an in nitely large napkin - wordpress.com...2019/02/20  · the in nitely large napkin is a light...

892
An Infinitely Large Napkin http://web.evanchen.cc/napkin.html Evan Chen Version: v1.5.20190220

Upload: others

Post on 23-Feb-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

  • An Infinitely Large Napkinhttp://web.evanchen.cc/napkin.html

    Evan Chen

    Version: v1.5.20190220

    http://web.evanchen.cc/napkin.html

  • When introduced to a new idea, always ask why you should care.

    Do not expect an answer right away, but demand one eventually.

    — Ravi Vakil [Va17]

    If you like this book and want to support me,please consider buying me a coffee!

    http://ko-fi.com/evanchen/

    For Brian and Lisa, who finally got me to write it.

    © 2019 Evan Chen. All rights reserved. Personal use only.This is (still!) an incomplete draft. Please send corrections, comments, pictures of kittens, etc.

    to [email protected].

    Last updated February 20, 2019.

    http://ko-fi.com/evanchenhttp://ko-fi.com/evanchen/mailto:[email protected]

  • Preface

    The origin of the name “Napkin” comes from the following quote of mine.

    I’ll be eating a quick lunch with some friends of mine who are still in high school.They’ll ask me what I’ve been up to the last few weeks, and I’ll tell them that I’ve beenlearning category theory. They’ll ask me what category theory is about. I tell themit’s about abstracting things by looking at just the structure-preserving morphismsbetween them, rather than the objects themselves. I’ll try to give them the standardexample Grp, but then I’ll realize that they don’t know what a homomorphism is.So then I’ll start trying to explain what a homomorphism is, but then I’ll rememberthat they haven’t learned what a group is. So then I’ll start trying to explain what agroup is, but by the time I finish writing the group axioms on my napkin, they’vealready forgotten why I was talking about groups in the first place. And then it’s1PM, people need to go places, and I can’t help but think:

    “Man, if I had forty hours instead of forty minutes, I bet I could actually have explainedthis all”.

    This book was initially my attempt at those forty hours, but has grown considerablysince then.

    About this book

    The Infinitely Large Napkin is a light but mostly self-contained introduction to a largeamount of higher math.

    I should say at once that this book is not intended as a replacement for dedicatedbooks or courses; the amount of depth is not comparable. On the flip side, the benefit ofthis “light” approach is that it becomes accessible to a larger audience, since the goal ismerely to give the reader a feeling for any particular topic rather than to emulate a fullsemester of lectures.

    I initially wrote this book with talented high-school students in mind, particularlythose with math-olympiad type backgrounds. Some remnants of that cultural bias canstill be felt throughout the book, particularly in assorted challenge problems which aretaken from mathematical competitions. However, in general I think this would be agood reference for anyone with some amount of mathematical maturity and curiosity.Examples include but certainly not limited to: math undergraduate majors, physics/CSmajors, math PhD students who want to hear a little bit about fields other than theirown, high school students who like math but not math contests, and unusually intelligentkittens fluent in English.

    Philosophy behind the Napkin approach

    As far as I can tell, higher math for high-school students comes in two flavors:

    • Someone tells you about the hairy ball theorem in the form “you can’t comb thehair on a spherical cat” then doesn’t tell you anything about why it should be true,what it means to actually “comb the hair”, or any of the underlying theory, leavingyou with just some vague notion in your head.

    • You take a class and prove every result in full detail, and at some point you stopcaring about what the professor is saying.

    v

  • vi Napkin, by Evan Chen (v1.5.20190220)

    Presumably you already know how unsatisfying the first approach is. So the secondapproach seems to be the default, but I really think there should be some sort of middleground here.

    Unlike university, it is not the purpose of this book to train you to solve exercises orwrite proofs1, or prepare you for research in the field. Instead I just want to show yousome interesting math. The things that are presented should be memorable and worthcaring about. For that reason, proofs that would be included for completeness in anyordinary textbook are often omitted here, unless there is some idea in the proof whichI think is worth seeing. In particular, I place a strong emphasis over explaining why atheorem should be true rather than writing down its proof. This is a recurrent theme ofthis book:

    Natural explanations supersede proofs.

