Parameters

TABLE 10–8BATTERY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

BATTERY WORDS

Not used 01 9B

Zero Capacity Change 01 9D 19 19 FF FF 00 00Maximum change for battery aging.(Use 0000 to disable battery aging)

Monitor Full Capacity millivolts 01 9F 2D 50* 2E 18* 2C EC*Battery voltage which corresponds to 100% 2C 88** 2E 18** 2C 24**capacity times 100. i.e. default of 2D 50Hex is, decimal 11600 � 100 = 116.00 V.

Battery Volts Calibration Count 01 A1 8A CC EA 60 4E 20This value is established during calibration, donot change with Data Base Access. The num-ber of VCO pulse counts obtained in a fivesecond period during battery voltage metercalibration.

Battery Calibration Millivolts 01 A3 2B CA 3A 98 1F 40This value is established during calibration, donot change with Data Base Access. The volt-age in volts times 100 at the time that BatteryVolts Calibration Counts was obtained. i.e. de-fault of 2BCA Hex is, decimal 11210 � 100 =112.10 V.

* VALUE FOR PROM 46–302688G1/46–302687G1

** VALUE FOR PROM 46–303272G1/46–303273G1

Page 107: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

10-9 Field Light Parameters

TABLE 10–9FIELD LIGHT PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

FIELD LIGHT BYTES

Field Light on Time 01 A7 1E 2D 05The time in seconds that the field light will beon after the field light switch is released.

Maximum Field Light on Time 01 A8 C8 FF 64The maximum continuous field light operatingtime in seconds. Once this time has been ex-ceeded the field light is turned off and will bedisabled until Field Light Cool Time secondshave expired.

Field Light Cool Time 01 A9 FF FF 64The cool (off) time in seconds required oncethe field light has been on for more than Maxi-mum Field Light On Time.

Minimum no Cool Time 01 AA 08 0F 04The time in seconds for which the field light willbe disabled if an operator attempts to light thefield light. This occurs only when field lightheat capacity is approaching maximum limit.

Page 108: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0

SECTION 11DATA BASE FOR AMX–4 UNITS WITH:PROMS 46–303815G1/46–303816G1,46–316685G1/46–316686G1, OR 46–329187G1/46–329188G1, OR 46–329187G2/46–329188G2 AND CPU BOARD 46–264974

11-1 Calibratible X–Ray Parameters

This section contains a complete listing of the AMX–4 Data Base.

TABLE 11–1CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

X–RAY BYTES

Counts Per mAs00 00 99 C8 64This value is established during calibration,do not change with Data Base Access. Thenumber of VCO pulses required for 1.0 mAs ofX–ray emission.

Battery Recovery Time 00 01 14 1E 0ATime in seconds that the WAIT message willbe displayed after an exposure. This is thetime it takes the batteries to recover after anexposure so that technique accuracy can beguaranteed.

Max Prep to Exposure Time 00 02 1E 28 0AThe maximum time in seconds that the unitcan remain in “prep” before an exit is forced.

Initial Heat Wait Time 00 03 5A 78 3CThe maximum heat wait time in seconds re-quired after an exposure.

Max Filament Current Change 00 04 0A 10 00The maximum number of DAC counts theAutomatic Calibration Filament Current TableElements can change after most exposures.Used only during auto calibration.

Leakage Current at 50 kVp 00 05 00 64 00The number of leakage current DAC countsrequired at 50kVp to give proper leakage com-pensation.

Leakage Current at 80 kVp 00 06 0A C8 00The number of leakage current DAC countsrequired at 80kVp to give proper leakage com-pensation.

Page 109: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

TABLE 11–1 (CONT.)CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Leakage Current at 125 kVp 00 07 21 FA 0AThe number of leakage current DAC countsrequired at 125kVp to give proper leakagecompensation.

Last Calibratible Tap 00 08 12 1B 10This value is established during calibration, donot change with Data Base Access. The indexof the last tap combination that could be cali-brated during Tap Cal.

Filament Current Calibrated 00 09 FF FF 00This value is established during calibration, donot change with Data Base Access. Hex value01 indicates filament current tables have beencalibrated. Any other value is false.

kVp Calibrated 00 0A FF FF 00This value is established during calibration, donot change with Data Base Access. Hex value01 indicates the kVp has been calibrated. Anyother value is false.

Taps Calibrated00 0B 00 FF 00This value established during calibration, donot change with Data Base Access. Hex value01 indicates Taps have been calibrated. Anyother value is false.

X–RAY WORDS

Turn off Delay at 50 kVp 00 0F 03 E8 07 D0 00 FAThis value established during calibration, donot change with Data Base Access. Time inmicroseconds between EXP STOP CMNDbeing given and XRAY ON going low at50kVp. This time used to determine when toterminate exposure in order to get selectedmAs.

Turn off Delay at 80 kVp 00 11 03 E8 07 D0 00 FAThis value established during calibration, donot change with Data Base Access. Time inmicroseconds between EXP STOP CMNDbeing given and XRAY ON going low at80kVp. This time is used to determine when toterminate the exposure in order to get the se-lected mAs.

Page 110: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0#

TABLE 11–1 (CONT.)CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Turn off Delay at 125 kVp 00 13 03 E8 07 D0 00 FAThis value is established during calibration, donot change with Data Base Access. The timein microseconds between the EXP STOPCMND being given and XRAY ON going low at120kVp. This time is used to determine whento terminate the exposure in order to get theselected mAs.

Ideal kVp1 Output 00 15 04 C9 05 C3 03 CFThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 52 kVp +3 kVp.

Ideal kVp2 Output 00 17 05 F5 06 EF 04 FBThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 64 kVp +3 kVp.

Ideal kVp3 Output 00 19 08 40 09 33 07 3FThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 85 kVp +3 kVp.

Ideal kVp4 Output 00 1B 0C B2 0D AC 0B BBThis value is established during calibration, donot change with Data Base Access. The DACcounts required to get 120 kVp +3 kVp.

Actual kVp1 Output 00 1D 02 08 02 3A 01 D6This value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp1 Output DAC count. This parameteris entered during kVp calibration.

Actual kVp2 Output 00 1F 02 80 02 B2 02 4EThis value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp2 Output DAC count. This parameteris entered during kVp calibration.

Page 111: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0*

TABLE 11–1 (CONT.)CALIBRATIBLE X–RAY PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Actual kVp3 Output 00 21 03 52 03 84 03 20This value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp3 Output DAC count. This parameteris entered during kVp calibration.

Actual kVp4 Output 00 23 04 BB 04 E2 04 7EThis value is established during calibration, donot change with Data Base Access. ActualkVp multiplied by 10 which resulted from theIdeal kVp4 Output DAC count. This parameteris entered during kVp calibration.

mAs Frequency at 100 mA 00 25 3B 92 4E 20 27 10This value is established during calibration,do not change with Data Base Access. The100mA frequency from the mA VCO. Thisvalue is calculated during mAs calibration.

� ���� ���;=��� ����+<����� ������4

Page 112: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

11-2 Filament Current Calibration Table

This value is established during calibration, do not change with Data Base Access. This isthe second of the two filament look–up–tables giving the relationship between filamentcurrent DAC counts at emission current of 90 and 110 mA for all valid kVp stations. Thistable is modified only during filament current table calibration. After calibration it is cop-ied into Table 11–2 Auto Cal Filament Current Table.

TABLE 11–2FILAMENT CURRENT CALIBRATION TABLE

kVp at 90 mA 110 mAAddress Default Max Min Address Default Max Min

50 kVp 00 87 08 09 0F 64 03 0C 00 89 0A 18 0F FF 04 EC

52 kVp 00 8B 07 F5 0F 61 02 E1 00 8D 09 FF 0F FF 04 CB

54 kVp 00 8F 07 E1 0F 37 02 B7 00 91 09 E6 0F FE 04 AA

56 kVp 00 93 07 CD 0F 0C 02 8C 00 95 09 CD 0F DD 04 89

58 kVp 00 97 07 B9 0E E2 02 62 00 99 09 B5 0F BC 04 68

60 kVp 00 9B 07 A5 0E D8 02 4C 00 9D 09 9C 0F 9C 04 4B

62 kVp 00 9F 07 91 0E CC 02 35 00 A1 09 83 0F 7B 04 27

64 kVp 00 A3 07 7D 0E B3 02 15 00 A5 09 6A 0F 64 04 06

66 kVp 00 A7 07 6D 0E 9C 01 F4 00 A9 09 59 0F 5A 03 E5

68 kVp 00 AB 07 5E 0E 90 01 DE 00 AD 09 48 0F 4A 03 C4

70 kVp 00 AF 07 4E 0E 83 01 C7 00 B1 09 37 0F 3E 03 A4

72 kVp 00 B3 07 3E 0E 6D 01 BB 00 B5 09 27 0F 31 03 83

74 kVp 00 B7 07 2E 0E 56 01 AE 00 B9 09 16 0F 1A 03 62

76 kVp 00 BB 07 1F 0E 4A 01 A2 00 BD 09 05 0F 5D 03 41

80 kVp 00 BF 06 FF 0E 31 01 89 00 C1 08 E3 0F 4E 03 00

85 kVp 00 C3 06 D8 0E 0C 01 6E 00 C5 08 B9 0F 40 02 D4

90 kVp 00 C7 06 B9 0D DD 01 53 00 C9 08 8B 0F 29 02 A9

95 kVp 00 CB 06 9A 0D AE 01 38 00 CD 08 5D 0E FD 02 7D

100 kVp 00 CF 06 7B 0D 80 01 1E 00 D1 08 2F 0E D2 02 52

105 kVp 00 D3 06 5B 0D 51 01 03 00 D5 08 01 0E A6 02 26

110 kVp 00 D7 06 3C 0D 22 00 DE 00 D9 07 D3 0E 7B 01 FB

115 kVp 00 DB 06 1D 0C F3 00 C7 00 DD 07 A5 0E 4F 01 CF

120 kVp 00 DF 05 FE 0C C5 00 A9 00 E1 07 77 0E 24 01 A4

125 kVp 00 E3 05 DF 0C 96 00 7A 00 E5 07 49 0D F8 01 78

Page 113: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0/

11-3 Turns Ratio Taps

This table is established during calibration, do not change with Data Base Access. It is alook–up–table giving the effective turns ratio (battery volts to kVp) of the system for eachvalid tap combination. It is calculated during tap calibration.

TABLE 11–3TURNS RATIO TAPS

Relay Tap Selection Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

No Taps 00 E7 02 66 03 B6 00 96

K1 00 E9 02 34 03 C4 00 A4

K2 00 EB 02 4F 03 DF 00 BF

K2, K1 00 ED 02 7D 04 0D 00 ED

K3 00 EF 02 E6 04 76 01 56

K3, K1 00 F1 03 28 04 B8 01 98

K3, K2 00 F3 03 33 04 C3 01 A3

K3, K2, K1 00 F5 03 62 04 F2 04 D2

K4 00 F7 03 4A 04 DA 01 BA

K4, K1 00 F9 03 7F 05 0F 01 EF

K4, K2 00 FB 03 AC 05 3C 02 1C

K4, K2, K1 00 FD 03 E1 05 71 02 51

K4, K3 00 FF 04 25 05 B5 02 95

K4, K3, K1 01 01 04 65 05 91 02 D5

K4, K3, K2, 01 03 04 76 06 06 02 E6

K4, K3, K2, K1 01 05 04 C3 06 53 03 33

K5 01 07 05 21 06 B1 03 91

K5, K1 01 09 05 17 06 A7 03 87

K5, K2 01 0B 05 39 06 C9 03 A9

K5, K2, K1 01 0D 05 6A 06 FA 03 DA

K5, K3 01 0F 05 9A 07 2A 04 0A

K5, K3, K1 01 11 05 EB 07 7B 04 5B

K5, K3, K2 01 13 06 24 07 B4 04 94

K5, K3, K2, K1 01 15 06 8D 08 1D 04 FD

K6, K3 01 17 06 EA 08 7A 05 5A

K6, K3, K1 01 19 06 F3 08 83 05 63

K6, K3, K2 01 1B 07 23 08 B3 05 93

K6, K3, K2, K1 01 1D 07 AF 09 3F 06 1F

Page 114: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

04

11-4 System Resistance Taps

This table is established during calibration, do not change with Data Base Access. A look–up–table giving the effective system resistance (battery to x–ray tube) for each valid tapcombination. It is calculated during tap calibration.

TABLE 11–4SYSTEM RESISTANCE TAPS

Relay Tap Selection Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

No Taps 01 1F 00 D3 01 9B 00 6F

K1 01 21 00 E1 01 A9 00 7D

K2 01 23 00 C7 01 8F 00 64

K2, K1 01 25 00 D0 01 98 00 6C

K3 01 27 01 37 01 FF 00 6F

K3, K1 01 29 01 54 02 1C 00 8C

K3, K2 01 2B 01 27 02 53 00 96

K3, K2, K1 01 2D 01 34 01 FC 00 9E

K4 01 2F 00 D2 01 9A 00 6E

K4, K1 01 31 00 EA 01 B2 00 86

K4, K2 01 33 00 F9 01 C1 00 95

K4, K2, K1 01 35 01 11 01 D9 00 AD

K4, K3 01 37 01 3A 02 02 00 C2

K4, K3, K1 01 39 01 5F 02 27 00 C3

K4, K3, K2, 01 3B 01 51 02 19 00 C5

K4, K3, K2, K1 01 3D 01 8B 02 53 00 C7

K5 01 3F 01 AC 02 74 00 C8

K5, K1 01 41 01 7C 02 44 00 D2

K5, K2 01 43 01 8F 02 57 00 DB

K5, K2, K1 01 45 01 A7 02 6F 00 DF

K5, K3 01 47 01 C1 02 89 00 F9

K5, K3, K1 01 49 01 FF 02 C7 01 37

K5, K3, K2 01 4B 02 23 02 EB 01 5B

K5, K3, K2, K1 01 4D 02 7C 03 44 01 B4

K6, K3 01 4F 02 B3 03 7B 01 C2

K6, K3, K1 01 51 02 9C 03 64 01 C2

K6, K3, K2 01 53 02 B4 03 7C 01 C2

K6, K3, K2, K1 01 55 03 37 03 E7 01 C5

Page 115: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

11-5 Drive Parameters

TABLE 11–5DRIVE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

DRIVE BYTES

Drive Threshold01 60 0A 14 00Drive command deadband in DAC countsaround the zero output value.

Drive Equal Value 01 61 0A 14 00The maximum difference between the left andright drive output commands in DAC countsfor which the left and right output commandswill be made equal.

Left Output Zero Point 01 62 80 90 70The DAC count which gives a zero left drivecommand.

Left Forward Output Gain 01 63 64 C8 32The left output gain in the forward direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Left Reverse Output Gain 01 64 64 C8 32The left output gain in the reverse direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Right Output Zero Point 01 65 80 90 70The DAC count which gives a zero right drivecommand.

Right Forward output Gain 01 66 64 C8 32The right output gain in the forward direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Right Reverse output Gain 01 67 64 C8 32The right output gain in the reverse direction.The gain is given by (decimal equivalent) �100. i.e. default of 64 Hex is, decimal 100 �100 = gain of 1.

Page 116: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0

TABLE 11–5 (CONT.)DRIVE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Right Forward Position is Greater 01 68 01 01 00This value is established during calibration, donot change with Data Base Access. Indicatesmagnet polarity of the Hall Effect Drive Sen-sor. A 01 Hex indicates that pushing forwardon the right drive handle results in a more posi-tive transducer voltage than pulling back pro-duces.

Left Forward Position is Greater 01 69 00 01 00This value is established during calibration, donot change with Data Base Access. Indicatesmagnet polarity of the Hall Effect Drive Sen-sor. A 01 Hex indicates that pushing forwardon the left drive handle results in a more posi-tive transducer voltage than pulling back pro-duces.

Acceleration Factor 01 6A C8 FF 28Controls handle sensitivity. The larger thisnumber is the more responsive the unit will beafter the drive handle is calibrated.

Left Minimum Input �/. �� �) �

This value is established during calibration, donot change with Data Base Access. The mini-mum value from the left handle transducer.

Left Maximum Input 01 6C 80 FO 30This value is established during calibration, donot change with Data Base Access. The maxi-mum value from the left handle transducer.

DRIVE WORDS

Left Input Zero Point 01 6D 08 00 0C 00 05 00This value is established during calibration, donot change with Data Base Access. The num-ber of A/D counts with no force applied to thedrive handle on the left side.

Left Forward Input Gain 01 6F 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the left input in the forward direction.The gain is given by (decimal equivalent) �1000. i.e. default of D2 Hex is, decimal 210 �1000 = gain of 0.21.

Page 117: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

TABLE 11–5 (CONT.)DRIVE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Left Reverse Input Gain 01 71 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the left input in the reverse direction.The gain is given by (decimal equivalent) �1000. i.e. default of D2 Hex is, decimal 210 �1000 = gain of 0.21.

Right Input Zero Point 01 73 08 00 0C 00 05 00This value is established during calibration, donot change with Data Base Access. The num-ber of A/D counts with no force is applied to thedrive handle on the right side.

Right Forward Input Gain 01 75 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the right input in the forward direc-tion. The gain is given by (decimal equivalent)� 1000. i.e. default of D2 Hex is, decimal 210� 1000 = gain of 0.21.

Right Reverse Input Gain 01 77 00 D2 07 D0 00 19This value is established during calibration, donot change with Data Base Access. The gainapplied to the left input in the reverse direction.The gain is given by (decimal equivalent) �1000. i.e. default of D2 Hex is, decimal 210 �1000 = gain of 0.21.

Right Minimum Input �4 ���� ���) ���

This value is established during calibration, donot change with Data Base Access. The mini-mum value from the right handle transducer.

Right Maximum Input 01 7B 00 80 00 FO 00 30This value is established during calibration, donot change with Data Base Access. The maxi-mum value from the right handle transducer.

Page 118: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0

11-6 Charge Parameters

TABLE 11–6CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

CHARGE BYTES

TOP OFF TIME 01 7D AF* C8* 32*Additional charge time in minutes that the 2E** FF** 00**system will charge after switching to tricklemode. This is the absolute minimum timeto “Charge Complete.” (Not used with PROMS46–303815G1/46–303816G1.)

Maximum High Charge Time 01 7E OF 14 0AThe maximum time in hours that the unit cancharge. If this time is exceeded, an error con-dition is flagged and trickle charge is entered.

Trickle Charge Clamp Voltage 01 7F 7C 80 75The maximum long term voltage allowedduring trickle charge.

High Charge High Output 01 80 32 3C 28This value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during chargercalibration.

High Charge Low Output 01 81 19 23 0FThis value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during chargercalibration.

Trickle Charge High Output 01 82 C8 E1 AFThis value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during tricklecharge calibration.

Trickle Charge Low Output 01 83 64 7D 4BThis value is established during calibration, donot change with Data Base Access. A chargecommand DAC count used during tricklecharge calibration

* Values for PROMS 46–303815G1/46–303816G1** Values for PROMS 46–316685G1/46–316686G1 and

46–329187G1/46–329188G1 or 46–329187G2/46–329188G2

Page 119: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

TABLE 11–6 (CONT.)CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Start Timed Charge Counts 01 84 24* 34* 10*The DAC count at which the final charge 1A** 34** 10**phase begins. 1A*** 34*** 10***

High Charge Clamp Volts 01 85 82* 85* 7D*The maximum battery voltage in volts 7F** 85** 7D**allowed during charging. Charging current 82*** 87*** 7D***will decrease in order to clamp the voltage.

FINAL PHASE TIME 01 88 06 12 00The time to “Charge Completed” from thetime the switch to the trickle charge rateoccurs.

* Values for PROMS 46–303815G1/46–303816G1** Values for PROMS 46–316685G1/46–316686G1*** Values for PROMS 46–329187G1/46–329188G1

or 46–329187G2/46–329188G2

Page 120: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0#

TABLE 11–6 (CONT.)CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

CHARGE WORDS

Feedback at High Charge High Output 01 89 09 C4 13 88 04 B0This value is established during calibration, donot change with Data Base Access. Thecharge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to High Charge High Outputcounts. This parameter is used to determinewhat the charging current feedback should befor any given charge current demand DACoutput.

Feedback at High Charge Low Output 01 8B 04 4C 05 DC 02 58This value is established during calibration, donot change with Data Base Access. Thecharge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to High Charge Low Outputcounts. This parameter is used to determinewhat the charging current feedback should befor any given charge current demand DACoutput

mA at High Charge High Output 01 8D 03 E8 04 E2 02 EEThis value is established during calibration, donot change with Data Base Access. Thecharging current in milliamps with the chargecurrent demand DAC set to High Charge HighOutput counts. This parameter is calculatedduring charger calibration. It is used to deter-mine what the charging current is for any givencharge current demand DAC output.

mA at High Charge Low Output 01 8F 01 F4 02 EE 00 FAThis value is established during calibration, donot change with Data Base Access. Thecharging current in milliamps with the chargecurrent demand DAC set to High Charge LowOutput counts. This parameter is calculatedduring charger calibration. It is used to deter-mine what the charging current is for any givencharge current demand DAC output.

Page 121: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0*

TABLE 11–6 (CONT.)CHARGE PARAMETERS

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Feedback at Trickle Charge High Output 01 91 27 10 61 A8 13 88This value is established during calibration,do not change with Data Base Access. The charge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to Trickle Charge High Out-put counts in the trickle charge mode. This pa-rameter is used to determine what the charg-ing current feedback should be for any givencharge current demand DAC output in thetrickle charge mode.

Feedback at Trickle Charge Low Output 01 93 13 88 3A 98 03 E8This value is established during calibration,do not change with Data Base Access. Thecharge current feedback in VCO pulses ob-tained during one second with the charge cur-rent demand set to Trickle Charge Low Outputcounts in the trickle charge mode. This pa-rameter is used to determine what the charg-ing current feedback should be for any givencharge current demand DAC output in thetrickle charge mode.

Maximum Charging mA 01 97 09 C4 0B B8 07 D0The maximum allowable charging current inmilliamps.

Charge Current Feedback Error 01 99 02 EE 03 E8 01 F4The error window on the expected charge cur-rent feedback in VCO pulse count.

Page 122: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

11-7 Battery Parameters for PROMS46–303815G1/46–303816G1 or46–316685G1/46–316686G1

TABLE 11–7BATTERY PARAMETERS FOR PROMS 46–303815G1/46–303816G1 OR 46–316685G1/46–316686G1

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

BATTERY WORDS

TRICKLE LMT 01 9B 14 14* FF FF* 00 00*The number of charge cutoff cycles run 09 09** FF FF** 00 00**before a complete charge is allowed. Bothlower and upper bytes must be the same.