    My hope is that after reading any particular chapter in Napkin, one might get thefollowing out of it:

    • Knowing what the precise definitions are of the main characters,

    • Being acquainted with the few really major examples,

    • Knowing the precise statements of famous theorems, and having a sense of whythey should be true.

    Understanding “why” something is true can have many forms. This is sometimesaccomplished with a complete rigorous proof; in other cases, it is given by the idea of theproof; in still other cases, it is just a few key examples with extensive cheerleading.

    Obviously this is nowhere near enough if you want to e.g. do research in a field; but ifyou are just a curious outsider, I hope that it’s more satisfying than the elevator pitch orWikipedia articles. Even if you do want to learn a topic with serious depth, I hope thatit can be a good zoomed-out overview before you really dive in, because in many sensesthe choice of material is “what I wish someone had told me before I started”.

    More pedagogical comments and references

    The preface would become too long if I talked about some of my pedagogical decisionschapter by chapter, so Appendix A contains those comments instead.

    In particular, I often name specific references, and then end of that appendix has morereferences. So this is a good place to look if you want further reading.

    Historical and personal notes

    I began writing this book in December of 2014, after having finished my first semester ofundergraduate at Harvard. It became my main focus for about 18 months after that,as I became immersed in higher math. I essentially took only math classes, (gleefullyignoring all my other graduation requirements) and merged as much of it as I could (aswell as lots of other math I learned on my own time) into the Napkin.

    Towards August of 2016, though, I finally lost steam. The first public drafts wentonline then, and I decided to step back. Having burnt out slightly, I then took a break

    1Which is not to say problem-solving isn’t valuable; I myself am a math olympiad coach at heart. It’sjust not the point of this book.

  • Preface vii

    from higher math, and spent the remaining two undergraduate years2 working extensivelyas a coach for the American math olympiad team, and trying to spend as much timewith my friends as I could before they graduated and went their own ways.

    During those two years, readers sent me many kind words of gratitude, many reportsof errors, and many suggestions for additions. So in November of 2018, some weeks intomy first semester as a math PhD student, I decided I should finish what I had started.Some months later, here is what I have.

    Source code

    The project is hosted on GitHub at https://github.com/vEnhance/napkin.

    Acknowledgementsadd moreacknowledg-ments

    I am indebted to countless people for this work. Here is a partial (surely incomplete)list.

    • Thanks to all my teachers and professors for teaching me much of the materialcovered in these notes, as well as the authors of all the references I have cited here.A special call-out to [Ga14], [Le14], [Sj05], [Ga03], [Ll15], [Et11], [Ko14], [Va17], [Pu02],[Go18], which were especially influential.

    • Thanks also to dozens of friends and strangers who read through preview copies ofmy draft, and pointed out errors and gave other suggestions. Special mention toAndrej Vuković and Alexander Chua for together catching over a thousand errors.Thanks also to Brian Gu and Tom Tseng for many corrections.

    • I’d also like to express my gratitude for many, many kind words I received duringthe development of this project. These generous comments led me to keep workingon this, and were largely responsible for my decision in November 2018 to beginupdating the Napkin again.

    Finally, a huge thanks to the math olympiad community, from which the Napkin(and me) has its roots. All the enthusiasm, encouragement, and thank-you notes I havereceived over the years led me to begin writing this in the first place. I otherwise wouldnever have the arrogance to dream a project like this was at all possible. And of course Iwould be nowhere near where I am today were it not for the life-changing journey I tookin chasing my dreams to the IMO. Forever TWN2!

    2Alternatively: “ . . . and spent the next two years forgetting everything I had painstakingly learned”.Which made me grateful for all the past notes in the Napkin!

    https://github.com/vEnhance/napkin

  • Advice for the reader

    §1 Prerequisites

    As explained in the preface, the main prerequisite is some amount of mathematicalmaturity. This means I expect the reader to know how to read and write a proof, followlogical arguments, and so on.

    I also assume the reader is familiar with basic terminology about sets and functions(e.g. “what is a bijection?”). If not, one should consult Appendix E.

    §2 Deciding what to read

    There is no need to read this book in linear order: it covers all sorts of areas in mathematics,and there are many paths you can take. In Chapter 0, I give a short overview for eachpart explaining what you might expect to see in that part.

    For now, here is a brief chart showing how the chapters depend on each other; againsee Chapter 0 for details. Dependencies are indicated by arrows; dotted lines are optionaldependencies. I suggest that you simply pick a chapter you find interesting,and then find the shortest path. With that in mind, I hope the length of the entirePDF is not intimidating.

    Ch 1,3-5

    Abs AlgCh 2,6-8

    TopologyCh 9-15,18

    Lin Alg

    Ch 16

    Grp Act

    Ch 17

    Grp Classif

    Ch 19-22

    Rep Th

    Ch 23-25

    Quantum

    Ch 26-30

    Calc

    Ch 31-33

    Cmplx Ana

    Ch 34-41

    Measure/Pr

    Ch 42-45

    Diff Geo

    Ch 46-50

    Alg NT 1

    Ch 51-55

    Alg NT 2

    Ch 56-58

    Alg Top 1

    Ch 59-62

    Cat Th

    Ch 63-68

    Alg Top 2

    Ch 69-73

    Alg Geo 1

    Ch 74-79

    Alg Geo 2-3

    Ch 80-86

    Set Theory

    ix

  • x Napkin, by Evan Chen (v1.5.20190220)

    §3 Questions, exercises, and problems

    In this book, there are three hierarchies:

    • An inline question is intended to be offensively easy, mostly a chance to help youinternalize definitions. If you find yourself unable to answer one or two of them, itprobably means I explained it badly and you should complain to me. But if youcan’t answer many, you likely missed something important: read back.

    • An inline exercise is more meaty than a question, but shouldn’t have any “tricky”steps. Often I leave proofs of theorems and propositions as exercises if they areinstructive and at least somewhat interesting.

    • Each chapter features several trickier problems at the end. Some are reasonable,but others are legitimately difficult olympiad-style problems. Harder problems are

    marked with up to three chili peppers ( ), like this paragraph.

    In addition to difficulty annotations, the problems are also marked by how importantthey are to the big picture.

    – Normal problems, which are hopefully fun but non-central.

    – Daggered problems, which are (usually interesting) results that one shouldknow, but won’t be used directly later.

    – Starred problems, which are results which will be used later on in the book.1

    Several hints and solutions can be found in Appendices B and C.

    Image from [Go08]

    1This is to avoid the classic “we are done by PSet 4, Problem 8” that happens in college sometimes, asif I remembered what that was.

  • Advice for the reader xi

    §4 Paper

    At the risk of being blunt,

    Read this book with pencil and paper.

    Here’s why:

    Image from [Or]

    You are not God. You cannot keep everything in your head.2 If you’ve printed out ahard copy, then write in the margins. If you’re trying to save paper, grab a notebook orsomething along with the ride. Somehow, some way, make sure you can write. Thanks.

    §5 On the importance of examples

    I am pathologically obsessed with examples. In this book, I place all examples in largeboxes to draw emphasis to them, which leads to some pages of the book simply consistingof sequences of boxes one after another. I hope the reader doesn’t mind.

    I also often highlight a “prototypical example” for some sections, and reserve the colorred for such a note. The philosophy is that any time the reader sees a definition or atheorem about such an object, they should test it against the prototypical example. Ifthe example is a good prototype, it should be immediately clear why this definition isintuitive, or why the theorem should be true, or why the theorem is interesting, et cetera.

    Let me tell you a secret. Whenever I wrote a definition or a theorem in this book, Iwould have to recall the exact statement from my (quite poor) memory. So instead Ioften consider the prototypical example, and then only after that do I remember whatthe definition or the theorem is. Incidentally, this is also how I learned all the definitionsin the first place. I hope you’ll find it useful as well.

    2 See also https://usamo.wordpress.com/2015/03/14/writing/ and the source above.

    https://usamo.wordpress.com/2015/03/14/writing/

  • xii Napkin, by Evan Chen (v1.5.20190220)

    §6 Conventions and notations

    This part describes some of the less familiar notations and definitions and settles foronce and for all some annoying issues (“is zero a natural number?”). Most of these are“remarks for experts”: if something doesn’t make sense, you probably don’t have to worryabout it for now.