Battery Aging Disable 01 9D 19 19* FF FF* 00 00*Enter 0000 to disable battery aging com- 00 00** FF FF** 00 00**pensation.

Monitor Full Capacity millivolts 01 9F 2C 88 2E 18 2C 24Battery voltage which corresponds to 100%capacity times 100. i.e. default of 2C 88Hex is, decimal 11400 � 100 = 114.00 V.

Battery Volts Calibration Count 01 A1 8A CC EA 60 4E 20This value is established during calibration, donot change with Data Base Access. The num-ber of VCO pulse counts obtained in a fivesecond period during battery voltage metercalibration.

Battery Calibration Millivolts 01 A3 2B CA 3A 98 1F 40This value is established during calibration, donot change with Data Base Access. The volt-age in volts times 100 at the time that BatteryVolts Calibration Counts was obtained. i.e. de-fault of 2BCA. Hex is, decimal 11210 � 100 =112.10 V.

Breaker Trip Time 01 A5 03 03 FF FF 00 00The number of hours before breaker trips forcertain charger failures.

* Values for PROMS 46–303815G1/46–303816G1** Values for PROMS 46–316685G1/46–316686G1

Page 123: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0/

11-8 Battery Parameters for PROMS46–329187G1/46–329188G1 OR46–329187G2/46–329188G2

TABLE 11–8BATTERY PARAMETERS FOR PROMS 46–329187G1/46–329188G1

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

BATTERY WORDS

TRICKLE LMT 01 9B 09 09 FF FF 00 00The number of charge cutoff cycles runbefore a complete charge is allowed. Bothlower and upper bytes must be the same.

Battery Aging Disable 01 9D 19 19 FF FF 00 00Enter 0000 to disable battery aging com-pensation.

Monitor Full Capacity millivolts 01 9F 2C EC 2E 18 2C 24Battery voltage which corresponds to 100%capacity times 100. i.e. default of 2C EC Hexis, decimal 11500 � 100 = 115.00 V.

Battery Volts Calibration Count 01 A1 8A CC EA 60 4E 20This value is established during calibration, donot change with Data Base Access. The num-ber of VCO pulse counts obtained in a fivesecond period during battery voltage metercalibration.

Battery Calibration Millivolts 01 A3 2B CA 3A 98 1F 40This value is established during calibration, donot change with Data Base Access. The volt-age in volts times 100 at the time that BatteryVolts Calibration Counts was obtained. i.e. de-fault of 2BCA. Hex is, decimal 11210 � 100 =112.10 V.

Breaker Trip Time 01 A5 03 03 FF FF 00 00The number of hours before breaker trips forcertain charger failures.

Page 124: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

04

TABLE 11–8 (CONT.)BATTERY PARAMETERS FOR PROMS 46–329187G1/46–329188G1 OR 46–329187G2/46–329188G2

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Total CapacityIndicates the total capacity available over therange of the capacity bar graph in mA�HR.

01A7 1964 2328 03E8

Idle Load CurrentIndicates the level of load current (in milliamps) onthe batteries in the idle mode.

01A9 012C 03E8 0032

Drive Load CurrentIndicates the level of load current (in milliamps) onthe batteries in the drive mode.

01AB 0BB8 2710 01F4

Field Light Load CurrentIndicates the level of load current (in milliamps) onthe batteries when the field light is on.

01AD 09C4 1B58 01F4

Prep Load CurrentIndicates the level of non–exposure load current(in milliamps) on the batteries in the x–ray mode.

01AF 0BB8 1B58 01F4

Nominal 0% Capacity MillivoltsSets the nominal 0% capacity battery voltage (intens of millivolts).

01B1 2BC0 2C88 2AF8

Full Charge Excess CapacityIndicates the amount of extra capacity (in mA�HR)available at “CHARGE COMPLETE”.

01B3 01F4 03E8 0000

Page 125: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

11-9 Field Light Parameters for PROMS46–303815G1/46–303816G1 or46–316685G1/46–316686G1

TABLE 11–9FIELD LIGHT PARAMETERS FOR PROMS 46–303815G1/46–303816G1 OR 46–316685G1/46–316686G1

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

FIELD LIGHT BYTES

Field Light On–Time 01 A7 1E 2D 05The time in seconds that the field light will beon after the field light switch is released.

Maximum Field Light On–Time 01 A8 C8 FF 64The maximum continuous field light operatingtime in seconds. Once this time has been ex-ceeded the field light is turned off and will bedisabled until Field Light Cool Time secondshave expired.

Field Light Cool Time 01 A9 FF FF 64The cool (off) time in seconds required oncethe field light has been on for more than Maxi-mum Field Light On Time.

Minimum no Cool Time 01 AA 08 0F 04The time in seconds for which the field light willbe disabled if an operator attempts to light thefield light. This occurs only when field lightheat capacity is approaching maximum limit.

Page 126: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0

11-10 Field Light Parameters for PROMS46–329187G1/46–329188G1 OR46–329187G2/46–329188G2

TABLE 11–10FIELD LIGHT PARAMETERS FOR PROMS 46–329187G1/46–329188G1

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

FIELD LIGHT BYTES

Field Light On–Time 01 BB 1E 2D 05The time in seconds that the field light will beon after the field light switch is released.

Maximum Field Light On–Time 01 BC C8 FF 64The maximum continuous field light operatingtime in seconds. Once this time has been ex-ceeded the field light is turned off and will bedisabled until Field Light Cool Time secondshave expired.

Field Light Cool Time 01 BD FF FF 64The cool (off) time in seconds required oncethe field light has been on for more than Maxi-mum Field Light On Time.

Minimum no Cool Time 01 BE 08 0F 04The time in seconds for which the field light willbe disabled if an operator attempts to light thefield light. This occurs only when field lightheat capacity is approaching maximum limit.

Page 127: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0��

11-11 Auto Cal Filament Table

This value is established during calibration, do not change with Data Base Access. This isthe second of the two filament look–up–tables giving the relationship between filamentcurrent DAC counts at emission current of 90 and 110 mA for all valid kVp stations. Thistable is updated after most exposures to maintain this relationship.

TABLE 11–11AUTO CAL FILAMENT TABLE

kVp at 90 mA 110 mAAddress Default Max Min Address Default Max Min

50 kVp 0C 2D 08 09 0F 64 03 0C 0C 2F 0A 18 0F FF 04 EC

52 kVp 0C 31 07 F5 0F 61 02 E1 0C 33 09 FF 0F FF 04 CB

54 kVp 0C 35 07 E1 0F 37 02 B7 0C 37 09 E6 0F FE 04 AA

56 kVp 0C 39 07 CD 0F 0C 02 8C 0C 3B 09 CD 0F DD 04 89

58 kVp 0C 3D 07 B9 0E E2 02 62 0C 3F 09 B5 0F BC 04 68

60 kVp 0C 41 07 A5 0E D8 02 4C 0C 43 09 9C 0F 9C 04 4B

62 kVp 0C 45 07 91 0E CC 02 35 0C 47 09 83 0F 7B 04 27

64 kVp 0C 49 07 7D 0E B3 02 15 0C 4B 09 6A 0F 64 04 06

66 kVp 0C 4D 07 6D 0E 9C 01 F4 0C 4F 09 59 0F 5A 03 E5

68 kVp 0C 51 07 5E 0E 90 01 DE 0C 53 09 48 0F 4A 03 C4

70 kVp 0C 55 07 4E 0E 83 01 C7 0C 57 09 37 0F 3E 03 A4

72 kVp 0C 59 07 3E 0E 6D 01 BB 0C 5B 09 27 0F 31 03 83

74 kVp 0C 5D 07 2E 0E 56 01 AE 0C 5F 09 16 0F 1A 03 62

76 kVp 0C 61 07 1F 0E 4A 01 A2 0C 63 09 05 0F 5D 03 41

80 kVp 0C 65 06 FF 0E 31 01 89 0C 67 08 E3 0F 4E 03 00

85 kVp 0C 69 06 D8 0E 0C 01 6E 0C 6B 08 B9 0F 40 02 D4

90 kVp 0C 6D 06 B9 0D DD 01 53 0C 6F 08 8B 0F 29 02 A9

95 kVp 0C 71 06 9A 0D AE 01 38 0C 73 08 5D 0E FD 02 7D

100 kVp 0C 75 06 7B 0D 80 01 1E 0C 77 08 2F 0E D2 02 52

105 kVp 0C 79 06 5B 0D 51 01 03 0C 7B 08 01 0E A6 02 26

110 kVp 0C 7D 06 3C 0D 22 00 DE 0C 7F 07 D3 0E 7B 01 FB

115 kVp 0C 81 06 1D 0C F3 00 C7 0C 83 07 A5 0E 4F 01 CF

120 kVp 0C 85 05 FE 0C C5 00 A9 0C 87 07 77 0E 24 01 A4

125 kVp 0C 89 05 DF 0C 96 00 7A 0C 8B 07 49 0D F8 01 78

Page 128: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0�

11-12 Monitor Zero Capacity Millivolts for PROMS46–303815G1/46–303816G1 or46–316685G1/46–316686G1

TABLE 11–12MONITOR ZERO CAPACITY MILLIVOLTS FOR PROMS 46–303815G1/46–303816G1 OR 46–316685G1/46–316686G1

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Monitor Zero Capacity Millivolts 0C 8D 2B C0 2C 88 2B C0Battery voltages which correspond to 0% ca-pacity times 100. i.e. default of 2B C0. Hex isdecimal. 11200 � 100 = 112.00V.

Page 129: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

0��

11-13 Battery Aging Capacity Offset for PROMS46–329187G1/46–329188G1 OR46–329187G2/46–329188G2

TABLE 11–13BATTERY AGING CAPACITY OFFSET FOR PROMS 46–329187G1/46–329188G1

Data Address Default Maximum MinimumHex Value Hex Value Hex Value Hex Value

Battery Aging Capacity Offset 0C 8D 00 00 FF FF 00 00Offsets to total capacity in mA–HR. When thisvalue is non–zero, it has the effect of reducingthe amount of capacity available over therange of the capacity display.

Page 130: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

SECTION 12ERROR CODES

12-1 Introduction

6"��������������������������������������"�����������3�������������������C���������������"���������

6"�����������������������@�������"��������������'�&��>�!�����������������!������ ��� +����������� !������ !���� ������� ��� ������ �� ���"��3����� �����&��"���"����"��������������

�,�&��������������������������������"�������������J

� �,�&�����������B�.������!����*����"��B 3�!���6"��������������3C���������������������������

�� -�����������B�����"�����!��#�6"�������"����3���,�����������������������3����(+�&��"����&�������3��������3����3����������'()��

#� D���&�����������B�.������!�����6"�������"����3���,��������������3�C��������;������������������������������3�&��"�"�����&�������3��������3����3���������'()��

12-2 Applications Error Handling Overview

E"�����������������3�C������������3����"�����3�������&"��"��������"���������"��B�����������B��3���"����&���H������������"�"����3�������,�"����"��B�������������������������"�����3�������"������������������������E"���"����"��B�������"�������������,�3�������3���������������������������B���6"�������������"�������������������������������������������"�����������������3���������3,,����������������"���������,��������,�,�3����,�3���3�������������������������������"��������������������������&��"���������������C�����������+,�3��&������������������������&��"�&"������������&���������C"�����"�����������,3����������������������������,�3��&�����"�������������C�������,�3��&�����"�����C���������"����,�3��&�����"�����"�������6"�������������"�����"�E���"�������C�3������&"��"�����������,3�����������������"�����C����������&��C��&�������

12-3 Circular Error Buffer

6"�������/.����3,,�������0��������(+�&"�������������������������"��������&"��"�"�����3��6"�������������/�������������B����+��������3���C����������������

12-4 Histogram Of Errors

6"���3,,������������0��������(+��B�����"�������,�"��3�����,��������"�����"�����3�����6"������������3��������������,���&"��"����������������C�����������������"���3,,���

Page 131: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 12–1POWER UP ERROR CODES

Error Number Probable Cause Recommended Action

No Response Microprocessor operation verification test. If thedisplays do not turn on, check the diagnostic LEDarray on the processor board. If all LEDs are on, theprocessor is not executing the test. If all LEDs are off,the test failed.

This test assumes that the power supplies are workingcorrectly.

Check microprocessor and EPROM if failureoccurs.

TEST – 01 FAILEDEPROM Check Sum

EPROM Check Sum is calculated and compared withstored value. Error Code 81 Hex is recorded in theError Log for a failure.

Check EPROM and microprocessor if failureoccurs.

TEST – 02 FAILEDRAM Battery Test

The first write to the RAM will not be stored if the RAMbattery is below 2.0 volts. The processor writes toRAM then reads the location. An error occurs if thevalue written is not the same as the value read. ErrorCode 82 Hex is recorded in the Error Log for a failure.

Check RAM and it’s associated circuitry. Checkthe microprocessor.

TEST – 03 FAILEDAuxiliary RAM Test

Preserves data form bottom of RAM to top of DataBase. Does not preserve data above top of Data Base.Error Code 83 Hex is recorded in the Error Log for afailure.

Check RAM and it’s associated circuitry. Makesure RAM is in the correct socket.

Check the microprocessor.

Check the option switch, S96 on CPU46–232828 or S75 on CPU 46–264974, to seethat ram is selected. Option switch 1 must be inthe on (closed) position. Closed = 2k of RAM,open = 4k of RAM.

TEST – 04 FAILEDCalibration Data Base CheckSum

Calculates the Check Sum for the Calibration DataBase and compares it with the stored value. Test failsif they are not equal. Entering Calibration will give amore specific error code for the check sum failure.Error Code 84 Hex is recorded in the Error Log for afailure.

Check Calibration and RAM.

TEST – 05 FAILEDWatchdog Timer

Write to timer and read back several times. Test fails iftimer is high for more than 75 milliseconds or less than25 milliseconds. Error Code 85 Hex is recorded in theError Log for a failure.

Check HC123 one shot and associated circuitry.

TEST – 06 FAILEDProgrammable Interval Timer 0and 2

Timer 1 can not be checked because the programdoes not have direct control of it’s input gate. Initializetimer 0 for 16 kHz and timer 2 for 120 kHz. Countpulses to verify frequency. Check output 2 for 50%duty cycle. Error Code 86 Hex is recorded in the ErrorLog for a failure.

Check 82C54 timer, HC151 8 to 1 MUX,oscillator, and all associated circuitry.

TEST – 07 FAILEDAnalog to Digital Converter Test

Read +5 volt power supply. Test fails if result is below+4.5 volts or above +5.5 volts. Error Code 87 Hex isrecorded in the Error Log for a failure. Also tests +24Vand �15 supplies if option switch is set to do so.(+24V and �15V supply test only with firmware46–302688G1/ 46–302687G1 and later on CPU46–264974. Test enabled by dip switch #3.)

Check +5 volt supply, AD574A A/D Converter,LF398 sample and hold, AD7506 16 to 1 MUX,HC374 latch, and all associated circuitry.

Page 132: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

TABLE 12–2CALIBRATION ERROR CODES

Error Number Probable Cause Recommended Action

–CALDAT WARNING– Something is out of limits. A maximum or minimumvalue was inserted so that calibration can continue.Continue calibrating and watch for maximum orminimum limit errors.

BATTERY ERROR 1 Counter overflowed while determining battery voltage. Frequency at Charger Board TP–6 must be lessthan 10 kHz.

Multiplexer U76 on Charger Board must beoperating properly.

BATTERY ERROR 2 Reading battery voltage indicated less than 80 volts. Battery voltage must be properly calibrated.

Check connection between CPU and Chargerboards.

BATTERY ERROR 3 Reading battery voltage indicated more than 150 volts. Battery voltage must be properly calibrated.

Check VCO.

Check Charger board.

BATTERY ERROR 4 Voltage value was not saved. An invalid condition wasdetected. Could not determine if battery voltage was aloaded or unloaded value.

Repeat the test or calibration procedure thatcaused the error.

Replace PROM if problem continues.

BATRY WORD LIMIT Data for either upper of lower battery calibration limithas been exceeded.

Calibrate volt meter.

Check connection between CPU and Chargerboards.

Frequency at Charger Board TP–6 must be from55 to 75 Hz per volt. For example a batteryvoltage of 115.0 volts should produce afrequency of 6.3 to 8.6 kHz.

CAL CHGR ERR 1 Hardware counter overflowed while determiningcharging current.

Frequency at Charger Board TP–6 must be lessthan 60 kHz.

Multiplexer U76 on Charger Board must beoperating properly.

CAL CHGR ERR 2 Reading battery current port indicated charge currentfrequency was missing.

Check connection between CPU and Chargerboards.

Check for Digital to Analog Converter output atleast 0.5 volts at TP–29 on the CPU Board

Does charger charge? Does charge voltagedevelop across charging resistor AMX1 A3 R1?

Page 133: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

TABLE 12–2 (CONT.)CALIBRATION ERROR CODES

Error Number Probable Cause Recommended Action

CAL CHGR ERR 3 Either upper or lower charger calibration limit has beenexceeded.

Calibrate charger.

Check connection between CPU and Chargerboards.

Check connection between CPU and Chargerboards.

Does CHARGE SCALE–SELECT signal changestate during charger calibration?

During Calibration, the charge Digital to AnalogConverter output voltage at TP–29 on the CPUBoard should be:

For the first conversion0.5 to 1.5 volts when CHARGESCALE–SELECT is not asserted.

For the second conversion1.5 to 2.5 volts when CHARGESCALE–SELECT is not asserted.

For the third conversion2.9 to 4.9 volts when CHARGESCALE–SELECT is asserted.

For the fourth conversion6.8 to 8.8 volts when CHARGESCALE–SELECT is asserted.

The average frequency at Charger board TP–6should be:

1.8 to 2.4 kHz per amp of charge current whenCHARGE SCALE–SELECT is not asserted

18 to 24 Hz per milliamp of charge current whenCHARGE SCALE–SELECT is asserted

CAL TAP ERROR 1 The proper mA could not be reached by changing thekVp.

Repeat the Tap Calibration Procedure.

Check mAs Calibration.

Check for bad connections in theX–ray generator.

CAL TAP ERROR 2 More than 140 kVp at tube voltage port with a tapselection that should provide less than 140 kVp.

Repeat the Tap CAL Procedure.

Check mAs Calibration.

Calibrate kVp.

Check generator tap relay wiring.

CAL TAP ERROR 3 More than 35 kVp at tube voltage port with a tapselection that should provide 35 kVp.

Charge if battery voltage is less than 112 volts.

Repeat the Tap Calibration Procedure.

Check mAs Calibration.

Calibrate kVp.

Check generator tap relay wiring.

CAL TAP ERROR 4 A high order tap combination produced less kVp thena low order tap combination.

Check generator tap relay wiring.

Repeat the Tap Calibration Procedure.

Page 134: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 12–2 (CONT.)CALIBRATION ERROR CODES

Error Number Probable Cause Recommended Action

CAL TAP ERROR 5 Even With the filament current digital to analogconverter at full count, not enough emission currentcould be produced.

Check mAs Calibration.

Check filament current by checking voltage acrossFilament and kVp control board resistor AMX1 A4 A2R188. Voltage should be about 0.5 volts. This is 0.1volt per amp of filament current.

Check generator tap relay wiring.

Repeat the Tap Calibration Procedure.

CAL TAP ERROR 6 Even with the filament current digital to analogconverter at its lowest value, the emission currentwas too high.

Check filament current by checking voltage acrossFilament and kVp Control board resistor AMX1 A4 A2R188. Voltage should be about 0.5 volts. This is 0.1volt per amp of filament current.

Check generator tap relay wiring.

Repeat the Tap Calibration

Check mAs Calibration.

CAL TAP ERROR 7 One or more of the tap calibration parameters wasout of limits, data exceeded either upper or lowerlimit value of selected tap.

Either upper or lower limit of filament currentcalibration points has been exceeded.

CAL TUBE ERR 1 This error always occurs after a limit error. Refer to the limit error description for additionalinformation.

CAL TUBE ERR 3 One or more of the Filament current table data fieldlimits was exceeded.

This error always occurs after a limit error. Refer tothe limit error description for additional information.

CHARG BYTE LIMIT Reading battery charger port indicated either upperor lower calibration limit exceeded.

Calibrate charger.

CHARG WORD LIMIT Battery charger upper or lower calibration limitexceeded.

Calibrate charger.

Check connection between CPU and Chargerboards.

Does CHARGE SCALE–SELECT signal changestate during charger calibration?

During Calibration, the charge Digital to AnalogConverter output voltage at TP–29 on the CPU Boardshould be:

For the first conversion0.5 to 1.5 volts when CHARGE SCALE–SELECT isnot asserted.

For the second conversion1.5 to 2.5 volts when CHARGE SCALE–SELECT isnot asserted.

For the third conversion2.9 to 4.9 volts when CHARGE SCALE–SELECT isasserted.

For the fourth conversion6.8 to 8.8 volts when CHARGE SCALE–SELECT isasserted.

The average frequency at Charger board TP–6should be:

1.8 to 2.4 kHz per amp of charge current whenCHARGE SCALE–SELECT is not asserted.

18 to 24 Hz per milliamp of charge current whenCHARGE SCALE–SELECT is asserted.

Page 135: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0/

TABLE 12–2 (CONT.)CALIBRATION ERROR CODES

Error Number Probable Cause Recommended Action

CHECK SUM ERR 1 Drive calibration bytes check sum failed. Recalibrate drive.

CHECK SUM ERR 2 Drive calibration words check sum failed. Recalibrate drive.

CHECK SUM ERR 3 Charger calibration bytes check sum failed. Recalibrate charger.

CHECK SUM ERR 4 Charger calibration words check sum failed. Recalibrate charger.

CHECK SUM ERR 5 Battery calibration words check sum failed. Calibrate voltmeter and generator.

CHECK SUM ERR 6 X–Ray calibration bytes check sum failed. Calibrate generator.

CHECK SUM ERR 7 X–Ray calibration words check sum failed. Calibrate generator.

CHECK SUM ERR 8 Field light calibration bytes check sum failed. Calibrate field light.

CHECK SUM ERR 9 Turns ratio calibration check sum failed. Calibrate generator.

CHECK SUM ERR 10 X–Ray circuit resistance calibration check sum failed. Calibrate generator.

CHECK SUM ERR 11 Filament current tables have a check sum error, orwere not calibrated.

If no other generator checksums are present,Calibrate Filament Current.

DRIVE BYTE LIMIT Drive upper or lower calibration limit was exceeded. Calibrate drive.

Check wiring to drive handle transducers.

Check for +10 volts at transducer input.