    A full glossary of notation used can be found in the appendix.

    §6.i Sets and equivalence relations

    This is brief, intended as a reminder for experts. Consult Appendix E for full details.

    An equivalence relation on a set X is a relation ∼ which is symmetric, reflexive, andtransitive. An equivalence relation partitions X into several equivalence classes. Wewill denote this by X/∼. An element of such an equivalence class is a representativeof that equivalence class.

    I always use ∼= for an “isomorphism”-style relation (formally: a relation which is anisomorphism in a reasonable category). The only time ' is used in the Napkin is forhomotopic paths.

    I generally use ⊆ and ( since these are non-ambiguous, unlike ⊂. I only use ⊂ onrare occasions in which equality obviously does not hold yet pointing it out would bedistracting. For example, I write Q ⊂ R since “Q ( R” is distracting.

    I prefer S \ T to S − T .The power set of S (i.e., the set of subsets of S), is denoted either by 2S or P(S).

    §6.ii Functions

    This is brief, intended as a reminder for experts. Consult Appendix E for full details.

    Let Xf−→ Y be a function:

    • By fpre(T ) I mean the pre-image

    fpre(T ) := {x ∈ X | f(x) ∈ T} .

    This is in contrast to the f−1(T ) used in the rest of the world; I only use f−1 foran inverse function.

    By abuse of notation, we may abbreviate fpre({y}) to fpre(y). We call fpre(y) afiber.

    • By f img(S) I mean the image

    f img(S) := {f(x) | x ∈ S} .

    Almost everyone else in the world uses f(S) (though f [S] sees some use, and f“(S)is often used in logic) but this is abuse of notation, and I prefer f img(S) for emphasis.This image notation is not standard.

    • If S ⊆ X, then the restriction of f to S is denoted f�S , i.e. it is the functionf�S : S → Y .

    • Sometimes functions f : X → Y are injective or surjective; I may emphasize thissometimes by writing f : X ↪→ Y or f : X � Y , respectively.

  • Advice for the reader xiii

    §6.iii Rings

    All rings have a multiplicative identity 1 unless otherwise specified. We allow 0 = 1 ingeneral rings but not in integral domains.

    All rings are commutative unless otherwise specified. There is an elaboratescheme for naming rings which are not commutative, used only in the chapter oncohomology rings:

    Graded Not Graded1 not required graded pseudo-ring pseudo-ring

    Anticommutative, 1 not required anticommutative pseudo-ring N/AHas 1 graded ring N/A

    Anticommutative with 1 anticommutative ring N/ACommutative with 1 commutative graded ring ring

    On the other hand, an algebra always has 1, but it need not be commutative.

    §6.iv Natural numbers are positive

    The set N is the set of positive integers, not including 0. In the set theory chapters, weuse ω = {0, 1, . . . } instead, for consistency with the rest of the book.

    §6.v Choice

    We accept the Axiom of Choice, and use it freely.

    §7 Further reading

    The appendix Appendix A contains a list of resources I like, and explanations of peda-gogical choices that I made for each chapter. I encourage you to check it out.

    In particular, this is where you should go for further reading! There are some topicsthat should be covered in the Napkin, but are not, due to my own ignorance or laziness.The references provided in this appendix should hopefully help partially atone for myomissions.

  • Contents

    Preface v

    Advice for the reader ix

    1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

    2 Deciding what to read . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

    3 Questions, exercises, and problems . . . . . . . . . . . . . . . . . . . . . x

    4 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

    5 On the importance of examples . . . . . . . . . . . . . . . . . . . . . . . xi

    6 Conventions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . xii

    7 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

    I Starting Out 33

    0 Sales pitches 35

    0.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    0.2 Abstract algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    0.3 Real and complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    0.4 Algebraic number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    0.5 Algebraic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    0.6 Algebraic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    0.7 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    1 Groups 41

    1.1 Definition and examples of groups . . . . . . . . . . . . . . . . . . . . . . 41

    1.2 Properties of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    1.3 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    1.4 Orders of groups, and Lagrange’s theorem . . . . . . . . . . . . . . . . . 48

    1.5 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    1.6 Groups of small orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    1.7 Unimportant long digression . . . . . . . . . . . . . . . . . . . . . . . . . 51

    1.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 51

    2 Metric spaces 53

    2.1 Definition and examples of metric spaces . . . . . . . . . . . . . . . . . . 53

    2.2 Convergence in metric spaces . . . . . . . . . . . . . . . . . . . . . . . . 55

    2.3 Continuous maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    2.4 Homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    2.5 Extended example/definition: product metric . . . . . . . . . . . . . . . 58

    2.6 Open sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    2.7 Closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    2.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 62

    15

  • 16 Napkin, by Evan Chen (v1.5.20190220)

    II Basic Abstract Algebra 65

    3 Homomorphisms and quotient groups 673.1 Generators and group presentations . . . . . . . . . . . . . . . . . . . . . 67

    3.2 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    3.3 Cosets and modding out . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    3.4 (Optional) Proof of Lagrange’s theorem . . . . . . . . . . . . . . . . . . 73

    3.5 Eliminating the homomorphism . . . . . . . . . . . . . . . . . . . . . . . 73

    3.6 (Digression) The first isomorphism theorem . . . . . . . . . . . . . . . . 75

    3.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 76

    4 Rings and ideals 794.1 Some motivational metaphors about rings vs groups . . . . . . . . . . . 79

    4.2 (Optional) Pedagogical notes on motivation . . . . . . . . . . . . . . . . 79

    4.3 Definition and examples of rings . . . . . . . . . . . . . . . . . . . . . . . 79

    4.4 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    4.5 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    4.6 Generating ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    4.7 Principal ideal domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    4.8 Noetherian rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    4.9 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 88

    5 Flavors of rings 915.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    5.2 Integral domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    5.3 Prime ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    5.4 Maximal ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    5.5 Field of fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    5.6 Unique factorization domains (UFD’s) . . . . . . . . . . . . . . . . . . . 96

    5.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 97

    III Basic Topology 99

    6 Properties of metric spaces 1016.1 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    6.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    6.3 Let the buyer beware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    6.4 Subspaces, and (inb4) a confusing linguistic point . . . . . . . . . . . . . 104

    6.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 105

    7 Topological spaces 1077.1 Forgetting the metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    7.2 Re-definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    7.3 Hausdorff spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    7.4 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    7.5 Connected spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    7.6 Path-connected spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    7.7 Homotopy and simply connected spaces . . . . . . . . . . . . . . . . . . 112

    7.8 Bases of spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    7.9 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 115

  • Contents 17

    8 Compactness 1178.1 Definition of sequential compactness . . . . . . . . . . . . . . . . . . . . 117

    8.2 Criteria for compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    8.3 Compactness using open covers . . . . . . . . . . . . . . . . . . . . . . . 119

    8.4 Applications of compactness . . . . . . . . . . . . . . . . . . . . . . . . . 121

    8.5 (Optional) Equivalence of formulations of compactness . . . . . . . . . . 123

    8.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 124

    IV Linear Algebra 127

    9 Vector spaces 1319.1 The definitions of a ring and field . . . . . . . . . . . . . . . . . . . . . . 131

    9.2 Modules and vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    9.3 Direct sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    9.4 Linear independence, spans, and basis . . . . . . . . . . . . . . . . . . . 135

    9.5 Linear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    9.6 What is a matrix? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    9.7 Subspaces and picking convenient bases . . . . . . . . . . . . . . . . . . 140

    9.8 A cute application: Lagrange interpolation . . . . . . . . . . . . . . . . . 142

    9.9 (Digression) Arrays of numbers are evil . . . . . . . . . . . . . . . . . . . 143

    9.10 A word on general modules . . . . . . . . . . . . . . . . . . . . . . . . . 144

    9.11 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 145

    10 Eigen-things 14710.1 Why you should care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    10.2 Warning on assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    10.3 Eigenvectors and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 148

    10.4 The Jordan form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    10.5 Nilpotent maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    10.6 Reducing to the nilpotent case . . . . . . . . . . . . . . . . . . . . . . . . 152

    10.7 (Optional) Proof of nilpotent Jordan . . . . . . . . . . . . . . . . . . . . 153