Does transducer output change when handle ismoved?

Is transducer output always between 1 and 9 volts?Check the ”Handle Check*” circuitry, AMX1 A2A1shell 4–F5. TP 29 should be 9.9V+/–1% duringHandle Calibration.

DRIVE WORD LIMIT Drive upper or lower calibration limit was exceeded. Calibrate drive.

Check wiring to drive handle transducers.

Check for +10 volts at transducer input.

Does transducer output change when handle ismoved?

Is transducer output always between 1 and 9 volts?Check the ”Handle Check *” circuitry AMX1 A2A1shell 4–F5. TP 29 should be 9.9V +/–1% duringHandle Calibration.

FLDLIT TIME LIMT An invalid time was entered during field lightcalibration.

Calibrate field light.

FLDLT BYTE LIMIT Reading field light data indicated either upper or lowertime limit was exceeded.

Calibrate field light.

Page 136: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�04

TABLE 12–2 (CONT.)CALIBRATION ERROR CODES

Error Number Probable Cause Recommended Action

HIGH FIL LIMIT One or more of the filament current calibration dataparameters exceed the limit.

IGNORE IF:The unit is being calibrated for the first time with anew battery backed RAM.

The message did not occur during filament currentcalibration.

OTHERWISE:Calibrate mAs.

Check filament current by checking voltage acrossFilament and kVp Control board resistor AMX1 A4A2 R188 (sheet 2 location F–9). Voltage should beabout 0.5 volts. This is 0.1 volt per amp of filamentcurrent.

Check x–ray tube

Check filament transformer

HNDL CAL ERR 1 Drive handle zero point value was out–of–range. Calibrate drive.

Check wiring to drive handle transducers.

Check for +10 volts at transducer input.

Is transducer output between 2.5 and 7.5 volts?

Does transducer output change when handle ismoved?

Check that TP29 is 9.9V +/– 1% during HandleCalibration

HNDL CAL ERR 2 Calculated forward gain was out of range. Calibrate drive.

Check wiring to drive handle transducers.

Check for +10 volts at transducer input.

Does transducer output change when handle ismoved?

Check that TP29 is 9.9V +/– 1% during HandleCalibration.

HNDL CAL ERR 3 Calculated reverse gain was out of range. Calibrate drive.

Check wiring to drive handle transducers.

Check for +10 volts at transducer input.

Does transducer output change when handle ismoved?

Check that TP29 is 9.9V +/– 1% during HandleCalibration.

HANDLE CAL ERR 4 Drive handle calibration indicated improper polarityrelationship between zero, forward, and reversecalibration voltages.

Was the handle moved in the correct direction inresponse to prompts?

Calibrate drive.

Check that TP29 is 9.9V +/– 1% during HandleCalibration

KVP CAL ERROR 1 The required kVp and mA can not be reached. Tapcombinations do not go high enough.

Are tap relays functioning properly?

Calibrate mAs.

Is battery voltage drop excessive: See Section 14-1.

KVP CAL ERROR 2 No tap relays pulled in and the required kVp and mAcannot be reached.

Are tap relays functioning properly? Check the HighVoltage Cables for shorts. Calibrate mAs.

Page 137: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 12–2 (CONT.)CALIBRATION ERROR CODES

Error Number Probable Cause Recommended Action

KVP CAL ERROR 4 One or more of the calibration parameters is out oflimits.

Were kVp values entered correctly?

Is bleeder properly calibrated?

Are all tap relays functioning properly?

LOW FIL LIMIT One or more of the filament current calibration dataparameters is less than the minimum allowed.

IGNORE IF:The unit is being calibrated for the first time with anew battery backed RAM.

The message did not occur during filament currentcalibration.

OTHERWISE:Calibrate mAs.

Check filament current by checking voltage acrossFilament and kVp Control board resistor AMX1 A4A2 R188 (sheet 2 location F–9). Voltage should beabout 0.5 volts. This is 0.1 volt per amp of filamentcurrent.

Check x–ray tube.

Check filament transformer.

MAS CAL ERROR 1 The frequency produced by injecting 100 mA duringmAs meter calibration was to high causing thecounter to overflow.

Was the injected current more than 110 mA?

Is the frequency at Filament and kVp Control boardTP–2 more than 18 kHz?

MAS CAL ERROR 4 The check to see if data base parameters are beingwritten correctly produced an error.

Check data bus connection on CPU board.

Check battery backed RAM.

RAM READBACK ERR Data read from memory location is not what waswritten to that location.

SYS RESIST LIMIT The slope of emission current vs kVp was calculatedto be either too flat or too steep at the last tapselection. This error is valid only during tapcalibration.

Is mAs properly calibrated?

Is kVp properly calibrated?

Check the batteries for excessive voltage drop. SeeSection 14-1.

TURN RATIO LIMIT The battery voltage to kVp multiplication factor(effective turns ratio) was out of range for the last tapselected.

Is mAs properly calibrated?

Is kVp properly calibrated?

Check batteries for excessive voltage drop. SeeSection 14-1.

VOLTMETER ERR 1 Battery voltage frequency is too high causing thecounter to overflow.

Is the frequency at Charger board TP–6 more than10 kHz?

Is multiplexer AMX1 A3 A1 U76 on Charger Boardfunctioning properly?

VOLTMETER ERR 4 One or more of the battery voltage calibration database parameters is out of range.

Calibrate voltmeter.

Check connection between CPU and Chargerboards.

Frequency at Charger Board TP–6 must be from 55to 75 Hz per volt. For example a battery voltage of115.0 volts should produce a frequency of 6.3 to 8.6kHz.

Page 138: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

TABLE 12–2 (CONT.)CALIBRATION ERROR CODES

Error Number Probable Cause Recommended Action

X–RAY BYTE LIMIT One or more of the x–ray calibration parameters justadjusted are out of range.

DURING MAS CALIBRATION:Was correct mA value entered?

Check connection between CPU and Filament/kVpboards.

Frequency at Filament and kVp Board TP–2 mustbe between 14 and 18 kHz.

Is your mA meter working properly?

DURING TAP CALIBRATION:Indicates not enough taps could be calibratedwithout exceeding the maximum allowable kVp.

Is kVp calibration correct?

is mAs calibration correct?

Is battery voltage more than 117 volts?

X–RAY WORD LIMIT One or more of the x–ray calibration parameters justadjusted is out of limits.

DURING MAS CALIBRATION:Was correct mA value entered?

Check connection between CPU and Filament/kVpboards.

Frequency at CPU Board TP–2 must be between 14and 18 kHz.

Is your mA meter working properly?

DURING KVP CALIBRATION:Were kVp values entered correctly?

Is the bleeder properly calibrated?

Are all tap relays functioning properly?

DURING FILAMENT TABLE CALIBRATION:Indicates that the turn off delay, the time from thestop command being asserted to X–RAY ON goingaway is greater than 2.0 ms.

Is the kVp calibration jumper removed?

Page 139: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 12–3APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 12Left Drive Stall Release Handle

Left stall signal was detected. Occasional occurrence are normal (i.e. elevator thresholds,etc.)

Check snubbers on motor relays.

Check brakes.

Check motors.

Code 12 Hex in the error list.

ERROR 19Release Handle

Invalid drive command feedback was detected. The message is normal if the unit was being driven fastdown an incline, the wheels left the ground, or occasionallywhile positioning with the tube not parked. Infrequentoccurrences are not a problem!Check drive fuses (3).

Check to see that connectors are in place in the drivemodule.

Check drive relays.

Code 19 in the error list.

ERROR 13Right Drive StallRelease Handle

Right stall signal was detected. Occasional occurrence are normal (i.e. elevator thresholds,etc.)

Check snubbers on motor relays.

Check brakes.

Check motors.

Code 13 Hex in the error list.

ERROR 44Battery too HighVoltage Recovery isRequired

Battery voltage was higher than expected duringprep.

If the unit just came off of a charge cycle, the surfacecharge must be bled off of the batteries. (15 to 20 minutewait) Driving the unit, turning on the field light, or repeatedlyprepping the unit will reduce the wait. This message isdependent on technique. Lower techniques can be used athigh battery voltage.

Code 44 Hex in the error list.

ERROR 45Battery too LowCharge Required

Battery voltage was lower than expected duringprep.

Code 45 Hex in the error list.

A battery charge cycle may be required if the bar graphshows low capacity.

Check batteries if bar graph shows significant chargeremaining. See Section 14-1.

ERROR 23Display Error

The DISPLAY OK status signal was lowindicating the display controller malfunctioned, orthere was faulty feedback.

Check DISPLAY OK signal of the On Board Status port onsheet 4 location F 8 of the CPU schematic.

Check connection from CPU to display controller.

Check display controller.

Error Code 23 Hex in the error list.

ERROR 70Halting Error

Watch dog timer shut the system down. Does the unit pass power-up tests?

Check the watchdog U137 on CPU 46–232828 or U65 on46–264974 and associated components.

Is there excessive noise somewhere that may cause theCPU to get lost.

Are there glitches on CPU reset line?

Error Code 70 Hex in the Error List.

Page 140: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 101Charge Fault

Charging current feedback value was high duringhigh current charging.

Check BAT V & CHARGER CUR SEL signal of theCharger and Drive Control port on sheet 4 location D 8 ofthe CPU schematic.

Is the charge current demand DAC functioning properly?

Are multiplexers U77 on CPU 46–232828 or U123 on CPU46–264974 and U76 on Charger Board functioningproperly?

Was there a very large step change in line voltage?

Error Code 01 Hex in the error list.

ERROR 102Charge Fault

Charging current feedback value was low duringhigh current charging.

Check BAT V & CHARGER CUR SEL signal of theCharger and Drive Control port on sheet 4 location D 8 ofthe CPU schematic.

Is the charge current demand DAC functioning properly?

Are multiplexers U77 on CPU 46–232828 or U123 on CPU46–264974 and U76 on Charger Board functioningproperly?

Was there a very large drop in line voltage?

Was charging initiated immediately after the unit was justcharged? The charger may saturate faster than thefirmware can compensate in this case.

Were locks or extraneous loads left on?

Error Code 02 Hex in the error list.

ERROR 103Charge Fault

Charging current feedback value was high duringtrickle charge.

Check FREQ FDBK 0 signal of the On Board Control porton sheet 5 Location B 9 of the CPU schematic.

Is the charge current demand DAC functioning properly?

Are multiplexers U77 on CPU 46–232828 or U123 on CPU46–264974 and U76 on Charger Board functioningproperly?

Was there a very large change in line voltage?

Error Code 03 Hex in the error list.

ERROR 104Charge Fault

Charging current feedback value was low duringtrickle charge.

Check CHARGE SCALE SELECT signal of the Chargerand Drive Control port on sheet 4 location D 8 of the CPUschematic.

Is the charge current demand DAC functioning properly?

Are multiplexers U77 on CPU 46–232828 or U123 on46–264974 and U76 on Charger Board functioningproperly?

Was there a very large drop in line voltage?

Was charging initiated immediately after the unit was justcharged? The charger may saturate faster than thefirmware can compensate in this case.

Error Code 04 Hex in the error list.

Page 141: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 105Charge Fault

The charger has been operating at full chargeroutput for more than 15 hours.

Was the unit calibrated properly?

Is the line voltage low?

Was the battery voltage below 110 volts before the chargewas initiated?

Were the batteries discharged to less than 108 volts? If so afew charge and run cycles may be needed to rejuvenatethem.

Error Code 05 Hex in the error list.

ERROR 106Charge Fault

Charge current feedback value was zero. Check FREQ FDBK 0 signal of the On Board Control porton sheet 5 Location B 9 of the CPU schematic.

If a voltage is developed across AMX1-A3-R1 when the unitis first plugged in, the feedback circuitry is defective,otherwise look for a faulty connection or a charge boardfailure.

Error Code 06 Hex in the error list.

ERROR 107Charge Fault

Charge clamp voltage was exceeded at zerocharge current demand.

Check CHARGE SCALE SELECT signal of the Chargerand Drive Control port on sheet 4 Location D 8 of the CPUschematic.

Does the charge command reach the charge boardcorrectly?

Error Code 07 Hex in the error list.

ERROR 210Drive Fault

Left stall feedback circuitry is defective. A stall isindicated after the drive board has been reset.

Check stall circuits from drive board to CPU.

Error Code 10 Hex in the error list.

ERROR 211Drive Fault

Right stall feedback circuitry is defective A stall isindicated after the drive boardhas been reset.

Check stall circuits from drive board to CPU.

Error Code 11 Hex in the error list.

ERROR 214Drive Fault

Left drive current feedback from the drive controlwas higher than the command from the CPUboard.

Check connections from the CPU board to the drive controlboard.

Check the feedback buffers on the CPU.

Check drive module fuses.

Check the feedback circuits on the drive control board.

Check to see if all connectors in the drive module are inplace.

Error Code 14 Hex in the error list.

ERROR 215Drive Fault

Left drive current feedback from the drive controlwas lower than the command from the CPUboard.

Check current from the CPU board to the drive controlboard.

Check the feedback buffers on the CPU.

Check drive module fuses.

Check the feedback circuits on the drive control board.

Check to see if all connectors in the drive module are inplace.

Error Code 15 Hex in the error list.

Page 142: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 216Drive Fault

Right drive current feedback from the drivecontrol was higher than the command fromtheCPU board.

Check connections from the CPU board to the drive controlboard.

Check the feedback buffers on the CPU.

Check drive module fuses.

Check the feedback circuits on the drive control board.

Check to see if all connectors in the drive module are inplace.

Error Code 16 Hex in the error list.

ERROR 217Drive Fault

Right drive current feedback from the drivecontrol was lower than the command from theCPU board.

Check connections from the CPU board to the drive controlboard.

Check the feedback buffers on the CPU.

Check drive module fuses.

Check the feedback circuits on the drive control board.

Check to see if all connectors in the drive module are inplace.

Error Code 17 Hex in the error list.

ERROR 218Drive Fault

One or both handle signals were out of range.This indicates a potential circuit problem.

Calibrate the handle if the error occurs when the handle ispushed all the way forward or pulled all the way back. Makesure that the handle is pushed all the way forward to thestop and pulled all the way back to the stop duringcalibration.

Check connectors and wiring to the drive handletransducers.

Check the feedback buffers on the CPU.

TP-15 on CPU should be +10 volts.

Check that the +10V supply from the CPU to thetransducers is intact.

Check the data acquisition circuitry; analog MUX, sampleand hold, and Analog to Digital converter.

Error Code 18 Hex in the error list.

ERROR 320Generator Fault

The 60 Hz inverter feedback failed whenattempting to light field lamp.

Check 60 HZ EN and 60 HZ INV RELAY signals of theGenerator Control 1 port on sheet 6 location B 7 of the CPUschematic.

Determine why 60HZ INV OK signal does not go “high”when the 60Hz inverter is turned on. (60HZ EN and 60HZINV RELAY must both be asserted)

Check Rotor Controller Board AMX1-A3-A2 Q85 and Q86FET’s case to ground with J2 removed, resistance shouldbe greater than 2 megohm.

Check drivers at TP-4 and TP-5 on the Rotor ControllerBoard.

Check 6 amp fuse on the Rotor Controller Board.

Error Code 20 Hex in the error list.

Page 143: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 321Generator Fault

The 60 Hz inverter feedback failed after the fieldlamp was turned on.

Check 60 HZ EN and 60 HZ INV RELAY signals of theGenerator Control 1 port on sheet 6 location B 7 of the CPUschematic.

Determine why 60HZ INV OK signal goes “low” after the60Hz inverter is turned on. (60HZ EN and 60HZ INVRELAY must both be asserted).

Check Rotor Controller Board AMX1-A3-A2 Q85 and Q86FET’s case to ground with J2 removed, resistance shouldbe greater than 2 megohm.

Check drivers at TP-4 and TP-5 on the Rotor ControllerBoard.

Check 6 amp fuse on the Rotor Controller Board.

Error Code 21 Hex in the error list.

ERROR 322Battery Fault

Battery voltage is less than 90 volts. Feedbackcircuit is probably defective.

Check signals of the Charger and Drive Control port onsheet 4 location D 8 of the CPU schematic.

Check CPU connection to the charger board.

If battery voltage when measured with a DVM indicatesvoltage is truly below 90V, the batteries should be replaced.

Check VCO frequency to CPU. Should be from 55 to 75 Hzper battery volt.

Error Code 22 Hex in the error list.

ERROR 326Battery Fault

Battery voltage went above 150 volts indicating aprobable feedback circuit fault.

Check BAT & CHARGE CUR SEL signals of the Chargerand Drive Control port on sheet 4 location D 8 of the CPUschematic.

Check VCO frequency to CPU. Should be from 55 to 75 Hzper battery volt.

Error Code 26 Hex in the error list.

ERROR 42FCalibration Fault

A fault occurred with the auto calibration database. RAM is most likely defective. Power up andCalibration error prompts may provide additionalinformation.

Recalibration is required to clear this fault.

Error Code 2F Hex in the error list.

ERROR 430Generator Fault

The Rotor Interlock Feedback signal was activeduring the prep cycle pre-exposure interlockcheck.

Check ROTOR INTLK signal of the Critical Status port onsheet 3 location D 8 and ROTOR SELECT signal of theGenerator Control 2 port on sheet 4 location B 8 of the CPUschematic.

Are the 60hz clocks at FETS AMX1-A3-A2 Q85 and Q86?

Does relay AMX1-A3-A2-K39 pull in?

Is the rotor ok?

Error Code 30 Hex in the error list.

ERROR 431Generator Fault

The kVp Demand Feedback was high aftercommand was output during the prep cycle.

Connector intact from CPU to filament control board?

DAC output correct? Is it approximately 0.069 volts per kVp.

Is the analog multiplexer working correctly?

Error Code 31 Hex in the error list.

Page 144: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 432Generator Fault

The Filament Current Demand Feedback washigh after command was output during the prepcycle.

Connector intact from CPU to filament control board?

Does the filament inverter turn on?

The filament current feedback must be within 0.69 volts ofthe command from the CPU. Use 3.0V for PROMS46–303815G1/46–303816G1 and later.

Error Code 32 Hex in the error list.

ERROR 433Generator Fault

Leakage Compensation Command feedback washigh after command was output during the prepcycle.

Check drive level from the CPU to the filament board.Should be about 0.0V at 50 kVp, 0.4V at 80 kVp and 1.3V at125 kVp.

Connector intact from CPU to filament control board?

The leakage compensation feedback must be within 0.2volts of the command from the CPU.

Error Code 33 Hex in the error list.

ERROR 435Generator Fault

Tap Feedback did not correspond with tapsselected during the prep cycle.

Check TAP1 FDBK through TAP6 FDBK signal of theGenerator and AEC Control port on sheet 3 location A 5 ofthe CPU schematic.

Check connection to the 1kHz board.

Check tap select circuitry on the 1kHz board.

Check wiring to tap relay coils.

Error Code 35 Hex in the error list.

ERROR 436Generator Fault

The X-RAY ON status signal was asserted inpre-exposure interlock check during the prepcycle.

Check X-RAY ON signal of the Critical Status port on sheet3 location D 8 of the CPU schematic.

Check XRAY ON circuit from filament/kVp control board tothe CPU.

Error Code 36 Hex in the error list.

ERROR 437Generator Fault

Back Up Timer Ok status signal was not assertedin pre-exposure interlock check during the prepcycle. This error will follow a 466 error.

Check BU TMR OKAY signal of the On Board Status porton sheet 4 location F 8of the CPU schematic.

Was X-RAY ON asserted at some time other than during anexposure (by noise perhaps)? This would be the case if theerror log does not have 66 codes.

Check for loose or missing ground connections in thegenerator and high voltage circuits.

Error Code 37 Hex in the error list.

ERROR 439Generator Fault

The X-ray On status signal was not assertedwithin two milliseconds after the Exposure StartCommand signal was asserted.

Check EXP START CMND signal of the Generator Control1 port on sheet 6 location B 7 and X-RAY ON signals of theCritical Status port on sheet 3 location D 8 of the CPUschematic.

Does the start command get to the inverter?

Does the safety contactor pull in?

Is high voltage produced? If so, is the resulting kVp whatwas selected?

Do the correct tap relays pull in?

Check the XRAY ON circuitry.

Check kVp feedback circuitry.

Error Code 39 Hex in the error list.

Page 145: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0/

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 43AGenerator Fault

Rotor Interlock feedback was low during theexposure interlock check.

Check ROTOR INTLK signal of the Critical Status Port onsheet 3 location D 8 of the CPU schematic, and ROTORSELECT* signals of the Generator Control 2 port on sheet 4location B 8 of the CPU schematic.

Is 60Hz inverter functioning?

Check feedback circuits.

Error Code 3A Hex in the error list.

ERROR 43BGenerator Fault

Tap feedback did not correspond with the tapsselected during the exposure interlock check.

Check TAP1* through TAP6* of the Generator Control 2port on sheet 4 location B 8 of the CPU schematic, and TAP1 FDBK through TAP 6 FDBK of the Generator and AECStatus Port on sheet 3 location E 7 of the CPU schematic.

Check connection to the 1kHz board.

Check tap select circuitry on the 1kHz board.

Check wiring to tap relay coils.

Check tap select signal receivers on the CPU board.

Error Code 3B Hex in the error list.

ERROR 43DGenerator Fault

During the exposure interlock check, KVP DMNFDBK was high.

Check KVP DMN FDBK+ and KVP DMN FDBK- on sheet5 location E 1 of the CPU schematic.

Check AMUX1 AMUX2, and AMUX3 signal of the A/DControl port on sheet 5 location E 6 of the CPU schematic.

Check connection to the filament/kVp board.

Check feedback circuitry.

Check drive level from the CPU to the filamentboard.Should be about 0.069 volts per kVp.

Error Code 3D Hex in the error list.

ERROR 43EGenerator Fault

During the exposure interlock check, FIL FDBKwas high.(Only displayed after 100 occurrences)

Check FIL FDBK+ and FIL FDBK- on sheet 5 location F 1of the CPU schematic.

Check AMUX1 AMUX2, and AMUX3 signal of the A/DControl port on sheet 5 location E 6 of the CPU schematic.

Is the unit properly calibrated? If the initial kVp is off bymore than 8% a recalibration is required.

Check the feedback circuitry.

Error Code 3E Hex in the error list.

ERROR 443Generator Fault

The X-Ray On signal did not become in–activewithin two milliseconds after the Exposure StopCommand. This error will be immediatelyfollowed by the breaker tripping.

Check X-RAY ON signal of the Critical Status port on sheet3 location D 8 and EXP START CMND signal of theGenerator Control 1 port on sheet 6 location B 7 of the CPUschematic.