    10.8 Algebraic and geometric multiplicity . . . . . . . . . . . . . . . . . . . . 154

    10.9 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 155

    11 Dual space and trace 15711.1 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    11.2 Dual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    11.3 V ∨ ⊗W gives matrices from V to W . . . . . . . . . . . . . . . . . . . . 16111.4 The trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    11.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 163

    12 Determinant 16512.1 Wedge product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    12.2 The determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

    12.3 Characteristic polynomials, and Cayley-Hamilton . . . . . . . . . . . . . 169

    12.4 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 171

    13 Inner product spaces 17313.1 The inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    13.2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

  • 18 Napkin, by Evan Chen (v1.5.20190220)

    13.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17713.4 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17813.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 180

    14 Bonus: Fourier analysis 18114.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18114.2 A reminder on Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . 18114.3 Common examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18214.4 Summary, and another teaser . . . . . . . . . . . . . . . . . . . . . . . . 18614.5 Parseval and friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18614.6 Application: Basel problem . . . . . . . . . . . . . . . . . . . . . . . . . 18714.7 Application: Arrow’s Impossibility Theorem . . . . . . . . . . . . . . . . 18814.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 190

    15 Duals, adjoint, and transposes 19115.1 Dual of a map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19115.2 Identifying with the dual space . . . . . . . . . . . . . . . . . . . . . . . 19215.3 The adjoint (conjugate transpose) . . . . . . . . . . . . . . . . . . . . . . 19315.4 Eigenvalues of normal maps . . . . . . . . . . . . . . . . . . . . . . . . . 19515.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 196

    V More on Groups 199

    16 Group actions overkill AIME problems 20116.1 Definition of a group action . . . . . . . . . . . . . . . . . . . . . . . . . 20116.2 Stabilizers and orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20216.3 Burnside’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20316.4 Conjugation of elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 20416.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 205

    17 Find all groups 20717.1 Sylow theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20717.2 (Optional) Proving Sylow’s theorem . . . . . . . . . . . . . . . . . . . . 20817.3 (Optional) Simple groups and Jordan-Hölder . . . . . . . . . . . . . . . . 21017.4 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 211

    18 The PID structure theorem 21318.1 Finitely generated abelian groups . . . . . . . . . . . . . . . . . . . . . . 21318.2 Some ring theory prerequisites . . . . . . . . . . . . . . . . . . . . . . . . 21418.3 The structure theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21518.4 Reduction to maps of free R-modules . . . . . . . . . . . . . . . . . . . . 21618.5 Smith normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21718.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 219

    VI Representation Theory 221

    19 Representations of algebras 22319.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22319.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22419.3 Direct sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

  • Contents 19

    19.4 Irreducible and indecomposable representations . . . . . . . . . . . . . . 22719.5 Morphisms of representations . . . . . . . . . . . . . . . . . . . . . . . . 22819.6 The representations of Matd(k) . . . . . . . . . . . . . . . . . . . . . . . 23019.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 231

    20 Semisimple algebras 23320.1 Schur’s lemma continued . . . . . . . . . . . . . . . . . . . . . . . . . . . 23320.2 Density theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23420.3 Semisimple algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23620.4 Maschke’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23720.5 Example: the representations of C[S3] . . . . . . . . . . . . . . . . . . . 23720.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 238

    21 Characters 24121.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24121.2 The dual space modulo the commutator . . . . . . . . . . . . . . . . . . 24221.3 Orthogonality of characters . . . . . . . . . . . . . . . . . . . . . . . . . 24321.4 Examples of character tables . . . . . . . . . . . . . . . . . . . . . . . . . 24521.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 247

    22 Some applications 24922.1 Frobenius divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24922.2 Burnside’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25022.3 Frobenius determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

    VII Quantum Algorithms 253

    23 Quantum states and measurements 25523.1 Bra-ket notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25523.2 The state space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25623.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25623.4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25923.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 262

    24 Quantum circuits 26324.1 Classical logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26324.2 Reversible classical logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 26424.3 Quantum logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26624.4 Deutsch-Jozsa algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 26824.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 269

    25 Shor’s algorithm 27125.1 The classical (inverse) Fourier transform . . . . . . . . . . . . . . . . . . 27125.2 The quantum Fourier transform . . . . . . . . . . . . . . . . . . . . . . . 27225.3 Shor’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

    VIII Calculus 101 277

    26 Limits and series 27926.1 Completeness and inf/sup . . . . . . . . . . . . . . . . . . . . . . . . . . 279

  • 20 Napkin, by Evan Chen (v1.5.20190220)

    26.2 Proofs of the two key completeness properties of R . . . . . . . . . . . . 28026.3 Monotonic sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

    26.4 Infinite series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

    26.5 Series addition is not commutative: a horror story . . . . . . . . . . . . 286

    26.6 Limits of functions at points . . . . . . . . . . . . . . . . . . . . . . . . . 287

    26.7 Limits of functions at infinity . . . . . . . . . . . . . . . . . . . . . . . . 289

    26.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 289

    27 Bonus: A hint of p-adic numbers 29127.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

    27.2 Algebraic perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    27.3 Analytic perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

    27.4 Mahler coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

    27.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 301

    28 Differentiation 30328.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    28.2 How to compute them . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

    28.3 Local (and global) maximums . . . . . . . . . . . . . . . . . . . . . . . . 307

    28.4 Rolle and friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

    28.5 Smooth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

    28.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 312

    29 Power series and Taylor series 31529.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

    29.2 Power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

    29.3 Differentiating them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

    29.4 Analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

    29.5 A definition of Euler’s constant and exponentiation . . . . . . . . . . . . 320

    29.6 This all works over complex numbers as well, except also complex analysisis heaven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

    29.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 321

    30 Riemann integrals 32330.1 Uniform continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

    30.2 Dense sets and extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    30.3 Defining the Riemann integral . . . . . . . . . . . . . . . . . . . . . . . . 325

    30.4 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

    30.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 328

    IX Complex Analysis 331

    31 Holomorphic functions 33331.1 The nicest functions on earth . . . . . . . . . . . . . . . . . . . . . . . . 333

    31.2 Complex differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

    31.3 Contour integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

    31.4 Cauchy-Goursat theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

    31.5 Cauchy’s integral theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 339

    31.6 Holomorphic functions are analytic . . . . . . . . . . . . . . . . . . . . . 341

    31.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 343

  • Contents 21

    32 Meromorphic functions 34532.1 The second nicest functions on earth . . . . . . . . . . . . . . . . . . . . 345

    32.2 Meromorphic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

    32.3 Winding numbers and the residue theorem . . . . . . . . . . . . . . . . . 348

    32.4 Argument principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

    32.5 Philosophy: why are holomorphic functions so nice? . . . . . . . . . . . . 351

    32.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 352

    33 Holomorphic square roots and logarithms 35333.1 Motivation: square root of a complex number . . . . . . . . . . . . . . . 353

    33.2 Square roots of holomorphic functions . . . . . . . . . . . . . . . . . . . 355

    33.3 Covering projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

    33.4 Complex logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

    33.5 Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

    33.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 358

    X Measure Theory 359

    34 Measure spaces 36134.1 Motivating measure spaces via random variables . . . . . . . . . . . . . . 361

    34.2 Motivating measure spaces geometrically . . . . . . . . . . . . . . . . . . 362

    34.3 σ-algebras and measurable spaces . . . . . . . . . . . . . . . . . . . . . . 363

    34.4 Measure spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

    34.5 A hint of Banach-Tarski . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

    34.6 Measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

    34.7 On the word “almost” (TO DO) . . . . . . . . . . . . . . . . . . . . . . 366

    34.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 366

    35 Constructing the Borel and Lebesgue measure 36735.1 Pre-measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

    35.2 Outer measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

    35.3 Carathéodory extension for outer measures . . . . . . . . . . . . . . . . . 370

    35.4 Defining the Lebesgue measure . . . . . . . . . . . . . . . . . . . . . . . 372

    35.5 A fourth row: Carathéodory for pre-measures . . . . . . . . . . . . . . . 374

    35.6 From now on, we assume the Borel measure . . . . . . . . . . . . . . . . 375

    35.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 375

    36 Lebesgue integration 37736.1 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

    36.2 Relation to Riemann integrals (or: actually computing Lebesgue integrals)379

    36.3 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 380

    37 Swapping order with Lebesgue integrals 38137.1 Motivating limit interchange . . . . . . . . . . . . . . . . . . . . . . . . . 381