Check that the kVp cal jumper is not installed.

Does the stop command get to the stop SCR?

Error Code 43 Hex in the error list.

Page 146: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�04

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 450Generator Fault

For non–Orion x–ray tubes: The tube pressure switch was open during theprep cycle pre-exposure interlock check.

For Orion x–ray tubes only:The tube temperature switch was open during theprep cycle pre-exposure interlock check.

Check X-RAY PRESS SW signal of the Critical Status porton sheet 3 location D 8 of the CPU schematic.

For non–Orion x–ray tubes only: Check the connection fromthe CPU to the pressure switch.For Orion x–ray tubes only: Check the connection from theCPU to the temperature switch.

Check for a faulty switch.

Check the receiving circuits on the CPU.

Error Code 50 Hex in the error list.

ERROR 453Generator Fault

The 60 Hz Inverter Ok signal was high and thefield light was not on during the prep cyclepre-exposure interlock check.

Check 60HZ INV OK signal of the Critical Status port onsheet 3 location D 8 of the CPU schematic.

Check the connection from the CPU to the 60Hz inverter.

Check for faulty feedback circuitry.

Error Code 53 Hex in the error list.

ERROR 454Generator Fault

The 1k Hz Inverter Ready signal was high andthe field light was not on during the prep cyclepre-exposure interlock check.

Check 1KHZ INVERTER OK signal of the Critical Statusport on sheet 3 location D 8 of the CPU schematic.

Check the connection from the CPU to the 1kHz inverterboard.

Check for faulty feedback circuitry.

Error Code 54 Hex in the error list.

ERROR 456Generator Fault

Tap select feedback indicated one or more tapswere active when none were selected.

Check TAP1 FDBK through TAP6 FDBK signals of theGenerator and AEC Status port on sheet 3 location 7 of theCPU schematic.

Check connection to the 1kHz board.

Check tap select circuitry on the 1kHz board.

Check wiring to tap relay coils.

Check tap select signal receivers on the CPU board.

Error Code 56 Hex in the error list.

ERROR 457Generator Fault

The 60 Hz Inverter Ok signal was not assertedwhen 60 Hz inverter was turned on during theprep cycle.

Check 60HZ INV OK signal of the Critical Status port onsheet 3 location D 8 of the CPU schematic.

Check the connection from the CPU to the 60Hz inverter.

Check that the 60Hz inverter turns on.

Check for faulty feedback circuitry.

Error Code 57 Hex in the error list.

ERROR 458Generator Fault

Rotor Interlock Feedback was not asserted when60 Hz inverter was turned on during prep cycle.

Check ROTOR INTLK signal of the Critical Status port onsheet 3 location D 8, and ROTOR SELECT signal of theGenerator Control 2 port on sheet 4 location B 8 of theCPU schematic.

Check the connection from the CPU to the 60Hz inverter.

Check that the 60Hz inverter turns on.

Check that the rotor select relay pulls in.

Check for faulty feedback circuitry.

Error Code 58 Hex in the error list.

Page 147: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 459Generator Fault

The kVp Command Feedback was low aftercommand was output during the prep cycle.

Check connection to the filament/kVp board.

Check drive level from the CPU to the filamentboard.Should be about 0.069 volts per kVp.

Check feedback circuitry.

Error Code 59 Hex in the error list.

ERROR 45AGenerator Fault

LEAKAGE COMP FDBK was low after thecommand was output during the prep cycle.

Check LEAKAGE COMP FDBK+ and LEAKAGE COMPFDBK- on sheet 5 location H 1 of the CPU schematic.

Check AMUX1 AMUX2, and AMUX3 signal of the A/DControl port on sheet 5 location E 6 of the CPU schematic.

Check connection to the filament/kVp board.

Check drive level from the CPU to the filamentboard.Should be about 0.0V at 50 kVp, 0.4V at 80 kVp and 1.3V at125 kVp.

Check feedback circuitry.

Error Code 5A Hex in the error list.

ERROR 45BGenerator Fault

FIL FDBK was low after the command wasoutput during the prep cycle.

Check FIL FDBK+ and FIL FDBK- on sheet 5 location F 1of the CPU schematic.

Check AMUX1 AMUX2, and AMUX3 signal of the A/DControl port on sheet 5 location E 6 of the CPU schematic.

Check connection to the filament/kVp board.

Check that the voltage across R188 on the filament/kVpcontrol board is 0.45 to 0.55V.

Is the 60Hz inverter running properly?

The voltage across AMX1-A4-C6 should be approximately27 Volts when the 60Hz inverter is turned on.

Error Code 5B Hex in the error list.

ERROR 45CGenerator Fault

The 1 kHz inverter ready signal was not assertedafter the 60 Hz inverter turned on during prep.

Check 1kHz INVERTER READY signal of the CriticalStatus port on sheet 3 location D 8 of the CPU schematic.

Check the connection from the CPU to the 1kHz board.

Check that the 60Hz inverter turns on.

Check that AMX1-A4-C2 charges to at least 70VDC whenthe 60Hz inverter is turned on.

Check for faulty feedback circuitry.

Error Code 5C Hex in the error list.

ERROR 45DGenerator Fault

Filament shorted signal was asserted during theprep cycle.

Check FIL SHRT DETECT signal of the Critical Status porton sheet 3 location D 8 of the CPU schematic.

Check the circuitry associated with this signal.

Check R150 on CPU 46–232828 or R321 on CPU46–264974.

Error Code 5D Hex in the error list.

Page 148: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 45EGenerator Fault

Filament shorted signal failed to be assertedwhen the filament driver was turned on duringprep. Because its resistance is low initially (cold),the filament should appear to be shorted for ashort while when the inverter is first turned on.

Check FIL SHRT DETECT signal of the Critical Status porton sheet 3 location D 8 of the CPU schematic.

Does the filament inverter turn on?

Are the high voltage cables connected correctly?

Check the circuitry associated with this signal.

Is the filament open?

Error Code 5E Hex in the error list.

ERROR 45FGenerator Fault

Filament shorted signal did not go low after thefilament was allowed to heat up during prep.

Anode/Cathode cables reversed.

Check FIL SHRT DETECT signal of the Critical Status porton sheet 3 location D 8 of the CPU schematic.

Are the high voltage cables reversed?

Is the filament drive sufficient?

The small filament should be selected in the high voltagetransformer.

Check the circuitry associated with this signal.

Error Code 5F Hex in the error list.

ERROR 460Generator Fault

Tube Pressure Switch opened during exposureinterlock check.

Check X-RAY PRESSURE SW signal of the Critical Statusport on sheet 3 location D 8 of the CPU schematic.

Check the connection from the CPU to the pressure switch.

Check for a faulty switch.

Check the receiving circuits on the CPU.

Did the switch really trip due to high pressure or lowpressure?

Error Code 60 Hex in the error list.

ERROR 461Generator Fault

The 60 Hz Inverter Ok signal was low duringexposure interlock check.

Check 60 HZ INV OK signal of the Critical Status port onsheet 3 location D 8 of the CPU schematic.

Check the connection from the CPU to the 60Hz inverter.

Check for faulty feedback circuitry.

Error Code 61 Hex in the error list.

ERROR 462Generator Fault

Exposure time was excessive according to theprogrammable interval timer count. The exposurewas terminated before mAs timer expired.

Check LOW RESOLUTION signals of the GeneratorControl 1 port on sheet 6 location B 7 of the CPUschematic.

Is the unit properly calibrated? (If the initial kVp is off bymore than 8% a recalibration is required.)

Is there excessive battery voltage drop during a longexposure? Check battery voltage drop. See Section 14-1.

Error Code 62 Hex in the error list.

ERROR 463Generator Fault

The kVp Command Feedback was low during theexposure interlock check.

Check connection to the filament/kVp board.

Check feedback circuitry.

Check drive level from the CPU to the filament board.Should be about 0.069 volts per kVp.

Error Code 63 Hex in the error list.

Page 149: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0��

TABLE 12–3 (CONT.)APPLICATIONS ERROR CODES

Error Number Probable Cause Recommended Action

ERROR 465Generator Fault

Filament Current Command Feedback was lowduring exposure interlock check. (Only displayafter 100 occurrences)

Is there excessive battery voltage drop during a longexposure? Check battery voltage drop. See Section 14-1.

Is the unit properly calibrated? (If the initial kVp is off bymore than 8% a recalibration is required.)

Check the feedback circuitry.

Error Code 65 Hex in the error list.

ERROR 466Generator Fault

Hardware back up timer expired.Error 437 will occur during the next prep attempt.

Check BU TMR OKAY signal of the On Board Status porton sheet 4 location F 8 of the CPU schematic.

Does the XRAY ON signal oscillate when the exposure isterminated.

Is there excessive noise in the unit which that trips flip-flopU120A on CPU 46–232828 or U95 on CPU 46–264974

Are all grounds properly connected in the generator.

Error Code 66 Hex in the error list.

ERROR 467Generator Fault

Exposure was determined to be short. Check FREQ FDBK0 signal of the On Board Control porton sheet 5 location B 9 of the CPU schematic.

Is the unit properly calibrated? (If the initial kVp is off bymore than 8% a recalibration is required.)

Is the mA excessively high (i.e. greater than 125 mA)?

Check preheat circuitry on CPU board and Fil/kVpboard.Error Code 67 Hex in the error list.

ERROR 468Generator Fault

The Exposure Command Active status signalwas high after Exposure Stop Command wasgiven.

Check EXP STOP CMND signal of the Generator Control 1port on sheet location B 7 of the CPU schematic.

Does the EXP STOP CMND properly reset:U144B on CPU 46–232828 orU140 on CPU 46–264974

Check the circuits related to this signal.

Error Code 68 Hex in the error list.

ERROR 469Generator Fault

The X-Ray On status went low during theexposure.

Check X-RAY ON signal of the Critical Status port on sheet3 location D 8 of the CPU schematic.

Check circuitry related to this circuit. (i.e. does the signaloscillate during the exposure when it should be a solidhigh?)

During Calibration:

Does the start command get to the inverter?

Does the safety contactor pull in?

Is high voltage produced? If so, is the resulting kVp whatwas selected?

Do the correct tap relays pull in?

Check kV feedback signal. It should look like the signal fromthe High Voltage Divider.

Error Code 69 Hex in the error list.

Page 150: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0

SECTION 13THEORY

13-1 Power–up Diagnostics

The power–up diagnostic firmware is responsible for verifying the integrity of the follow-ing major functions/components:

� The 80C31 microcontroller.

� The program code EPROM checksum.

� The non–volatile RAM battery.

� The RAM external to the microcontroller.

� The calibration data checksum.

� The watchdog timer.

� The programmable timers external to the microcontroller.

� The A/D converter circuitry and power supplies.

13-2 Visual Indication Of Testing

As the power up tests are executing, message display indicates the various test numbers. Ittakes the following form:

6! 60��������

where xx is the test number from 01 – 07 and yyyyyy is ������ if the test passed or4����� if it did not.

There are 8 Light Emitting Diodes on the CPU board which light to indicate which test isbeing executed. Upon power–up or reset, all LED’s are lit. Once the tests begin to execute,the lit LED’s represent the binary code of the test being executed. Note that test 0, the CPUtest, is not indicated on the alpha display, but is represented on the LED ’s when all areturned off. The prompt ������ ������� displays upon completion of the testing ifa fatal power–up fault was not detected.

13-3 Power Up Tests

Testing is done in a confidence building manner. If a test fails, a failure indication is given.If the failure is fatal, program execution stops. If the test is non–fatal, testing continues aftera brief delay while the failure prompt is given. If a test passes, the next power–up test isexecuted. This sequencing continues until a fatal fault occurs or all the tests of been suc-cessfully executed. Control is passed to the Application Code, Calibration Code, or Diag-nostics.

When the intended operating mode is the application code, non–fatal faults are those faultswhich do not directly effect the drives. Should a non –fatal fault be detected, x–ray andcharging will be inhibited and the message ���������� displays when the applicationmode is entered. This provision is incorporated to allow the unit to be moved to a conven-ient area for servicing if the drive circuits appear to be functional. In order to access diag-nostics, the service switch must be set before the ������ ������� message fin-ishes displaying. Functional descriptions for each of the power–up tests are given in thefollowing paragraphs.

Page 151: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

13-4 80C31 Microcontroller Tests (test – 00)

Testing the 80C31 Microcontroller involves verifying the functionality of each of the fol-lowing:

� CPU registers and timers

� data transfers

� arithmetic operations

� logical operations

� boolean variable manipulations

� program branching

This test is FATAL regardless of firmware set or intended operating mode.

13-5 EPROM Checksum Test (test – 01)

The sum for the first 65535 bytes of program code is calculated and checked to make sure itis equal to the 65536th byte. This test is FATAL regardless of firmware set or intended oper-ating mode.

13-6 Ram Battery Test (test – 02)

This test checks the integrity of the non–volatile ram battery. If the ram battery is below 2.0volts, the first write to ram after power up will not be executed. This fact is used to deter-mine the state of the battery.

� ��> ����'>.����*/0�/* 4*��"�������(+����������������������"��BC�3��

13-7 External Ram Test (test – 03)

The external ram test is non–destructive and involves writing and reading the patterns 00,FF, AA and 55 for each RAM location. In addition, a destructive addressing test is done onthe RAM locations not allocated to the non–volatile database. This test is FATAL regardlessof firmware set or intended operating mode.

13-8 Calibration Data Checksum Test (test – 04)

The checksum for the calibration data is calculated and checked to make sure it is equal tothe checksum value stored in non–volatile memory. This test is non–fatal if the calibrationor extended diagnostics modes are to be accessed. It is non–fatal for the application modeonly if the handle calibration data checksums are ok.

Page 152: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#

13-8-1 Checksum By–pass

On occasions, troubleshooting errors that occur during calibration can be more efficient ifdone in the applications mode. However, unless the unit is totally calibrated it will not allownormal applications operation. This is where the checksum by–pass is useful. The follow-ing diagram illustrates how this is done:

� ��> .�,�������������&��"�"��"��B�3����������������������������������&"��" �"��B�3��"��� ,������ �, ,�� ��������� �"������ �"��B�3� ,������ �F3��B������"���������"���������

POWER OFF

� ���

� ���

� ���

� ���

� ������������

� ���

� ��

TEST 07

TESTING COMPLETE

POWER ON

������������������"�%����������� ��������

SERVICE SWITCH MUST BE IN THE “RUN”POSITION BEFORE POWER IS TURNED ON.

SERVICE SWITCH MUST BE SWITCHED TOTHE “SERVICE” POSITION BEFORE “TEST 04

– FAILED” IS FINISHED DISPLAYING.

SERVICE SWITCH MUST BE SWITCHED TOTHE “RUN” POSITION SOMEWHERE IN THIS

TIME FRAME BEFORE “TESTING COMPLETE”IS FINISHED DISPLAYING.

Page 153: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0*

13-9 Watchdog Timer Test (test – 05)

The watchdog timer is checked to make sure that when strobed, its output goes high within100 us, stays high for at least 30 ms and goes low within 75 ms. This test is non–fatal for anyintended operating mode.

13-10 Programmable Interval Timer Test (test – 06)

This test checks the functionality of the 82C54 timers 0 and 2, including the ability to countand to provide the proper strobe on their outputs. This test is non–fatal for any intendedoperating mode.

13-11 A/D Converter Circuitry Test (test – 07)

This test checks the functionality of the A/D converter, the sample and hold and the analogmultiplexer. In addition, the integrity of the processor +5V supply is verified in this test.This test is non–fatal if the calibration or extended diagnostics modes are to be accessed. Itis fatal for the application mode (�15V and +24V also tested if dip switch #3 is enabled onCPU Board 46–264974, starting with firmware 46–302688G1/46–302687G1).

13-12 Application Mode

The application mode consists of the functions that the hospital personnel typically encoun-ter, i.e. Charging, Driving and X–ray.

Page 154: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

13-13 Charge Control

13-13-1 Charge Control Algorithmfor PROMS 46–302688G1/46–302687G1,46–303272G1/46–303273G1 and46–303815G1/46–303816G1

Charging can be entered from application code by plugging in the line cord. Illustration13–1 shows a typical charge profile.

ILLUSTRATION 13–1TYPICAL CHARGING PROFILE PROMS 46–302688G1/46–302687G1, 46–303272G1/46–303273G1 AND 46–303815G1/46–303816G1 (EXCEPT EVERY 20TH CYCLE)

����

����

�����%�����������

�$��

�$��

���� �������$��

�$��

�$��

�$��

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

TYPICAL CHARGING PROFILE, (EXCEPT EVERY 20TH CYCLE)BATTERY VOLTAGE & CHARGING CURRENT VS. TIME

����?���@

�%�����������

Page 155: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0/

Every 20th cycle, a complete charge will occur (see Illustration 13–2 ).

ILLUSTRATION 13–2TYPICAL COMPLETE CHARGE PROFILE PROMS 46–302688G1/46–302687G1, 46–303272G1/46–303273G1 AND46–303815G1/46–303816G1 (EVERY 20TH CYCLE)

����

����

����

�%�����������

�$��

�$��

���� �������$��

�$��

�$��

�$��

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

TYPICAL COMPLETE CHARGE PROFILE (EVERY 20TH CYCLE)BATTERY VOLTAGE & CHARGING CURRENT VS. TIME

����?���@

�%�����������

Page 156: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#04

13-13-2 Charge Control Algorithm for PROMS 46–316685G1/46–316686G1

Charging can be entered from application code by plugging in the line cord. Illustration13–3 shows a typical charge profile.

ILLUSTRATION 13–3TYPICAL CHARGING PROFILE PROMS 46–316685G1/46–316686G1 (EXCEPT EVERY 10TH CYCLE)

����

����

�����%�����������

�$��

�$��

���� �������$��

�$��

�$��

�$��

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

TYPICAL CHARGING PROFILE, (EXCEPT EVERY 10TH CYCLE)BATTERY VOLTAGE & CHARGING CURRENT VS. TIME

����?���@

�%�����������

Page 157: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

Every 10th cycle, a complete charge will occur (see Illustration 13–4).

ILLUSTRATION 13–4TYPICAL COMPLETE CHARGE PROFILE PROMS 46–316685G1/46–316886G1 (EVERY 10TH CYCLE)

����

����

����

�%�����������

�$��

�$��

���� �������$��

�$��

�$��

�$��

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

BATTERYCHARGE

CURRENT(AMPS)

BATTERYVOLTAGE

TYPICAL COMPLETE CHARGE PROFILE, EVERY 10TH CYCLE)BATTERY VOLTAGE & CHARGING CURRENT VS. TIME

����?���@

�%�����������

Page 158: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0

13-13-3 Charge Control Algorithm for PROMS 46–329187G1/46–329188G1 or 46–329187G2/46–329188G2

Charging can be entered from the application mode by plugging in the line cord. TheAMX4 charger can be classified as a pseudo constant voltage charger. This is because thecharger hardware is actually designed for constant current charging but the firmware strivesto maintain a constant voltage by adjusting the charger current output. Illustrations 13–5through 13–8 show various aspects of actual charge profiles. Profiles will vary with state–of–charge, battery condition, etc.

Illustrations 13–5 through 13–8 show only a small sample of the possible charge scenarios.The intent here is to present the most significant elements of the charging algorithm andhow the various charge control DATA BASE parameters would effect charge performance.

Even though the details of Illustrations 13–5 through 13–8 apply specifically to PROMS46–329187G1/46–329188G1 or 46–329187G2/46–329188G2, the concepts presented arevalid for all PROM versions.

A charge cycle can be either a non–extended (top–off) or an extended cycle. Most cycleswill be of the non–extended type as seen in Illustration 13–5. However, every n+1 times thatcharge is initiated, the AMX4 charger will automatically attempt an extended charge asshown in Illustration 13–7. (n = the value of the DATA BASE parameter “Trickle Limit”).An extended charge is considered valid once 1/2 of the extended time has elapsed. If thiscondition is not met because the charger is unplugged, the system will continue to initiateextended charges.

Page 159: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

ILLUSTRATION 13–5FOR PROMS 46–329187G1/46–329188G1 OR 46–329187G2/46–329188G2: TYPICAL NON–EXTENDED CHARGING PROFILE FOR SIGNIFICANTLY DISCHARGED BATTERY SET

���� �������������� �������4���4������4� �������� ���������������

?���������������8 ���� ������@

�%

$$!

,A�

(&$

%*

!?

��

��

�@

����?�(B,+@

C

%,*

!�

!+

+$(

,%

#)

C

%,*

!�

?�

��

��

@

VOLTAGE ACROSS CHARGERESISTOR AMX1A3R1

CHARGE CURRENT DACVOLTAGE AMX1A2A1

TP29

BATTERY VOLTAGE

TIME FRAMES – SEE DESCRIPTION BELOW5.75+7 5�7 5-7 5!7 5�7

���

SWITCH TOTRICKLE MODE

CHARGEROFF

Illustration 13–5 shows a typical non–extended charge profile. About 50% of the usablecapacity of the batteries was removed prior to charge. The graph plots battery voltage vs.charge current. Charge current is represented two ways: by the voltage across the chargingresistor, and by the voltage out of the charge current demand DAC. Actual current can becalculated by dividing the voltage across AMX1A3R1 by 2.5�. The various charge timeframes are as follows:

TIME FRAME “A”: This is the charge start–up period. The charge current is increased tothe maximum allowable level for the present set of conditions (batterystate–of–charge, line voltage, etc.). See Illustration 13–6 for an expansion of this timeframe.

TIME FRAME “B”: This is the current limited period. The level that the charge current islimited to is determined by the DATA BASE parameter “Maximum Charging mA”. Thecharger will remain at this level until the battery voltage starts to approach the clamp volt-age. NOTE: This time frame will be by–passed for charge cycles which are initiated whenthe batteries are nearly fully charged.

Page 160: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0

TIME FRAME “C”: This is the clamp anticipation period. During this time frame, thecharger decreases the charge current in anticipation of the voltage clamp. Clamp anticipa-tion begins at a voltage 7.0V below the voltage set by the DATA BASE parameter “HighCharge Clamp Volts”. The rate of charge current decrease is a function of the rate of batteryvoltage increase. Clamp anticipation is incorporated to minimize clamp voltage overshoot.

TIME FRAME “D”: This is the voltage limited period which begins once the voltage setby the value of the DATA BASE parameter “High Charge Clamp Volts” is exceeded. Dur-ing this time some ripple will be noticeable on the voltage waveform. This ripple is due tothe limited resolution of the digital–to–analog convertor which controls charge current.The duration of this time period is variable depending on the state–of–charge of the batter-ies prior to charge as well as over all battery condition. This time frame ends, as does the“High Charge Mode”, when the charge current drops to the level set by the DATA BASEparameter “Start Timed Charge Counts”.

TIME FRAME “E”: This is the timed charge period which begins when the switch to“Trickle Mode” is made. When the charger is in the trickle mode, the resolution of the sys-tem increases by a factor of 10. This is the reason for the sudden increase of voltage atAMX1A2A1 TP29 by an order of magnitude. (Note, however, that the voltage across theAMX1A3R1 charging resistor doesn’t change appreciably.) During the initial stages of thistime period, the battery voltage may increase (as shown in Illustration 13–1 ). This is be-cause a one count change of the charge DAC does not have the same affect in the tricklemode as in the high charge mode. The firmware decreases the current by one DAC countonce every two minutes as long as the voltage remains less than two volts above the clamplevel, and once every 15 seconds if the voltage is more than two volts but less than five voltsover the clamp. If the battery voltage exceeds the clamp by more than five volts, the firm-ware will drop the charge current to zero for 15 seconds and then reapply it at a lower level.This period ends when the amount of time equal to the DATA BASE parameter “TOP OFFTIME” in minutes has elapsed and charge current is brought to zero.

TIME FRAME “F”: This is the “CHARGE COMPLETE” period. The charger output iszero, the system electronics are powered from the A.C. line, and “CHARGE COMPLETE”is displayed on the message display. The system will remain in this state until the system isunplugged from its AC outlet. If during this time period the battery voltage falls below thelevel set by the DATA BASE parameter “Monitor Full Capacity Millivolts”, the firmwarewill trip the circuit breaker to conserve charge if the system has been in the “CHARGECOMPLETE” mode for at least the amount of time specified by the DATA BASE parame-ter “Breaker Trip Time”. One of three conditions can cause this to occur. First, the batteryset can have one or more shorted cells each decreasing the voltage by approximately 2volts. Second, the regulator circuit which supplies power to the system electronics may bedefective, forcing the battery to supply this power. Finally the breaker might trip if the sys-tem is left in the “CHARGE COMPLETE” mode for many days, because of the battery’sown self–discharge.

Page 161: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

ILLUSTRATION 13–6FOR PROMS 46–329187G1/46–329188G1 OR 46–329187G2/46–329188G2: TYPICAL CHARGE START–UP PROFILE FOR SIGNIFICANT-LY DISCHARGED BATTERY SET

����?� #B$!+@

VOLTAGE ACROSSCHARGE RESISTOR

AMX1A3R1

CHARGE CURRENT DACVOLTAGE AMX1A2A1 TP29

BATTERY VOLTAGE

���� �� ���������������4���4������4� �������� ���������������

?���������������8 ���� ������@

C

%,*

!�

!+

+$(

,%

#)

C

%,*

!�

?�

��

��

@

�%

$$!

,A�

(&$

%*

!?

��

��

�@

Illustration 13–6 shows in detail what occurs at the beginning of a charge cycle. When thesystem first senses that the charge cord has been plugged in, it sets the Charge Current DACto its appropriate level and then closes the charge enable relays (K150 and K187) on thecharge board AMX1A3A1. Charge current is maintained at this initial level for approxi-mately 75 seconds to allow for stabilization. The Charge Current DAC output is then in-creased at a rate of 9 DAC counts per 18 seconds until the maximum current level (set by theDATA BASE parameter “Maximum Charging mA”) is reached. See Illustration 13–8 for acase where the charge current does not ramp up to its maximum level.

Page 162: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#

ILLUSTRATION 13–7FOR PROMS 46–329187G1/46–329188G1 OR 46–329187G2/46–329188G2: TYPICAL EXTENDED CHARGING PROFILE FOR A SLIGHTLYDISCHARGED BATTERY SET

�%

$$!

,A�

(&$

%*

!?

��

��

�@

����?�(B,+@

C

%,*

!�

?�

��

��

@

CHARGE CURRENT DACVOLTAGE AMX1A2A1 TP29

BATTERY VOLTAGE

���� ���������� �������4���4������������� ���������������?���������������8 ���� ������@

TIME FRAMES – SEE DESCRIPTION BELOW5.7

���5�75+7

SWITCH TOTRICKLE MODE

SWITCH TOFLOAT CHARGE

The profile in Illustration 13–7 shows what occurs when a battery which has been onlyslightly discharged is recharged. Because the battery quickly becomes resistant to charge,its voltage climbs at a fast rate and generally over–shoots the clamp voltage as shown.

TIME FRAME “A”: This is the “High Charge Mode”. See Illustration 13–8 for an expan-sion and detailed description of this time frame.

TIME FRAME “B”: This is the timed charge period which begins when the switch to“Trickle Mode” is made. For an extended charge this timed charge ends when the amount oftime equal to the DATA BASE parameter “Final Phase Time” in hours has elapsed. Thecharger maintains the battery voltage at the clamp level by slowly decreasing the current.

TIME FRAME “C”: This is the “CHARGE COMPLETE” period for an extended charge.The charger enters a float charge condition, and charger output is adjusted to maintain thebattery voltage at the level determined by the DATA BASE parameter “Trickle ChargeClamp Voltage”. This voltage will be maintained until the charge cord is removed from itsAC outlet.

Page 163: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0*

ILLUSTRATION 13–8FOR PROMS 46–329187G1/46–329188G1 OR 46–329187G2/46–329188G2: TYPICAL CHARGE START–UP PROFILE FOR A SLIGHTLYDISCHARGED BATTERY SET

�%

$$!

,A�

(&$

%*

!?

��

��

�@

����?� #B$!+@

C

%,*

!�

?�

��

��

@

CHARGE CURRENT DACVOLTAGE AMX1A2A1 TP29

BATTERY VOLT-AGE

���� �� ���������������4���4������������ ���������������

?���������������8 ���� ������@

Illustration 13–8 shows what occurs when a nearly charged battery is recharged. Charge isinitiated as described for Illustration 13–6, except that the current never reaches its maxi-mum level because current stops increasing when the battery voltage exceeds the clampvoltage minus seven volts (123V in this case). The charger now enters a clamp anticipationphase as indicated by the Time Frame “C” description for Illustration 13–5. Once the clampvoltage is exceeded, the charge current decreases at a rate of 1 DAC count every six secondsif the voltage is increasing at a rate greater than 0.2V in six seconds. Otherwise, charge cur-rent is decreased at a rate of 1 DAC count every 40 seconds. If the clamp voltage is exceed-ed by more than 2.00V, the firmware brings the charge current demand to zero for 15 sec-onds to force the battery voltage to drop before the charge current is reapplied at a level 3DAC counts lower. If the battery voltage needs to be dropped more than 4 times within a 4minute window, the charge current is reapplied at a level 10 DAC counts lower.

Page 164: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

13-14 Battery Charge Diagnostics

13-14-1 Battery Charger Run–Time Diagnostics

Checking charge current feedback. The actual feedback must be within �20% of theexpected feedback otherwise an error is flagged.

Checking to see if the charger is saturated. During the high current charging phase, thecharger is assumed to be saturated if the charge current feedback is approximately 6% lowerthan the expected value. Charger saturation occurs when the charger can not meet thecharge current demand. Usually this takes place toward the end of a charge cycle when thebattery voltage is high (head voltage is low). When saturation is detected, charge currentdemand is decreased.

13-14-2 Charging Diagnostics Display (Applies to PROMS 46–316685G1/46–316686G1 and Later)

If the service switch is placed into the “service” or down position while the system is charg-ing, the current battery voltage and charger current are displayed on the kVp/mAs numericdisplay. The display takes the formats of Illustration 13–9.

ILLUSTRATION 13–9CHARGING DIAGNOSTICS DISPLAY

BATTERY VOLTAGE DISPLAY �%��������������� ���'

� ��> 6"��������������3�����������������������������"�������������3������"����3�����3������3���,�����������3����������������"��������"�+�:*�������� ����3��� ��� �������"���E��" �"� ������� ��������� ����"������������������������������3���K,���"�������������������K,���"��"�����3�����������������

13-15 Drive

13-15-1 Drive Control

The drive mode is entered from application code whenever the drive handle is engaged andis exited when the handle is released.

The Drive Control Algorithm converts the drive handle input to a drive command, allowing“reverse only” if the bumper is engaged. It sends the status of the x–ray tube parked switchto the drive control board.

Page 165: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0/

ILLUSTRATION 13–10DRIVE DAC OUTPUT VS. HANDLE DISPLACEMENT

A���B��

A���B����

A�B����

%���� �� �����C����������� �%�������� ��������

%���� �� �����"�%��%�������� ��������

%���� �� �����C��������"���%�������� ��������

��������

������� ��������8������������ �����

������� ������? �����@

From the graph on Illustration 13–10 it becomes apparent the any handle input will map theappropriate output drive command. It should be noted that the left and right channels areindependent from one another.

Drive Control Run–Time Diagnostics in the main drive control loop check drive currentfeedback to see that it is equal to or less than the drive command. Checks for drive stalls andstuck handle are also done.

13-15-2 Drive Diagnostics

Using the Run–Time Diagnostic Drive Display to Isolate Drive Errors. Firmware in-cludes diagnostics which display drive command and feedback for both left and right driveson the kVp mAs display. The displays are activated any time the service switch is activewhen the unit is in the drive mode. The displays are activated any time the service switch isactive when the unit is in the drive mode. The display format is as follows:

0 1 2 3 4 5 6 7

LEFT OUTPUT LEFT FEEDBACK RIGHT OUTPUT RIGHT FEEDBACK

Page 166: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#04

The displays change very fast but you should be able to notice trends. That is, as the outputincreases so should the feedback and when the output decreases the feedback should follow.The only time the feedback equals the output is when the drive power amp is not pulse widthlimited which only occurs when the unit is accelerating from stop and when driving veryslowly. Note that the data is displayed in hex and that because of the bipolar operation of thedrives a request for no drive corresponds to 80 (HEX) on the display. Keeping this in mind,the feedback should always be on the same side of 80 as the Output command (+ a couplecounts). If a drive fault should occur, the firmware “locks” the fault condition on the displayas long as the drive deadman switch is held active. This will allow you to record the displayso that you can interpret what it means. The display is especially helpful in isolating blownfuses or bad connections to the drive motors. If either of these conditions were present youwould see the feedback remain constant while the output command is very active.

Conditions which are detected as faults:

1. Current feedback indicating drive in the opposite direction from what was comman-ded.

2. Current feedback in excess of what was commanded.

3. Current feedback which doesn’t exceed 10% of the output command for at least 100ms.

�����$�> ������������������D��"��������"��3�����"���������"��3��3����C��������������������&��D��"���������"��3�����"���������"��3�C�3���������+�����"��3��3�����������������������������&���/#K,����"����3���3��3����"���"���������������"�,������B�

Page 167: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

13-15-3 Drive Control Software Theory

HOW SOFTWARE CONTROLS THE AMX DRIVE

� ��> ����"�,����&����"�������,���� �����������3���������0��58�,�9(��"�-�����3�����������&7�

WHAT SOFTWARE WANTS TO SEE FROM THE HALL EFFECT SENSORS:

The AMX software looks for certain voltages from the Hall effect sensors in the Drive han-dle:

� The voltages from the Hall effect sensors enter the CPU via analog MUX U342. Theycan be measured at CPU TP22 (left handle) or TP21 (right handle). They must be asfollows, or calibration errors will occur:

� E��""�������������"����������"�3�������&���#������4��A-��

� ����"�����,3��,��&���������������"�3���"���������"���������������������#�A������3��������"���A�����-����������������������������"�����������������������������������������3��

� ����"�����,3���������������������"�3���"��������"���������������������#�A������3��������"���A�����6"���������3���"���� ���"�)6D!(�������������D+%-8!�+8!((*&������3��

� Always push full forward and pull full back during calibration. Otherwise, the CPUmay see a greater or lesser voltage than expected during applications, and cause a 218error.

� During applications, the software looks at the Hall sensor voltage and does some cal-culations based on data gathered during handle calibration. The calculations convertthe approximately 3–7 Volt Hall signal into a –10 to +10 Volt signal used as the DriveCommand to the drive servo. This command is the output from a D/A converter andcan be seen on TP19 (left drive) and TP18 (right drive). A 0 Volt command is a com-mand for no motion, while a + or – command provides drive in a forward or reversedirection.

� If there is no voltage change at Test Points 21 or 22, explore the Handle Check signal.

WHAT THE HANDLE CHECK SIGNAL IS FOR:

The AMX CPU makes the handle check signal from a D/A output that is normally used forthe Charge Current Command. While AMX is driven, it cannot charge, so this D/A per-forms double duty.

� The Handle Check signal is at CPU TP29. This should measure about 10 Volts witha meter. When the drive enable bar is engaged, the signal is actually a square wavethat is 10 Volts for 24 mS and 0 Volts for 1 mS. When this signal drops to zero, it forcesthe signal from the Hall sensor to zero. The signal is continuously 10 Volts when theenable bar is released.

Page 168: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0

� During driving, the CPU looks for the drop to zero Volts once every 24 ms. Duringthe 24 ms in between, the CPU can get the actual handle command. If this zero Voltdrop is missing, there will be a 218 error. This is a safety feature to guarantee that theanalog MUX, Sample and Hold, and A/D are working correctly while driving, in orderto prevent runaway of the AMX.

WHAT SOFTWARE WANTS TO SEE FROM THE DRIVE FEEDBACK SIGNAL:

The CPU expects certain voltages from the drive servo’s Drive Feedback signal that is inputto the CPU at PIN 25 (left drive) and PIN 26 (right drive) of analog MUX U342.

� The Drive Command from CPU is a –10 to +10 Volt command with 0 Volts meaning“do not drive.” The feedback that should be seen from the servo is calculated by thefollowing formula:

Feedback Voltage = 5 + ((Drive Command x 0.625) x 0.5)

Thus there is a Drive Command that goes above and below 0 Volts which producesa feedback that goes above and below 5 Volts.

� The software looks at this feedback whenever the enable bar is picked up. An erroroccurs if any of the following happens:

� 6"�,������B����������������������,&"������������J

������������,��������������"����,������B�"�3���������"���A������,,������B����������"���A������"���������������������

� 6"�,������B����������"����������J

������������,�"�-�������������*A�����,������B�"�3����J

�������BA������L�M<<*���/��=����=L/���A����

6"3��,,������B����������"��/���A������"�������*���/������

� 6"�,������B�����3����K�,��������������"����������,�������"������J

�����������3�����"�*A�����������������K�,*����*A�������,���C���B�"�3�����������J

�������BA������L�M<<��*���/��=����=L����A����

6"3���,,������B�������"�����������,�������"��������"�����������4������

� Monitor the command and feedback by flipping down the Service Switch while inapplications mode. Lifting the enable bar should cause many digits to display on thekV/mA display. (There is a good description of this in Section 13–15–2 of this manu-al.) Note that the display for the command is scaled by the .625 (63%) factor so thatthe command and feedback will match.

Page 169: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0��

� The software looks at this feedback as soon as handle is lifted. When not driving, thereshould be about 5 Volts at PINS 25 and 26 of the MUX. If there isn’t about 5 Voltsupon picking up the enable bar, there will be a “RELEASE HANDLE” or 214 thru217 error. This can be an aid in troubleshooting. If there is an error by just pulling upthe enable bar, it means that feedback was never correct, and the problem is probablythe CPU or Drive Controller. If handle has to be moved to get error, there is probablya blown fuse or bad Power Amp board.

Usually the Power Amp Fails because a FET becomes shorted. This shorted FET willprobably destroy a DG201 analog switch on the Drive Controller (U31 or U51), andblow a fuse (F1 or F2 by the drive contactors). Determine if the FET’s are shorted bymeasuring their impedance with an OHM meter. There should be at least 10K OHMbetween any combination of the case and the 2 leads. These FET’s are easy to replace.

� ��> %�����������������������������������,3��&��"�3�,�����"��B�������B��3���"���!6H��������"������)�"��&�����-1�����,3��&������&�����N

INPUT AND OUTPUT PORTS THAT EFFECT THE DRIVE:

The CPU looks at several signals on the U151 Input port and sends out several signals on theU264 Output port.

� INPUT PORT U151

� -(�A!!%+ E<'�%#=OE"����&���������'>�"��-����!�����.������������

� 6>.!'+(I!- E<'�%�=OE"����&���������'>�"���3�������B���

� .>�'!(<'�%#=OE"����&���������'>�"��,�����3����"��"������C�"����

� 6+88<'�%*)(4=OE"����&���������'>�"��-������������������������3�"������3������

� OUTPUT PORT U264

� �)6)(!%+<'�%�=00E"���"������"��"������������"����B�����������@���"�����������������<-��������������3���������������,�����B����������������&��B�=6"���,�&������B�,��-�������������������������,�������������,�����3����&��"�,��&����������������

� -(�A!(! !6<'�%/=006"���3����"��"��������"����������"�����"�-�������������������&"������������������3����3��

� �>88 '-!%+<'�% =00E"��"��"�������&�,3��������6"���,�&������B�,���3���������B������,��,�����3����������������������&,3��������

Page 170: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

13-16 Generator Control

13-16-1 Generator Control Algorithm

Following is a sequence of events for a no error x–ray cycle:

1. Prep switch is pressed.

2. 60Hz inverter is turned off if the field light was on (this prevents electrical noise whenthe rotor relay is switched in).

3. Check critical status interlocks.

4. Turn on the 60Hz inverter (rotor).

5. Turn on filament inverter and boost the filament.

6. Output kVp DAC command.

7. Output leakage compensation DAC command.

8. Pull in the safety contactor.

9. Determine battery voltage.

10. Turn on the 1kHz inverter.

11. Output the required filament current command.

12. Select the appropriate tap relays.

13. Display “READY FOR X–RAY”

14. Expose switch is pressed.

15. mAs integrator is enabled.

16. Start exposure command is issued.

17. Auto Cal data is collected.

18. Interlocks are continuously checked during the exposure.

19. When the selected mAs is reached on the mAs integrator, the exposure is terminated(the “stop command” is issued)

20. All DAC outputs are set to “0”.

21. The 60Hz, 1kHz and 2kHz Inverters are turned off.

22. Adjust filament current demand database using Auto Cal data.

23. Turn off rotor and tap select relays.

24. Wait for Prep Switch to be released.

13-16-2 Selecting The Proper KVp Demand

The correct kVp, demand is determined from the operator selected kVp and calibrated database values. During kVp calibration, the relationship between 4 kVp demand DAC outputsand the resulting kVp is determined. All kVp demands are then linearly interpolated in be-tween these database entries.

Page 171: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0��

13-16-3 Selecting The Proper Tap Relay Combination

The selected tap relay combination is a function of selected kVp, battery voltage and cali-brated tap constants. The tap combination that will yield an average emission current clos-est to 100mA will be selected.

13-16-4 Selecting The Proper Filament Current Demand

The proper filament current is determined using the selected kVp and the calculated emis-sion current resulting from the selected tap relay combination. During filament currentcalibration the filament current at 90 and 110 mA of emission current is determined for eachkVp station and stored in the database. A linear interpolation is done on these database ele-ments using the calculated emission current to arrive at the proper filament current at theselected kVp.

13-16-5 Auto Calibration

To compensate for tube aging and to “tweak” interpolated filament current points, autocalibration is done after all exposures longer than 10ms as follows:

� Determine how much the filament current needs to be adjusted based on the initialkVp error of the last exposure.

� Weight the filament current table adjustments based on the mA.

� Adjust adjacent filament current table points to reflect the change made at the presentstation.

13-16-6 Generator Control Diagnostics (Fault Detection)

During the PREP and EXPOSURE cycles, the firmware continuously checks the status ofvarious interlocks. As a result, there 36 unique errors that can appear. All x–ray generatorrelated faults are indicated by the message “ERROR 4xx”, where xx is a unique error codefor a particular fault.

13-17 Field Light Control

The field light can be turned on any time the unit is not charging or in the x–ray mode (prepor expose) provided a generator fault has not occurred. The field light is turned on by ena-bling the 60Hz clocks to the 60Hz inverter. The clocks remain enabled for from 5 to 45 sec-onds after the field light switch is released. Pressing the field light switch during the 5 to 45second time period reloads the timer with the calibrated on time. The field light has a maxi-mum total on time of 200 seconds before it is disabled for cooling.

Page 172: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�#

13-18 Bar Graph Control For Version46–302688G1/46–302687G1

Capacity is determined as follows:

�D ���D

���$���E

116.00VOR GREATER

EE

NUMBER OF LIGHTED BARS IS A LINEAR RELA-TIONDETERMINED BY THE VOLTAGES BELOW

� MAXIMUM RATE OF DECREASE IS 3.0 BARS/MIN.� THE BAR GRAPH WILL GAIN SEGMENTS AT A RATE OF 0.6

BARS/MIN IN RESPONSE TO VOLTAGE FLUCTUATION

* THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_ZERO_CAPACITY_MILLIVOLTS DATABASE VALUE.MAY BE MODIFIED BY BATTERY AGING.

**THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_FULL_CAPACITY_MILLIVOLTS DATABASE VALUE.

�C!#�($�, D #*�, C%,* #*

�D ���D

���$���E

113.00VOR GREATER

EE� Maximum rate of decrease is 3.0 bars/min� The bar graph will not gain segments in this mode

* THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_ZERO_CAPACITY_MILLIVOLTS DATABASEVALUE. THE 0% VOLTAGE IS MONITOR_ZERO_CAPACITY_MILLIVOLTS – 3.0V. MAY BE MODIFIED BY BAT-TERY AGING.

** THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_FULL_CAPACITY_MILLIVOLTS DATABASEVALUE. THE 100% VOLTAGE IS MONITOR_FULL_CAPACITY_MILLIVOLTS – 3.0V.

�C!#�, D #*

NUMBER OF LIGHTED BARS IS A LINEAR RELA-TIONDETERMINED BY THE VOLTAGES BELOW

�D

��D

���$���E

# BARS LINEAR RELATION USING VOLTAGES BE-LOW

� Maximum rate of increase is 3.0 bars/min during the voltage period and 0.011 bars/min during the timed charge period.� The bar graph will not lose segments in this mode.

* THE MONITOR_ZERO_CAPACITY_MILLIVOLTS MAY BE CHANGED BY THE BATTERY AGE ALGORITHM.THE 0% VOLTAGE IS EQUAL TO (MONITOR_ZERO_CAPACITY_MILLIVOLTS +2.00V.

** THIS VALUE IS 130.00V.

*** ALL BARS SHOULD BE LIT SEVERAL MINUTES AFTER CHARGE COMPLETE (EXCEPT IN FULL CHARGECYCLE WHICH OCCURS EVERY 20TH TIME.

���D

130.00V **

�C!# C%,* #*

EEE

Page 173: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�*

13-19 Bar Graph Control For Version 46–303272G1/46–303273G1 or46–303815G1/46–303816G1

Capacity is determined as follows:

�D ���D

���$���E

114.00VEE

NUMBER OF LIGHTED BARS IS A LINEAR RELA-TIONDETERMINED BY THE VOLTAGES BELOW

� MAXIMUM RATE OF DECREASE IS 3.0 BARS/MIN.� THE BAR GRAPH WILL GAIN SEGMENTS AT A RATE OF 0.6 BARS/MIN IN RESPONSE TO VOLTAGE FLUCTUATION

* THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_ZERO_CAPACITY_MILLIVOLTS DATABASE VAL-UE. MAY BE MODIFIED BY BATTERY AGING.

** THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_FULL_CAPACITY_MILLIVOLTS DATABASE VALUE.

�C!#�($�, D #*�, C%,* #*

�D ���D

���$���E

111.00VOR GREATER

EE� MAXIMUM RATE OF DECREASE IS 3.0 BARS/MIN� THE BAR GRAPH WILL NOT GAIN SEGMENTS IN THIS MODE

* THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_ZERO_CAPACITY_MILLIVOLTS DATABASE VALUE. THE0% VOLTAGE IS MONITOR_ZERO_CAPACITY_MILLIVOLTS – 3.0V. MAY BE MODIFIED BY BATTERY AGING.

** THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_FULL_CAPACITY_MILLIVOLTS DATABASE VALUE. THE100% VOLTAGE IS MONITOR_FULL_CAPACITY_MILLIVOLTS – 3.0V.

�C!#�, D #*

NUMBER OF LIGHTED BARS IS A LINEAR RELATIONDETERMINED BY THE VOLTAGES BELOW

�D

��D

���$���E

# bars linear relation using voltages below

� MAXIMUM RATE OF INCREASE IS 3.0 BARS/MIN DURING THE VOLTAGE PERIOD AND 0.011 BARS/MIN DURING THE TIMED CHARGE PERIOD.� THE BAR GRAPH WILL NOT LOSE SEGMENTS IN THISMODE.

* THE MONITOR_ZERO_CAPACITY_MILLIVOLTS MAY BE CHANGED BY THE BATTERY AGE ALGORITHM. THE 0% VOLTAGE ISEQUAL TO (MONITOR_ZERO_CAPACITY_MILLIVOLTS +2.00V.

** THIS VALUE IS 130.00V.

***ALL BARS SHOULD BE LIT SEVERAL MINUTES AFTER CHARGE COMPLETE (EXCEPT IN FULL CHARGE CYCLE WHICH OC-CURS EVERY 20TH TIME.

���D

**130.00V

�C!# C%,* #*

EEE

Page 174: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0��

13-20 Bar Graph Control For Version 46–316685G1/46–316686G1

Capacity is determined as follows:

�D ���D

���$���E

114.00VEE

NUMBER OF LIGHTED BARS IS A LINEAR RELA-TIONDETERMINED BY THE VOLTAGES BELOW

� MAXIMUM RATE OF DECREASE IS 3.0 BARS/MIN.� THE BAR GRAPH WILL GAIN SEGMENTS AT A RATE OF 0.6 BARS/MIN IN RESPONSE TO VOLTAGE FLUCTUATION

* THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_ZERO_CAPACITY_MILLIVOLTS DATABASE VALUE.MAY BE

MODIFIED BY BATTERY AGING.

**THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_FULL_CAPACITY_MILLIVOLTS DATABASE VALUE.

�C!#�($�, D #*�, C%,* #*

�D ���D

���$���E

111.00VOR GREATER

EE� MAXIMUM RATE OF DECREASE IS 3.0 BARS/MIN� THE BAR GRAPH WILL NOT GAIN SEGMENTS IN THIS MODE

* THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_ZERO_CAPACITY_MILLIVOLTS DATABASE VAL-UE. THE 0% VOLTAGE IS MONITOR_ZERO_CAPACITY_MILLIVOLTS – 3.0V. MAY BE MODIFIED BY BATTERYAGING.

** THIS VOLTAGE LEVEL IS ADJUSTABLE WITH THE MONITOR_FULL_CAPACITY_MILLIVOLTS DATABASE VAL-UE. THE 100% VOLTAGE IS MONITOR_FULL_CAPACITY_MILLIVOLTS – 3.0V.

�C!#�, D #*

NUMBER OF LIGHTED BARS IS A LINEAR RELA-TIONDETERMINED BY THE VOLTAGES BELOW

�D

��D

���$���E

# BARS LINEAR RELATION USING VOLTAGES BE-LOW

� MAXIMUM RATE OF INCREASE IS 3.0 BARS/MIN DURING THE VOLTAGE PERIOD AND 0.011 BARS/MIN DURING THE TIMED CHARGE PERIOD.� THE BAR GRAPH WILL NOT LOSE SEGMENTS IN THISMODE.

* THE MONITOR_ZERO_CAPACITY_MILLIVOLTS MAY BE CHANGED BY THE BATTERY AGE ALGORITHM. THE 0% VOLTAGE IS EQUALTO (MONITOR_ZERO_CAPACITY_MILLIVOLTS +2.00V.

** THIS VALUE IS 127.00V.

***ALL BARS SHOULD BE LIT SEVERAL MINUTES AFTER CHARGE COMPLETE (EXCEPT IN FULL CHARGE CYCLE WHICH OCCURS EV-ERY 10TH TIME.

���D

**127.00V

�C!# C%,* #*

EEE

Page 175: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�/

13-21 Battery Aging for Firmware46–316685G1/46–316686G1 and Earlier

� ��> ��� ����&��� */0#� �412*/0#� ��1 ��*/0#� �41�2*/0#� ��1�� ��� ������#0��0/�

The battery aging algorithm may change the “monitor_zero_capacity_millivolts” to pre-vent potential error during exposure. This will make the minimum on the bar graph corre-spond to a voltage higher than 112V. (The normal bargraph range corresponds to 112V min.and 114V max.)

The algorithm may be disabled and the range reset to norm by loading defaults, running fullcalibration, and loading location 19D with 0000. (See the data base access section).

13-22 Bar Graph Control For Version46–329187G1/46–329188G1 or46–329187G2/46–329188G2 (SMART GAUGE)

This section describes the high–level operation of the battery capacity metering algorithmfor the AMX–4 mobile rad product. This algorithm shall hereafter be referred to as“SMART GAUGE”. The SMART GAUGE firmware divorces the bar graph display frombattery voltage and instead uses actual usage to approximate remaining capacity. This hasthe effect of normalizing all battery sets regardless of manufacturer or manufacturing date.It also allows the system to be relatively insensitive to bad cells as long as performance isstill there.

13-22-1 Discharge Loads

When the AMX–4 is “ON”, there are five distinct loads on the battery. They are idle, drive,field light, prep, and x–ray exposures. All load currents except for drive are relatively con-stant and can be integrated easily over time. To be conservative, the drive load is consideredto be constant at a level equivalent to driving at top speed on a flat level surface.

� ��> 6"����������������,�"���������+!����3�����"��������������������C��������+� �����"�����3��������������������������������������,���"�������

Available capacity in milliamp hours is decreased from its present level as described by thefollow equation:

remaining capacity = remaining capacity– idle energy removed since last sample– drive energy removed since last sample– field light energy removed since last sample– prep energy removed since last sample– xray energy removed since last sample

Page 176: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�4

The various energy removed values (in milliamp seconds) will be determined from elapsedtime as follows:

ENERGY REMOVED ELAPSED TIME NOMINAL LOAD�

idle energy removed = {[Elapsed idle time] � 300 (mA)}drive energy removed = {[Elapsed drive time] � 3000 (mA)}field light energy removed = {[Elapsed field light time] � 2500(mA)}prep energy removed = {[Elapsed xray mode time] � 3000(mA)}

Exposure energy removed (in mA seconds) will be determined from exposure data as fol-lows:

x-ray energy removed = {[Cumulative Exposure Energy since last sample (Joules)] � (conversion factor)

where, conversion factor =(1000 mA/A) � [ 0.75 (generator eff.)�100V (typ. loaded volts) ]

= 13

� These nominal loads are adjustable via DATA BASE parameters. The load to DATABASE names are cross–referenced below:

NOMINAL LOAD DATA BASE PARAMETERidle Idle Load Currentdrive Drive Load Currentfield light Field Light Load Currentprep Prep Load Current

The remaining capacity calculations are done each time a new battery voltage value is cal-culated which is approximately every five seconds. The % capacity remaining is then dis-played on the 48 segment bargraph. The bargraph has the relationship of each segment rep-resenting:

Total Capacity (a DATA BASE parameter)48 segments

Using the default conditions as an example we get: 6500 mA�HR/48 seg = 135 mA�HR per segment.

Given this default condition, each of the various load modes will remove capacity at differ-ent rates as follows:

LOAD MODE LOADMAGNITUDE DISCHARGE RATE TYPICAL DAILY

USAGE*

Idle 0.3 amps 2.2 segments/hour 0.8 AHR = 6 segments

Drive 3.0 amps 0.4 segments/minute 1.7 AHR = 13 segments

Field Light 2.5 amps 0.3 segments/minute 0.4 AHR = 3 segments

X–Ray Prep 3.0 amps 0.4 segments/minute 0.1 AHR = 1 segment

X–rayBASED ONTECHNIQUE

0.0005 to 0.8segments/exposure 0.07 AHR = 0 segments

TOTAL DAILY SEGMENTS TURNED OFF: 23 segments (48%)

*Based on actual field data.

Page 177: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0��

13-22-2 Emergency Capacity

In order to deal with the rare situation where a customer is nearly finished with a patientexam when capacity goes to 0 preventing further exposures, an emergency capacity featureis added. Upon power–up, if 0% capacity is detected, three bar segments will be lit. Thuscycling the keyswitch will give approximately 50 seconds before the bar graph display goesto 0% again, allowing enough time to position a patient, to illuminate the field light, and totake an exposure.

13-22-3 Recharge Phases

During charge, available capacity will be increased in three phases. Phase I is the currentlimited phase, Phase II is the voltage limited phase, and Phase III is the timed voltage lim-ited phase. The following paragraphs describe the rules governing the bar graph update.

PHASE I (Current Limit)

This phase occurs at the beginning of a charge cycle when the charger is putting out its max-imum current and the voltage has not reached its maximum value. During this time, 50% ofthe segments unlit at the beginning of charge will be illuminated. Concurrently, the capac-ity remaining variable will be increased by 50%.

SEGMENTS ATSTART OF CHARGE

SEGMENTS AT START OF CHARGE+ 50% OF UNLIT SEGMENTS

AT START OF CHARGE

Voltage at end of CurrentRamp–Up

Maximum Phase IVoltage (127V)

Present Voltage

PRESENT NUMBEROF SEGMENTS

There are several exceptions to the above relationship:

1. This phase may be skipped when attempting to charge fully charged batteries or bat-teries which are resistant to charge. This occurs when the charging current is morethan 20 DAC counts below maximum at the end of the charge ramp–up.

2. The maximum % change is limited to 10% per volt of difference between the begin-ning and ending Phase 1 voltages. As an example, if the voltage at the end of the cur-rent ramp–up is 123V, the maximum % change will be limited to 40%[(127V–124V)�10%].

3. If the clamp anticipation algorithm decreases the charge current by more than 20 DACcounts, phase 1 will end.

Page 178: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0�

PHASE II (Voltage Limit)

As the charge clamp voltage is approached or once it is exceeded, charge current is de-creased to keep the battery charge voltage at the programmed limit. 50% of the segmentsunlit at the beginning of PHASE II will be lit during this phase. This phase is complete whenthe switch to trickle mode is made. Segments will be lit as a function of the present ChargeDAC count as shown in the following graph.

SEGMENTS ATSTART OF PHASE II

SEGMENTS AT START OF PHASE II+ 50% OF UNLIT SEGMENTS AT

START OF PHASE II

PRESENT NUMBEROF SEGMENTS

DAC Count at Start ofPhase II

(typ. 130 counts)

Switch to TrickleMode DAC Value(typ. 26 counts)

Current DAC Value

There is one exception to the above relationship. If charging batteries which are fullycharged, Phase I will be by–passed and the starting Phase II charge DAC count will be verylow. In this case, the maximum % change in capacity is limited to 0.7% per DAC count. Asan example, if the DAC count at the start of Phase II is 76 and the Switch to trickle modeDAC count is 26, % change in capacity for Phase II will be 35%. Note that for nearlycharged batteries and for batteries resistant to charge, this phase may be very short.

PHASE III (Timed Charge)

After the switch to the trickle mode has been made, the remaining charge is a function oftime. When “CHARGE COMPLETE” is displayed, all bar segments will have been lit. Thetimed phase can be a top–off or an extended charge; the relationship is the same. Availablecapacity will be increased as shown in the following graph.

SEGMENTS ATSTART OF PHASE III

PRESENT NUMBEROF SEGMENTS

Timer Value at Startof Timed Phase

Timer = 0Current TimerValue

ALL SEGMENTS

Page 179: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#�

“Stuck–At–Full” Feature

When the charge cycle reaches “CHARGE COMPLETE”, an additional amount of capac-ity will be added to the remaining capacity. This results in the automotive equivalent ofhaving the fuel gauge “stuck–at–full” after filling up the fuel tank. The amount of “over-charge” is defaulted to 500mA�HR. The amount of overcharge is controlled by the DATABASE parameter Full Charge Excess Capacity. The segments on the bar graph display willbe at full until this “overcharge” is used up during discharge.

ILLUSTRATION 13–11FOR PROMS 46–329187G1/46–329188G1 OR 46–329187G2/46–329188G2: REMAINING CAPACITY AND PERCENT CHARGE DURINGRECHARGE (PICTORIAL)

�)3*4.4.9��*0*84/6�F����3��%�

REMAINING CAPACITY = 5700MA�HR

REMAINING CAPACITY = 6100MA�HR

REMAINING CAPACITY = 7000MA�HR REMAINING CAPACITY = 7000MA�HR

REMAINING CAPACITY = 5000MA�HR

REMAINING CAPACITY = 3400MA�HR

REMAINING CAPACITY = 0300MA�HR

�� ��� �� ���

BAR GRAPH PRIOR TO CHARGING

�� ��� �� ���

BAR GRAPH AT END OF PHASE I / BEGINNING PHASE II

�� ��� �� ���

BAR GRAPH AT END OF PHASE II / BEGINNING PHASE III

�� ��� �� ���

BAR GRAPH AT END OF PHASE III – “CHARGE COMPLETE”

The above CASE 1 and CASE 2 figures illustrate the three phase recharge concept. CASE 1is an example of a nearly charged battery set (Phase I adds no bar segments) while CASE 2is an example of a heavily discharged battery set. The equivalent capacity in mA�HR isgiven immediately beneath the bar graph depiction. Default values are assumed.

Page 180: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#

ILLUSTRATION 13–12FOR PROMS 46–329187G1/46–329188G1 OR 46–329187G2/46–329188G2: REMAINING CAPACITY AND PERCENT CHARGE DURINGRECHARGE (GRAPHICAL)

�A0 >%&�(#��E$!#)!) C%,*!�,(F &!4(,� *# F >%#$&A� +>C%,*!)�%$$!,A�!$

?�%$$!,A�(&$%*!D+8�!-% # #* %0%> $A%#)G C%,*!� +0&%A!)@

�%

$$!

,A�

(&$

%*

!?

��

��

�@

C

%,*

!�

!,>

!#

$�

+0

&%A!

)?

#G

@H

% CHARGE ON BARGRAPH DISPLAY

BATTERY VOLT-AGE

CHARGECOMPLETE

����?�(B,+@

CAPACITY REMAINING IN100’S OF MILLIAMP�HOURS

%

0%

> $

A�

!-

% #

#*

? #

59

9I+

(F

� &

& %

-0

!,!

�(

B,+

@

�%� ��� �%� �����%� �����

“FULL CHARGE EXCESS CAPAC-ITY” IS ADDED AT “CHARGE COM-

PLETE”

Illustration 13–12 demonstrates how both the % charge displayed on the bar graph capacitygauge and the capacity remaining, increase during charge when starting with a significantlydischarged battery set. Note that neither parameter is increased until after the initial ramp–up period.

Page 181: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#�

13-22-4 Voltage Compensation

To guard against unusual usage, a circuit defect, or shorted battery cells, all of which maycause a deviation from the current load model, voltage compensation is incorporated in theSMART GAUGE algorithm. To accomplish this, the energy removed during each cyclewill be multiplied by a compensation factor as shown in the following table:

VOLTAGE RANGE FOR WHICH ...

CONDITION ... CompensationFactor = 1

... CompensationFactor = 2

... CompensationFactor = 3

IDLE > 112.0V > 111.0V and < 112.0V < 111.0V

DRIVE > 110.5V > 109.5V and < 110.5V < 109.5V

FIELD LIGHT > 111.0V > 110.0V and < 111.0V < 110.0V

DRIVE and FIELD LIGHT > 109.5V > 108.5V and < 109.5V < 108.5V

The table above assumes the default condition of 11200 (2BC0 Hex) for the DATA BASEparameter “Nominal 0% capacity Millivolts” which represents 112.00V. The importantitem to note is that even with voltage compensation in effect, the bar graph (% capacity)response will still be linear with usage. The bar graph will not fall off sharply as had beenthe case with the previous capacity algorithm.

13-22-5 Diagnostic Aids

As shown in the following table, certain DAC voltage outputs are provided to aid manufac-turing, field service, and systems evaluation engineering in monitoring the parameterswhich drive the % capacity display with external measurement equipment.

Quantity To BeOutput

Quantity to Output Linear Re-lationship DAC Name AMX1A2A1

Test Point #

Present Voltage110V = 0V output140V = 10V output KVP DEMAND TP26

Remaining Capacity0mA�HR = 0V output10000mA�HR = 10V output FIL CUR DEMAND TP27

Bar GraphPercentage

0% = 0V output100% = 10V output

LEAKAGE COMPDEMAND TP28

These diagnostic outputs will be available except in the x–ray mode when the DAC’s areused for their intended purposes. The Charge Profile illustration in this section was gener-ated by monitoring these test points during charge.

13-22-6 Battery Aging

To guard against the adverse effects of aging batteries on high voltage generator perform-ance, a battery aging algorithm is incorporated to reduce the capacity available over therange of the bar graph display as described in Section 13-22-1. If battery aging is effectingthe system high voltage performance, the DATA BASE parameter “Battery Aging CapacityOffset” will begin to increase. It is limited to 70% of the value of the DATA BASE parame-ter “Total Capacity”. Relatively new battery sets may also activate this algorithm if ashorted cell(s) is present.

Page 182: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0##

If a customer begins to complain about “Capacity Problems”, an inspection of the “BatteryAging Capacity Offset” DATA BASE parameter should be made using DATA BASE AC-CESS to see if the algorithm has been activated. Note: This feature can be disabled by writ-ing 0000 to the “Battery Aging Disable” DATA BASE parameter.

/%���#��#>� � ��������������������������$��� ��� ���� ���� ��B� �����C3�����������

"��������������D���#��3����������,�$�������$������������ ����:���

���������� �� ���'"���$�������� ������4�#���� �� ��:���� �������� ���

B� �����������������������$����������� ������������$������������������4

13-23 Heat Storage Tube Protection

The new application firmware simulates the actual target temperature. It does not generatea heat wait after each exposure like the previous firmware. It only generates a heat wait forheat storage technique selection greater than the track on bulk limits.

13-24 Service ModeThis mode of operation is intended to be used only by a service person. It can only be en-tered only with the use of the service switch. The service mode consists of three functions:calibration, extended diagnostics and data base access. These functions are described be-low.

13-25 CalibrationTo enter the calibration mode, the unit must be powered–up with the service switch in theservice mode position. Once power–up testing is complete, the “CALIBRATE SYSTEM”function must be selected. At this point the following items can be calibrated.

13-25-1 Drive Handle Calibration

The Handle Is The Only Portion Of The Drive system that requires calibration. The calibra-tion is basically in two parts. First the “no force” transducer output is determined. Next thetransducer output at full forward and full reverse handle displacement is determined forboth the left and right channels. From these the magnet polarity and input gains can be de-termined.

13-25-2 Battery Charger Calibration

During charger calibration, the AMX4 “learns” the relationship between the charge currentcommand and the charge current feedback both for high charge and trickle charge. To dothis the AMX 4 calibration firmware outputs two different charge commands and saves thecharge current feedback for these points in the data base. From these values in the data base,the expected feedback at any charge command can be interpolated. The AMX 4 also“learns” the relationship between charge current command and actual charging current.The serviceperson is involved in this step since he enters the voltage across the chargingcurrent limit resistor. The value which is saved in the data base is:

���3�L����"���������������������

The actual charging current is determined at two charge commands. This allows the actualcharging current to be interpolated for any charge command.

Page 183: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#*

13-25-3 Battery Voltmeter Calibration

During this calibration step, the AMX 4 “learns” the relationship between actual batteryvoltage and the frequency of the VCO which monitors battery voltage. To do this, the AMX4 counts battery voltage pulses for 5 seconds and then prompts the operator to enter the ac-tual battery voltage. From this information a counts–per–volt ratio can be determined andstored in the data base.

13-25-4 Generator Calibration

This calibration step is divided into four parts as shown below. It is assumed that the batteryvoltage calibration has been done properly.

13-25-5 mAs Calibration

The Illustration 13–13 shows the mAs calibration circuitry.

During mAs calibration approximately 100 mA is injected into the mA metering circuitrywhich is based on a Voltage Controlled Oscillator (VCO). The resulting frequency clocksthe counter for a set period of time (3 seconds). As a result, the number of VCO pulses permAs is given by:

��3�������+�L��3������������� <��?������+=�<#���=

13-25-6 kVp Calibration

This calibration step calibrates the AMX 4 to the particular bleeder/meter combination be-ing used for measurement. During this step the AMX 4 “learns” the relationship betweenkVp demand and actual kVp. The service person monitors the kVp on an oscilloscope andenters the kVp value when the AMX 4 requests it. Calibration is done at 4 points – 52, 64, 85and 120 kVp

ILLUSTRATION 13–13MAS CALIBRATION CIRCUIT

VCO

&!- ++

599-�

MA

16 BITCOUNTER

PROCESSOR

mA

Page 184: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#�

13-25-7 Tap Relay Calibration

This is the longest calibration step, but it is fully automated. All the service person is re-quired to do is hold down the prep and expose switches. The purpose of Tap Calibration is todefine the system characteristics of as many of the 28 valid tap combinations as possible.Starting at no taps selected, the AMX 4 determines which two kVp’s yield emission cur-rents of 90 and 110 mA for each tap combination. The Illustration 13–14 shows the informa-tion that is gathered from this cal.

For each tap combination two parameters are stored in the data base; the System Resistancewhich is the slope of the tap combination load line, and the Effective Turns Ratio which isthe y–intercept (kVp at 0mA) divided by the battery voltage.

13-25-8 Filament Current (X–ray Tube Characteristics) Calibration

Filament current demand is calibrated at four kVp station: 52, 64, 85 and 120 kVp. For eachkVp station two tap combinations are used – the ones that will yield emission currents clos-est to 90mA and 110mA.

Linear interpolation is used to determine the filament current demand values at 90 and 110 mAfor each kVp station. These eight calibrated points are then used to interpolate the remainingfilament current table entries in the data base as shown in Table 13–1.

ILLUSTRATION 13–14KVP VERSUS MA

�� ���

&�G�&�G�&�G�&�

&�G�&�G�&�

&�G�&�G�&�

&�G�&�

&�

&�

/�0

�������� ������?-�@

���

����

Page 185: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

#0#/

TABLE 13–1FILAMENT CURRENT TABLE ENTRIES

90 mA 100 mA kVp

extrapolatedcalibratedinterpolated

extrapolatedcalibratedinterpolated

505254

interpolatedcalibratedinterpolated

interpolatedcalibratedinterpolated

626466

interpolatedcalibratedinterpolated

interpolatedcalibratedinterpolated

808590

interpolatedcalibratedextrapolated

interpolatedcalibratedextrapolated

115120125

Obtaining the correct filament current demand at each of the eight calibration points is doneas follows:

1. The filament current used for the first exposure at a new calibration point is based ondata collected during tap calibration.

2. When an exposure is taken, the filament current feedback “error” (indicative of kVperror) is integrated. This integrated error and its polarity determines how much thefilament current must be adjusted.

3. If the integrated error is greater than the maximum allowable error then take anotherexposure with the new filament current of step 2 above.

4. Repeat steps 2 & 3 until the error is within limits.

13-25-9 Field Light On Time Calibration

This calibration step allows the field light “ON” time to be calibrated. Valid times are any-where from 5 to 45 seconds.

13-26 Extended Diagnostics And Service Tools

This portion of the service mode is intended to assist the service representative in trouble–shooting. It is password protected to prevent unauthorized access to these tests.

13-27 Data Log Access

This portion of the service mode allows access to the history of the unit. It is password pro-tected to prevent unauthorized access.

13-28 Data Base Access

This portion of the service mode allows the service representative to view and change database elements. It is password protected to prevent unauthorized access.

Page 186: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0

SECTION 14TROUBLESHOOTING HINTS AND SERVICE AIDS

14-1 Isolating Battery Problems

Battery problems manifest themselves in a multitude of manners. Some potential symp-toms are:

� !���� */���� ������ �3���� ������ �����3��� <P����=�6"�� ����� ���3��&"���"��������������������3�����������3���������,���������������"��&"����&���3����6+'�+8�%�&,���&��������������H��������!0*/�3�����,��������3��������6"������������"�&������������������"��������������3����������������������

�� !����*/�<��������������3������=����������������"���"��������������������3�����������3���������,���������������"��&"�� ��&���3����6+'�+8�

#� 6"��������5.+66!(G6))8)E75(!�D+(1!(!Q>�(!-7�����C���������"�3�"�"����������,���������������,�������������"��������"�

*� 6"�����3������B��������&���"�+�:*�������������,�6"��������3��,�"�����������������&��A�3���������3���

/�� ����> �������� �� ��� �������$ �������� ���� ���� ��E��������������������$����@

���4�#���C�����' �'������D� ������$������������������$�����������4����$�@

� :4

14-1-1 Voltage Drop Under Load

The only reliable method for determining whether a battery set is bad is to monitor the bat-tery voltage under load at a lower state–of–charge. The procedure follows.

� .�����"���������3�������������������"���������&����A���#���A3��������-�����"�3����3���������������"�������,�����3�"�� ������6���*/0#�����<�A���2���E���+�:0*8�������3��=

�� ��������"���������������,����"�����3������B�����"����3����3�&��"��������������>������A2���������2���&��"��������������������

#� 6�B����BA�*�+������3�����������"������������������"�,�����������,�"����������������

*� %����"������������,����"�'(!'��������������"���������3��������C�3��� �����3��������#��A������-���>����8����

Page 187: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0�

ILLUSTRATION 14–1VOLTAGE DROP UNDER LOAD

PREP LOADVOLTAGE

AVERAGE DROP

If the average drop is greater than 17 volts the batteries as a set are bad.

14-2 CPU Dip Switch Positions

SW#

NORMALPOSITiON

SWNAME FUNCTION

PORTADDR& BIT # COMMENTS

1 OFF – (NONE) –

2 OFF – (NONE) –

3 OFF OPTSW 1

ENABLES POWERSUPPLY TESTS

1100HBIT 6

OFF (PORT LOGIC 1) = ENABLES +24, +15 TESTSON (PORT LOGIC 0) = DISABLES +24, +15 TESTS

4 OFF BAUDRATE

SELECTSBAUD RATE

1100HBIT 5

OFF (PORT LOGIC 1) = 375K BAUD RATEON (PORT LOGIC 0) = 187.5K BAUD RATE

5 ON OPTSW 4

(NOT USED) 1000H BIT 2

6 OFF–ENGON–FREN

OPTSW 3

SELECTS LANGUAGEOF MESSAGE

1000HBIT 1

OFF (PORT LOGIC 1) = ENGLISHON (PORT LOGIC 0) = FRENCH

7 ON OPTSW 2

CYCLES CPU 1400HBIT 2

OFF (PORT LOGIC 1) = CYCLE CPU AT POWER UP(SEE NOTE 1 BELOW)ON (PORT LOGIC 0) = NORMAL RUN MODE

8 OFF – (NONE) –

����5J�00548*;5)������/1�����;1*,+�� �� ����G���������74/(���� �� ����������� ������ ���*.+�5*/),$�(4-�:=.8/41.�).*;5)-�/()�����;1*,+�/1�;)�,)8685)+�4.�/()�+4*9.1-/48�31+)�;6�-)//4.9�-74/8(�H����G�05*84.9�-),<48)�31+)�-74/8(�+17.G�*.+�,);11/4.9$

Page 188: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0#

14-3 Generator Cal

The following three subsections will help with common problems which may occur duringgenerator calibration.

14-3-1 Tube Spits During “CALIBRATE TAPS”

If you run into tube spits at high kVp’s during Tap Cal, try slowing the pace of the calibra-tion once the kVp is greater than 125 kVp. That is, wait approximately 30 seconds betweenexposures and keep the unit in prep longer by allowing the message “READY FOR X–RAY” to be displayed for 5 seconds before pressing the expose switch.

14-3-2 X–ray Word Limit During “CAL FIL CUR TBL”

If an “X–RAY WORD LIMIT” occurs during “CAL FIL CUR TBL” you can prevent theunit from forcing a re–calibration of the entire unit by doing thefollowing:

1. With “X–RAY WORD LIMIT” still on the display press mAs � until you get to the“CALIBRATE GENERATOR” level. (DO NOT TURN OFF POWER OR PUSHTHE RESET SWITCH!)

2. Press mAs � twice and redo the mAs calibration. This updates the appropriate check-sums and prevents a forced recalibration of the active generator.

3. Redo “CAL FIL CUR TBL”.

14-3-3 Triggering – The Oscilloscope Prior to “CALIBRATE kVp”

You can save time by making sure your oscilloscope triggers properly prior to entering“CALIBRATE kVp”. If the unit fails Power–Up Test 04, you can use the checksum by–pass feature to enter the application mode and take exposures. Use 50 kVp at 2 mAs to es-tablish your trigger.

Page 189: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

*0*

14-4 Synchronizing Internal Capacity Meter toCapacity Displayed (Firmware 46–329187G1 and 46–329188G1 or 46–329187G2 and 46–329188G2 ONLY)

It is possible when servicing the AMX–4 to throw the internal capacity meter and the capac-ity displayed out–of–sync. This can occur if the batteries are discharged a considerableamount, say with the battery load fixture, followed by a volt meter calibration. If theAMX–4 is then put in the application mode, the %capacity displayed will be low while theinternal capacity meter may still be quite high. Given this situation, it may take some timefor the internal capacity meter to “catch–up” with the % capacity displayed.

The reverse can happen if the batteries are charged outside of the application mode (or anew battery set is installed), followed by a volt meter calibration. In this case the unit mayexhibit rapid bar graph fall off, while the % capacity displayed catches up with the internalcapacity meter which hasn’t changed since the last time application mode was active.

There are two remedies for these situations.

1. Charge the unit to “CHARGE COMPLETE”. This approach updates both the internalcapacity meter and the % displayed and will eventually synchronize the two.

2. Using the LOOP TEST diagnostic tool, write FF into location 0CB4. This approachcorrupts the internal capacity meter forcing a synchronization of internal capacity to% capacity the next time the system is powered up in the applications mode.

� ��> 6"���������&���������B,�����3���������&"����"������"����@�������B��������

Page 190: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

SECTION 15BLOCK DIAGRAMS

15-1 Illustration Listing

���3���������0� :0(��!������������

���3���������0�� :0���!�����'����������+��!����� �F3����

���3���������0#� D��"A������1���������

���3���������0*� ��������+���+��������

���3���������0�� (�����������

���3���������0/� 8�,�-���� ��������&

���3���������04� (��"�-���� ��������&

���3���������0�� 8�,�9(��"�-�����3�����������&

���3���������0 � .������'�&������"������&��"�"�����.����*/0����#*��*/0���4�/

���3���������0�� .������ '�&�� �"���� ����� &��" �"����� .����*/0����#*��*/0���4�/

���3���������0� .������ '�&�� -���"���� ����� &��" �"����� .����*/0����#*��*/0���4�/

Page 191: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 192: Amx4 Series Diagnostics

++++++

ILLUSTRATION 15–1X–RAY ENABLE CONTROL

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0#

I���

�%J��%� ����

���5���5 ���������

����

��%@���

���������������%

����

���

K�

��

�%J���������'E

��� ����E

��������

�������������%

��

K�

���5��������� ������

����������

�������� �

����� "

���L�� "

K�

�%J��%� ���

��

��

�������������%

���'�������E

����� "

���5���5���4��

���&�������I��

��������I��

��2%@��%� ����

%�����

&�������I��

���%��

���5����4��;��� ������

��

��

��

��

��������������%

&�������������%

���&�����������%

��2%@����������������% ���%��

����

K�

K�

�������������

���������������

�����������%

K�

�&%J�������

&�

A%�������B

K���

��2%@��%� ����

��2%@

K�

�� ���

K�K�

���� ����

��� ��� �&%J�������

������'��� I�������'��� �

�������������%

��%��

����

L���'���

I

��������L���

&��

I���

K�

���5����������

���5���55/�'��������

����� ���'

I��

������

�I

%���

%�L���!%�

���������

��L���

���

����

��� ��

%���

��

�� ��

�����������

�����������%

���

K�

��

����

��

��

���������

K�

��

����������#

�����

K

�%J�������

L���'��

���� %���

�%J�����&

������&

L���'���� � "

��� ����

��

��� ����

��2%@��%� ���

��2%@��%� ���

K�

����2%@�������������'

�� ����������

�������������%

�� ��

��������������%

�����!�%���������

������$

��%���������

���

����

�� �

��

���&��

�%���!���� �� ����%K�

������$

����'�"�����%������

��L

������'��� I�������'��� �

"

��

�"��"�� E

�"��&

K�

K�

��K�

K�

K�

��

K�

L���'��

L���'��

K�

������$�����

%��%��������������

������$���������������3�-

����

������$�����

������

�� �

�� �

���&I��

��

�L�� ������

�L�� �������

�����E

L���'�������E

��

��

��

��

�L����&������

����� "

�L�� "

�����&�'

���������

�������

������� �� ���%

��� ������

��$

��$�

��$�

���

��$�

��$�

��$�

��$�

��$�

L���'��� � "

�L� �E

����%

���5�5�5������� ���������

���� ��

K�

�������

����&�

��D��������

� ��L��'��� ��

�����

��

K�

��

���5�5���������

K�L���'�������E

���

���'�����

��� �

������$��������L���'�������G����� �#������!

����� "

�L�� "

�����&

�%J���&

�����&

�%J���&

�����&

�%J���&

��� %���

L���' �� �

K�

K�

K

��I������

�L� �� �#�������"��%��

�������������%

�L� ��

�� ��

K������L���� �����L����

���

��

����� �����'

���

����L����

�� ��

��

�� ��

� ��

�������

L���'��� "

����

��� �������

Page 193: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 194: Amx4 Series Diagnostics

++++++

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

5 ���������������

��

����L���' ��%�����M

� �%���"����#�����M

�������� �#

L���' ���%��������N

�����O��������

���&���������L��������� ��L� ���

���������������

����� �� �����������"�����

��������L� �� "��%����������"�����

L���' ����%�����

'�

���5�5���������

%���"��

L���' ��%�����

� ������ "��� ��M

� �������&��M

'�

'�

���5�5���������

�������&��

� ������<��� �

����� �#�����

����L�� �#

����� "���� ���!

�%��&�������& N

�����'������� �

��&�� ����%�����"�

���������&��A����������L���'����B

�%��& ��

������������ �� ����� �����&N��L���'���� � "�� �%J�����&��������&����2%@�������������'������ %�����L���'��

�����'�%����%����L��������'��� ���� ������

�����'����&������� ��

�������'�� �����

��� ����E

%�����"���� ����� N

�%J���������'E

��%@���

� ����������'�� ���

���%��

����%�����"���� ����� N

��2%@���

����&�������������� ����������� 2�0�����

�������&�������������� �������������������� �

�����������������

������ �2�0�����

�� ����N

�����������������

������������� �

�����������%��%������N

� ��� ���'�������

�����%�����L���

� �����2%@���

����'���

�����L�����&�������

�������J���� ���� ������

���5�5���������

����'����L���'

� ��������<��� �

�L�� �#�����

�L�

�L� �� "���� ��

� ����L�� �������

�L� ��������� $

�� ����&�������

L���'��$

������ ������=�����G

�����=������� �������

���� �%������� �� ����&������������

L���'���&��& ����%����"�������� N

�������� ���� ������

��� � �����

���% �L���'�������

����A ��������G����������3�-�����B

�����=�������� �'�%��& �������&

"%����� ���� ������F������ �3�-�����G�����=��� �� ��L�� �����$

�L� ���� � $

��������&%J�!��&%J�������

�������������������� �� ��������������

����������!�%����L��������'���

"����������� �������� "��%

ILLUSTRATION 15–2X–RAY ENABLE PREPARATIONAND EXPOSE SEQUENCE

Page 195: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

++++++

�0/

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 196: Amx4 Series Diagnostics

++++++

ILLUSTRATION 15–3HIGH VOLTAGE GENERATION

���������������������� ��� ������ ������������������� �

������ ��������� �������

�04

���5���5���4��

��%��

����

L���'���

%����������

I

��

��

���5����������

L�����

���5���55/�'��������

L������&

��

&����������

������&�E

��2%@�%� ���

��2%@�%� ���

��� L���'��

���

&�������I��

���5����4��;��� ������

������'�� �

������'�� I

L���%�

��

��

��

��

���5���5 ���������

��

��

��

��

&�������������%

����

��2%@����������������%

��

�����������%

����

�� ���

��

�� ������ �� ����%��

��

��

��

&��

&���"�

��

2�0I���

���5�5���������

K� K

K�

K�K�

K

������$�����

����������3�-����

������$�����

L���'�����������

������$�����

����'�"������%������

�K�

K

�������

L���

������������

���������� �

���������

��

��

�������������%

��

��

��

��

��

��

��

������E

����E

����E

����E

����E

��� E

��

��

��

��

��

��

��

����������&

��������&

��������&

��������&

��������&

��� ����&

&

�������

�� �

�� �

�&�����

��������L

�����������%

������������%

&��������&�I��

����&�P��&�����������

�����

&�����&�I��

� �

&�����&�I��

L�����2%@

���

&�����

&�����

&�����

&�����

& ����

����!���� �� � ��%

&�

&�

&�

&�

&�

��

��

������$�����

����'�"������%������

���������������

���

I��

�� ��

&������ ���'

������$�����

������

������$�����

L���'�����������

���

I��

���

��

�� �

��������%�������

A ���%�����F�����B �����

��������%����

���������

�����

I

��� ���%���

�� ���%���

���'������

�����

��� ���%���

�� ���%���

���'������

������'��� �

������'��� I

��

K�

K�

K�

K�K�

�����=������ ������� �2�0���������� � ���L������ �!�&�����������������������'

�������� �

����� "

�L�� "

���������

�������

������� �� ���%

��$�

��$�

������$�����

L���'�����������

����&�

��D��������

��N�

Page 197: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 198: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

���5���5���4��

��%��

����

��I

���

L���'���

%���������� I

��I

���

��

��

���5����������

L�����

L������&

��

���5���55/�'��������

L������&

��

&����������

��I

���

&�����&�I��

���

���

���&�������I��

���&������

���&�I��

��

�����&�E

���

��������I��

���

��2%@

���

�%� ���

��2%@�%� ���

����������

���

��� %���

�������&�I��

����������

���

&�������I��

����

���������

� �2%@���&

���%��

P�����

���5����4��;��� ������

���

��

������'�� I

������'�� �

L���%�

�����

��

����������#

�����

���5����������

�%&�

��

��

��

��

��

��

��

������������ �#�����G������=�� � �������� N

���5���5 ���������

��

��

��

��������������%

&�������������%

���&�����������%

L �

L �

����

��2%@���

�������������%

���%��

��

��

��

��

�����������%

����

��

��������L

��L

�����������%

��������������%

���

� �

��

��

��

������ �� ����%

��

��

��

��

��

��

��

��

&��

&���"�

��

�"�

��

2�0

3�-I���

���5�5���������

K� K

K� K�

K�

K�

K�

K�

K

K�

������$�����

%��%��������������

������$�����

L���'�����������

������$�����

����'�"������%������

������F�� 2%@������

K�

K

�"��� �"���

�"������

�"������

�"������

�"������

K�

��

�������

L���

L��

���

�"��

�"�

�����

�������

��

������������%

������������

���������� �

���������

�� � ��������������������� ����N���E������� �2�0� ���������E�����'���������E�������������� ����������� ������

�� � �&��������������������#�����������������%������� �2�0� ���������A%� ��������� �2�0����L��������� ������Q ������$�����G�%��%����������B

�� � �������&������������������ ��������%����&����&���Q%��"� �������������"���������������%��%���%�������������'�� $������������� ����N���E������� �2�0� ���������E����������� �

������L� ���G������=����� ��� ���� � $"%������ ������F������� �������3�-G�L� ����������� $�A ������$�����G�L���'

������L� ���G������=������� ������������� �

�����������$B

�������� �

����� "

�L�� "

������$�����

L���'�����������

���������

�������

��� ������

������� �� ���%

��$�

��$�

�������������'����������� �

��������L� �� �#�����G������=������� ����������N

������ ��������&������ ����&�����������&������ �&����������&�A ������$�����G�%�����B

��������L� ���G�����&����������������� ���������������&�����&�F�&�����

%�����

��

�� �

����3 ����'

L���'�

ILLUSTRATION 15–4FILAMENT AND MAS CONTROL

��N�

Page 199: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 200: Amx4 Series Diagnostics

++++++

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0

������

������

������

������

���������

���5������� ������H������� �����������

L��������

�%J�%� ���

�%J�%� ���

���������

�������

���5���5 ���������

����

��%@���

��

��

�����������%

����

�����

K������

��

� ����E

����'E

�������

�� �

������$�����

����'�"������%������

���������������

���

&���

������$�����

%��%��������������

������$�����

L���'�����������

K�

"%������������ � ������ "��%G������=�

�%J����

��

��

��

"��%�� ���

��

K�

��

��

��

K�

���%� ���

���%� ���

��������

��

K�

��

��

�������

�� ����

&��

����������

K�

K�

K�

�%� � %����

�%� � %�������

�%� � %����

A���

������

���

�B

K�

A"%B

A���B

A��&B

�������������%

�������������%

�������� �

�����&

�%J����&

�������%����

�������%�������

��

K������ "

������$�����

L���'�����������

�����

������� �� ���%

��$�

������ � �%J���������!���� ���������' QL���'����������������� $

���5��������� ������

���5���5������� �����

&���I�

&�' "��%

������� �

I��

���������

��

ILLUSTRATION 15–5ROTOR CONTROL

����

��������������

���

������������

K K ��

Page 201: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 202: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

ILLUSTRATION 15–6LEFT DRIVE SIGNAL FLOW

�0#

���5�7����������

&� ��

���5�7���������������

���

I��

K�

�����I

��

������

���"��

����I

K�

����"�E

��������

��

���"��

���"��

���"��

������

&���

��

������$

����'�"�����%������

K�

K�

���5�7�5����� ������

�����

���&�

I������

�����

�����

�����

�����

�������H�

I�� "��%��

���

���

���

�������

K�

���������� �"��%

�����

������

�����

��

���

�������

������

�������"

��"

���

������E

������$

����'�"�����%������

��

������

�������

��

�������

���

����� �

���

���� "

��"E

��"E

�"E

�"E

���������

�������

���5���5 ���������

��� �������������%

K�

�����

�����������%

������������%

�����=������ ��%���!����� �� ���N

��������������� "��� ���A��������'

��� ���

���

������� �

����� �E

���� ������

�����

��������� "

������������I��

����������&�I��

���

��

��

��

��

�%��!

��� �� ����%

���

���

���

%�������� �� �

������

��������L

��I

���

���

��������L

��

��

��

��

�����

�"�

�K��

K��

��

��

��

��

��

&

��

��

��

������$

����'�"�����%������

����

�� �

I��

%������������

K�

K�

%���������

�������� �

K�

�������H��

������4��������

������

���%������

���5������� �

������

K�

��������� "

I���

���

�������&� �����

��L�������&�

�������L�������

���

��&

����

�������� " K�

��� �

���&�� "

������&�� "

���%�����BG���������� �%���������� �� �G������ ��������������������� ������������

������������&��� "��� ��G������� �� �������� ������$

�����%����������� � �� ���A�%������'���BG����������%��� ���%����������

�������������� "��%���� G���������" �������� ��������'

����� ����� �������G������ � �����������$

���&������ ����

���&������� �

%�����

�����"%���

������

������&�� "

K�

K��

K�

K��

���&������� �

���&������� ���

I��

��

� ���

�%��!

�����������%

����������%� � ��%���G������� "��%���� �!������E�F�����A��B

�� ���F����&���$$�F������&��

���

������$�����

��%���������A���%B

���%�������� "

�N

�%� "��%�

��!� �N

�� ��� ������"���G������ ����������$A������ �����������R��������� � "��%$SB

�������������&��� "����G����������� �������� ������G���������������� ������'���D$

�������� ���������������'����%���������� � � ��������$

������'

I������� ����'

���

K��

���&������� �

����

����

����

Page 203: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0*

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 204: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

���5�7����������

&� ��

���5�7���������������

���

I��

K�

���%��I

��

���%���

���"��

���%�I

K�

���%�"�E

��������

��

���"��

���"��

���"��

��

��

��

��

��

������

&���

��

������$

����'�"�����%������

K�

���5�7�5����� ������

�����

���&�

I������

���%��

���%��

���%��

���%��

�������H�

I�� "��%��

���

���%

���%

�������

K�

���������� �"��%

�����

������

�����

��

���

�������

�"

��"

���

������E

����'�"�����%������

��

���%���

�������

��

�������

���

����� �

���

���� "

��"E

��"E

�"E

�"E

���������

�������

���5���5 ���������

�� �������������%

K�

�����

�����������%

������������%

�����=������ ��%���!����� �� ���N

��������������� "��� ���A��������'

���% ���

���

������� �

����� �E

���� ������

�����

��������� "

���%���������I��

���%�������&�I��

���

��

��

��

�%��!

��� �� ����%

���

���

���%

%�������� �� �

������

��������L

��I

���

���

��������L

��

��

��

��

�����

I������� ����'

�"�

�K��

K��

��

��

��

��

��

&

��

��

��

��

��

��

��

��

������$

����'�"�����%������

����

�� �

I��

%������������

K�

K�

%���������

�������� �

K�

�������H��

������4��������

������

���%������

���5������� �

������

K�

��������� "

I���

���

���%����&� �����

��L�������&�

���%����L�������

���

��&

����

�������� " K�

��� �

���&�� "

������&�� "

���%�����BG���������� �%���������� �� �G������ �������������������� ������������

������������&��� "��� ��G������� �� �������� ������$

�����%����������� � �� ���A�%������'���BG����������%��� ���%����������

�������������� "��%���� G���������" �������� ��������'

����� ����� �������G������ � �����������$

���&������ ����

���&������� �

K�

K��

K�

K��

���&������� �

I��

��

� ���

�%��!

�����������%

����������%� � ��%���G������� "��%���� �!������E�F�����A��B

�� ���F����&���$$�F������&��

���

������$����

��%���������A���B

���%�������� "

�N

�%� "��%�

��!� �N

�� ��� ������"���G������ ����������$A������ �����������R��������� � "��%$SB

�������������&��� "����G����������� �������� ������G���������������� ������'���D$

�������� ���������������'����%���������� � � ��������$

K

%�����

�����"%���

������

������&�� "

���&������� ���

K��

���&������� �

������'���

������

������

����

������$����

����

ILLUSTRATION 15–7RIGHT DRIVE SIGNAL FLOW

Page 205: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0/

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 206: Amx4 Series Diagnostics

++++++

���������������������� ��� ������ ������������������� �

������ ��������� �������

ILLUSTRATION 15–8LEFT & RIGHT DRIVE FUNCTIONAL FLOW

�04

AMX IV DRIVE CIRCUITRY

REV B���

���

I���

VOLTAGE TO PULSE WIDTHCONVERTER

����

CLOCK10.9KHZ

���������'

TO HIGH SIDEFET A

TO LOW SIDEFET B

TO LOW SIDEFET A

TO HIGH SIDEFET B

HIGHA

HIGHB

LOWB

LOWA

���

���

FALLING EDGE DELAYPREVENTS HIGH AND LOWSIDE FETS FROM BEING ONAT THE SAME TIME AND DE-

STROYING THEMSELVES

OUTPUT OF CONTROLLER

BOARD

THESE OUTPUTS ARE INVERTEDBY THE FET DRIVERS, THUS ALOW WILL TURN ON THE FET.

��L

����'

I

�� ��

HALLEFFECTSENSOR

������&

���

I�������

���

TP22(21)

%�������%��&�3

��3

���

L�

SAMPLHOLD

���SOFTWARECONTROL

���

����A��B

��������

GOES HIGH (STALL)IF TP1 GETS MORE

NEGATIVE THAN–8 VOLTS (10A)

��$��

TP16(19)

NORMALLY 0 VOLTS.WILL START TO RISEIF TP1 GETS MORENEGATIVE THAN –5

VOLTS (6.25A)TP3(6)

TP17(18)

GOES HIGH(STALL)

IF TP3 GETSGREATER

THAN+10 VOLTS

INTEGRATOR

�������

�������

I���

I���

TP1(2) TP4

(9)

I

I

�������

I

I

I

DS285(289)

IF STALL ISHIGH, LED

WILL BE ONAND ERRORWILL OCCUR

����A$��L���B

DRV FBK SHOULDBE

5 VOLTS WHENTHE UNIT IS NOT

MOVING. ITSHOULD MOVEBELOW 5 VOLTS

IN ONE DI-RECTION AND

ABOVE 5 VOLTSIN THE OTHER.

PIN 25(26)

$��%�

$��%�

–8 VOLTS/AMP

FEEDBACK

WHEN THE ENABLE BAR IS EN-GAGED, THIS SIGNAL FORCES THE

HALL EFFECTSIGNAL INTO THE MUX TO BE 0VOLTS FOR A SHORT TIME. THE

SOFTWARE CHECKS TO SEE THATTHIS OCCURS (SAFETY FEATURE)

���%

������ �

����

��

TP15(20)

TP5(10)

NOTE: RIGHT AND LEFT DRIVE CIRCUITS ARE THE SAME. NUMBER IN PARENTHESIS IS FOR RIGHT DRIVE CIRCUIT

TP7(8)

� ���

����� ������

SHOULD BE 8.7 VOLTSWHEN FULL SPD ENA IS HIGHAND 4.2 VOLTS WHEN FULL

SPD ENA IS LO. HAS CAPACI-TOR DELAY. CLAMPS VOTAGEINTO PULSE WIDTH CONVERT-

ER

������ �

���

����� ������

I���

�������&��� " ���&� "��%N��� ���"%�������� ����&��

���

��&

"%

SMALL BLACKCONNECTOR OUTOF HANDLE ENDS �������

�� ����

�� ��

������A�B

�� ��A�B&�A�B

&�A�B

��A�B

ENABLE BAR SWITCH: CLOSED WHEN DRIVE ISENABLED

���������� "�������

I������

MUST HAVE+5V–DRV

TO ENABLEHIGH SIDE

FETS

FETSWITCH

SHORTS TOGND

WHEN DRIVEIS NOT EN-

ABLED

������

���

���

PWR OK

I������

���������������������

SQUARE WAVEONLY WHEN ENABLE

BAR IS ENGAGEDOTHERWISE CONSTANT

10V

I���

K1(2)DRIVE CON-

TACTOR

CHARGEPANEL

DRIVE POWERAMP

����� ���������

��

DATABASE

������������

BUMPER SWITCHES:CLOSE WHEN OBJECT

IS HIT

&������&�

&���

+ BATTSWITCHE

D

DIFF

AMP

LEVELSHIFT-

ER

(FROM BATTCHARGEBOARD)

SELECT-ABLEAMP

SELECT-ABLEAMP

DIFF

AMP

X 10

X 6.25

MUXU342

HALL OUTPUT WILLRANGE FROM ABOUT 3

TO 7 VOLTS. THIS ISTRANSLATED INTO A –10TO +10 VOLT COMMAND

BY THE SOFTWARE

�'���������&���� � �

�� � ���

����'��� ���

PULSE WILLCLEARLATCH

���

���������� "

+ BATTSWITCHE

D

����

���������'

���������'

���������'

Page 207: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 208: Amx4 Series Diagnostics

++++++

���������������������� ��� ������ ������������������� �

������ ��������� �������

ILLUSTRATION 15–9BATTERY POWER AND CHARGING, WITH CHARGER BOARD 46–288034 OR 46–288786

�0

���������������

��

I

&�' "��%

���

��

��

���5���5������� �����

��� ���

�� ��

��

�K��

��&

"%

���

����������

������� ��%@

���

��

�%&�

���5���5 ���������

���

������

�������

������� &���K�

���%����I

���%�����

���%������&�

���%������&I

��

���������

����4��<

������

�����!�%������

���

�����������

%��%��������������

�����&�E

����P�����

���5����4��;��� ������

�����������

����������3�-����

����&�P��&�����������

K

K�����&�����E

���

K�

���������

�%���������������%

���%��������

���%������

���

�����98�

���������

��

&�������&��

�%� �����

�������

������

�%���������'E

�����!�%�������� ��

��

��

�%���� ���� ����

���5������� ������H������� �����������

K�����&������E

�"� ����

��

&�' "��%

���5������� �

K� K�

� � �

&�' "��%�

��

��&�

���

���� �� �

��� "

�"��&

&�� I���

��

��

��

�������

& �

&���E

&��� &�� &������

�%���!���� �� ����%

��������������%

��L

�%�����!

�������������%

�������� �� ����%

���������

�������

��� ������ ����

����L

I���

�����

�"�����

����'

K�

K�

K��

�����������

�����=��� �� ����%����

�����������

������

������$�����������

��%���������

������$�����

%��%��������������

I��

I��

I��

���&������ ����

�������

����� ���'

������$�����

L���'

����������

���5�������������

�8�/�'3;��7GK5�9�3����

�8�/�'3;��7GK987��� ��:���K��

������������?����@

�����������

I��

�����!��%����������'E"%�������� �� �� I���

I���

����

I��

����&��

�������������&�

������&�

�"����������&�

������&�����%

��L�

I���

����

I�� "��%��

I�� "��%��

��� ��� ���

�"��&

���

���

��

I��

����&��

���

E

��L����&�

������ ���������

� �

K�

I

AI��� "��%��B

I��

I��

I��

I��

���

���

���

���

�"��&

�%������'���

��������=��� �� �������&�����%������������������&� ���"�%���I�����D��

�� �%������'���

��������=��� �� �������&���������� ��� �%�������$

��!� ��������&������� � "��%� �������������%����� $

������ $�������!������������������%�����!�� �%������'����������������

�L�����������

��"��&

145 VDCREGULATOR

���

���

����A��"����� B

&���EE

*K150 FOR CHARGER BOARD46–288034**K149 FOR CHARGER BOARD46–288786

Page 209: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0��

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 210: Amx4 Series Diagnostics

++++++

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�

ILLUSTRATION 15–10BATTERY POWER CHARGE CYCLE WITH CHARGER BOARD 46–288034 OR 46–288786

���������������

��

I

&�' "��%

���

��

��

���5���5������� �����

��� ���

�� ��

��K��

��&

"%

���

����������

������� ��%@

���

��

�%&�

���5���5 ���������

��

������

�������

������� &���K�

���%����I

���%�����

���%������&�

���%������&I

���������

����4��<

������

�����!�%������

���

�����������

%��%��������������

�����&�E

����P�����

���5����4��;��� ������

�����������

����������3�-����

����&�P��&�����������

K

K�����&�����E

���

K�

���������

�%����

����%

���%��������

���%������

���

�����98�

���������

��

&�������&��

������

�%���������'E

�����!�%�������� ��

��

��

�%���� ���� ����

���5������� ������H������� �����������

K�����&������E

�"� ����

&�' "��%

���5������� �

K� K�

� � �

&�' "��%�

��

��&�

���

���� �� �

��� "

�"��&

&�� I���

��

& �

&��� &�� &������

�%���!���� �� ����%

��������������%

�%�����!

�������������%

�������� �� ����%

���������

�������

��� ������ ����

����L

I���

�����

�"�����

����'

K�

K�

K��

�����������

�����=��� �� ����%����

�����������

������

������$�����������

��%���������

������$�����

%��%��������������

I��

I��

I��

���&������ ����

�������

����� ���'

������$�����

L���'

����������

���5�������������

�8�/�'3;��7GK5�9�3����

�8�/�'3;��7GK987��� ��:���K��

������������?����@

�����������

I��

�����!��%����������'E"%�������� �� �� I���

I���

����

I��

����&��

�������������&�

������&�

�"����������&�

������&�����%

��L�

I���

����

I�� "��%��

I�� "��%��

��� ��� ���

�"��&

���

���

��

I��

����&��

���

E

��L����&�

������ ���������

� �

K�

I

AI��� "��%��B

I��

I��

I��

I��

���

���

���

���

�"��&

�%������'���

��������=��� �� �������&�����%������������������&� ���"�%���I�����D��

�� �%������'���

��������=��� �� �������&���������� ��� �%�������$

��!� ��������&������� � "��%� �������������%����� $

�L�����������

��"��&

���

���

����A��"����� B

CHARGE CYCLENOTE: CROSS–HATCHED PATH ( ) REPRESENTS CIRCUITRY TO SUPPLY THE LOW VOLTAGE LIMITED

ENERGY POWER SUPPLY FROM THE LINE INSTEAD OF FROM THE BATTERIES DURING THE CHARG-ING CYCLE.

�������

� � ��

�%� �����

� ��������

��L � �

� �

�� ��

��

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ�

ÍÍÍÍÍÍÍÍÍÍ

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

�������

145 VDCREGULATOR

ÍÍÍ

ÍÍÍ

ÍÍÍÍÍÍÍÍÍÍÍÍ

*K150 FOR CHARGER BOARD46–288034**K149 FOR CHARGER BOARD46–288786

&���E&���EE

Page 211: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0��

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 212: Amx4 Series Diagnostics

++++++

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�#

ILLUSTRATION 15–11BATTERY POWER DISCHARGE CYCLE WITH CHARGER BOARD 46–288034 OR 46–288786

���������������

��

I

&�' "��%

���

��

��

���5���5������� �����

��� ���

�� ��

��K��

��&

"%

���

����������

������� ��%@

���

��

�%&�

���5���5 ���������

��

������

�������

������� &���K�

���%����I

���%�����

���%������&�

���%������&I

���������

����4��<

������

�����!�%������

���

�����������

%��%��������������

�����&�E

����P�����

���5����4��;��� ������

�����������

����������3�-����

����&�P��&�����������

K

K�����&�����E

���

K�

���������

�%����

����%

���%��������

���%������

���

�����98�

���������

��

&�������&��

������

�%���������'E

�����!�%�������� ��

��

��

�%���� ���� ����

���5������� ������H������� �����������

K�����&������E

�"� ����

&�' "��%

���5������� �

K� K�

&�' "��%�

��&�

���

���� �� �

��� "

�"��&

&�� I���

& �

&��� &�� &������

�%���!���� �� ����%

��������������%

�%�����!

�������������%

�������� �� ����%

���������

�������

��� ������ ����

����L

I���

�����

�"�����

����'

K�

K�

K��

�����������

�����=��� �� ����%����

�����������

������

������$�����������

��%���������

������$�����

%��%��������������

I��

I��

I��

���&������ ����

�������

����� ���'

������$�����

L���'

����������

���5�������������

�8�/�'3;��7GK5�9�3����

�8�/�'3;��7GK987��� ��:���K��

������������?����@

�����������

I��

�����!��%����������'E"%�������� �� �� I���

I���

����

I��

����&��

�������������&�

������&�

�"����������&�

������&�����%

��L�

I���

����

I�� "��%��

I�� "��%��

��� ��� ���

�"��&

���

���

��

I��

����&��

���

E

��L����&�

������ ���������

� �

K�

I

AI��� "��%��B

I��

I��

I��

I��

���

���

���

���

�"��&

�%������'���

��������=��� �� �������&�����%������������������&� ���"�%���I�����D��

�� �%������'���

��������=��� �� �������&���������� ��� �%�������$

��!� ��������&������� � "��%� �������������%����� $

�L�����������

�"��&

���

���

����A��"����� B

� � ��

�%� �����

� ��������

��L � �

� �

�� ��

��

�������

145 VDCREGULATOR

DISCHARGE CYCLE (NORMAL SYSTEM OPERATION)TURNING KEY SWITCH ON APPLIES BATTERY VOLTAGE TO LOAD!

�������

����

� � �

*K150 FOR CHARGER BOARD46–288034**K149 FOR CHARGER BOARD46–288786

&���E&���EE

Page 213: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

�0�*

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 214: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

+0

APPENDIXDECIMAL, HEXADECIMAL AND BINARY EQUIVALENTS

IntroductionG�3&����������"�������3�����&�����������"���������������������F3��������&"��3�����������������������B������3������"���,3������������,����"����C��������,����3�D�&����������3������������&������������&"�������6"������&���"���&��"�����������3���/������*"�����������"��������&"����3���3�C������3����3�����3������

E"��3�����������������3&������������,���,�3�������,�����������J�������,�����������"������������&���������������;�������,���"�����������������������������������;�������,���"�����������������������������3����������"���������F3��������,�"�����������3����;�������,������������"������������&��������3����������"���������F3��������,�"�����������3�����

Binary to HexadecimalE��B&��",�3������������,�����3����"�����������������&��"�"�����������,����������&"������������,�����������"�������������������"�����������,�����,�3������,��3����"����&������"���������"�3�������"��E������&��"�"�����������3����,����"����3���������������3�.������������"����������,�����,�3������,��3����"����&������"���������"���&�����"��E������&��"�"�����������3����,����"����3�������� �������3�.������"���,��,�"��3����,���"�,����,�3������(������"���������,��3�����������������������"����&���3�����"�6"�����3�.��������3��"��3�.������3����6"�"�����������F3����������"��3������3"���&�������

Hexadecimal to BinaryE��B&��"����3��������������������&��"�"�����������,�����������&"���������C���,���"���������������������������"�����������,�������������"����3����C������������3�.������"���������"�3�������"��E������&��"��������3����,����"�,�����"����������"�������������"����3��������� �������3�.������"��"���������"���&�����"��6��"���,��,�"�,�����3�����3�����&�����"��������3����,����"����"����3���(������"�������������������������"�����,�3��"�����3�����"�6"�����3�.��������3��"��3�.������3�����,�����3�������6"��������F3����������"��3������3"���&�������

Hexadecimal to DecimalE��B&��"����3��������������������&��"�"�����������,�����������&"���������C���,���"����������������������������"�����������,�������������"����3����������������3�.������"���������"�3�������"��E������&��"���������3����,����"����3�����"���,�����������"�������������"����3��������� �������3�.������"��"���������"���&�����"��>��������",�����3�����3�����&�����"���������3����,����"���,����3���(������"�������������������������"�����,�3��"�����3�����"�6"�����3�.��������3��"��3�.������3�����,�����3�������6"���������F3����������"��3��3������3"���&�������

Decimal to Hexadecimal6"���������&��B�,���3�����3���/��#�����������3��3�������"����3����������-!����"����������"����"��E������&��"����������������3����������H�"�����������F3���������"����3����3������,�����3��3�����'��,����"��3�C���������������3���&�3������������"��������3������3������@������3������C�����3����,����"����3����������������3�.����6"�"�����������F3����������"��3��,�"�"�����������3�������3"���&�������

LEAST SIGNIFICANT FOUR BITS

Third Four Bits First Four BitsDEC HEX DEC HEX msb–7 6 54 3 2 1 lsb–0

0000H 0 0H 0 0. . . . . . . . . . . . . . . . . 0 0256100H 1 1H 0 0. . . . . . . . . . . . . . . . . 0 1512200H 2 2H 0 0. . . . . . . . . . . . . . . . . 1 0768300H 3 3H 0 0. . . . . . . . . . . . . . . . . 1 11024400H 4 4H 0 1. . . . . . . . . . . . . . . . . 0 01280500H 5 5H 0 1. . . . . . . . . . . . . . . . . 0 11536600H 6 6H 0 1. . . . . . . . . . . . . . . . . 1 01792700H 7 7H 0 1. . . . . . . . . . . . . . . . . 1 12048800H 8 8H 1 0. . . . . . . . . . . . . . . . . 0 02304900H 9 9H 1 0. . . . . . . . . . . . . . . . . 0 12560A00H 10 AH 1 0. . . . . . . . . . . . . . . . . 1 02816B00H 11 BH 1 0. . . . . . . . . . . . . . . . . 1 13072C00H 12 CH 1 1. . . . . . . . . . . . . . . . . 0 03328D00H 13 DH 1 1. . . . . . . . . . . . . . . . . 0 13584E00H 14 EH 1 1. . . . . . . . . . . . . . . . . 1 03840F00H 15 FH 1 1. . . . . . . . . . . . . . . . . 1 1

MOST SIGNIFICANT FOUR BITS

Fourth Four Bits Second Four BitsDEC HEX DEC HEX msb–7 6 54 3 2 1 lsb–0

Page 215: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

+0�

00000H 0 00H 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40961000H 16 10H 0 0 01 . . . . . . . . . . . . . . . . . . . . . . . 81922000H 32 20H 0 0 10 . . . . . . . . . . . . . . . . . . . . . . . 122883000H 48 30H 0 0 11 . . . . . . . . . . . . . . . . . . . . . . . 163844000H 64 40H 0 1 00 . . . . . . . . . . . . . . . . . . . . . . . 204805000H 80 50H 0 1 01 . . . . . . . . . . . . . . . . . . . . . . . 245766000H 96 60H 0 1 10 . . . . . . . . . . . . . . . . . . . . . . . 286727000H 112 70H 0 1 11 . . . . . . . . . . . . . . . . . . . . . . .

327688000H 128 80H 1 0 00 . . . . . . . . . . . . . . . . . . . . . . . 368649000H 144 90H 1 0 01 . . . . . . . . . . . . . . . . . . . . . . . 40960A000H 160 A0H 1 0 10 . . . . . . . . . . . . . . . . . . . . . . . 45056B000H 176 B0H 1 0 11 . . . . . . . . . . . . . . . . . . . . . . . 49152C000H 192 C0H 1 1 00 . . . . . . . . . . . . . . . . . . . . . . . 53248D000H 208 D0H 1 1 01 . . . . . . . . . . . . . . . . . . . . . . . 57344E000H 224 E0H 1 1 10 . . . . . . . . . . . . . . . . . . . . . . . 61440F000H 240 F0H 1 1 11 . . . . . . . . . . . . . . . . . . . . . . .

Page 216: Amx4 Series Diagnostics

���������������������� ��� ������ ������������������� �

������ ��������� �������

+0#

THIS PAGE INTENTIONALLY LEFT BLANK.