    37.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

    37.3 Fatou’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

    37.4 Everything else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

    37.5 Fubini and Tonelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

    37.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 384

  • 22 Napkin, by Evan Chen (v1.5.20190220)

    38 Bonus: A hint of Pontryagin duality 38538.1 LCA groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

    38.2 The Pontryagin dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

    38.3 The orthonormal basis in the compact case . . . . . . . . . . . . . . . . 387

    38.4 The Fourier transform of the non-compact case . . . . . . . . . . . . . . 388

    38.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

    38.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 389

    XI Probability (TO DO) 391

    39 Random variables (TO DO) 39339.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

    39.2 Distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

    39.3 Examples of random variables . . . . . . . . . . . . . . . . . . . . . . . . 394

    39.4 Characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

    39.5 Independent random variables . . . . . . . . . . . . . . . . . . . . . . . . 394

    39.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 394

    40 Large number laws (TO DO) 39540.1 Notions of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

    40.2 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 396

    41 Stopped martingales (TO DO) 397

    XII Differential Geometry 399

    42 Multivariable calculus done correctly 40142.1 The total derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

    42.2 The projection principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

    42.3 Total and partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 404

    42.4 (Optional) A word on higher derivatives . . . . . . . . . . . . . . . . . . 406

    42.5 Towards differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . 407

    42.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 407

    43 Differential forms 40943.1 Pictures of differential forms . . . . . . . . . . . . . . . . . . . . . . . . . 409

    43.2 Pictures of exterior derivatives . . . . . . . . . . . . . . . . . . . . . . . . 411

    43.3 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

    43.4 Exterior derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

    43.5 Closed and exact forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

    43.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 416

    44 Integrating differential forms 41744.1 Motivation: line integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

    44.2 Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

    44.3 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

    44.4 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

    44.5 Stokes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

    44.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 423

  • Contents 23

    45 A bit of manifolds 42545.1 Topological manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

    45.2 Smooth manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

    45.3 Regular value theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

    45.4 Differential forms on manifolds . . . . . . . . . . . . . . . . . . . . . . . 428

    45.5 Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

    45.6 Stokes’ theorem for manifolds . . . . . . . . . . . . . . . . . . . . . . . . 430

    45.7 (Optional) The tangent and contangent space . . . . . . . . . . . . . . . 430

    45.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 433

    XIII Algebraic NT I: Rings of Integers 435

    46 Algebraic integers 43746.1 Motivation from high school algebra . . . . . . . . . . . . . . . . . . . . 437

    46.2 Algebraic numbers and algebraic integers . . . . . . . . . . . . . . . . . . 438

    46.3 Number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

    46.4 Norms and traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

    46.5 The ring of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

    46.6 Primitive element theorem, and monogenic extensions . . . . . . . . . . 447

    46.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 447

    47 Unique factorization (finally!) 44947.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

    47.2 Ideal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

    47.3 Dedekind domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

    47.4 Unique factorization works . . . . . . . . . . . . . . . . . . . . . . . . . . 452

    47.5 The factoring algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

    47.6 Fractional ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

    47.7 The ideal norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

    47.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 458

    48 Minkowski bound and class groups 45948.1 The class group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

    48.2 The discriminant of a number field . . . . . . . . . . . . . . . . . . . . . 459

    48.3 The signature of a number field . . . . . . . . . . . . . . . . . . . . . . . 462

    48.4 Minkowski’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

    48.5 The trap box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

    48.6 The Minkowski bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

    48.7 The class group is finite . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

    48.8 Computation of class numbers . . . . . . . . . . . . . . . . . . . . . . . . 468

    48.9 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 471

    49 More properties of the discriminant 47349.1 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 473

    50 Bonus: Let’s solve Pell’s equation! 47550.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

    50.2 Dirichlet’s unit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

    50.3 Finding fundamental units . . . . . . . . . . . . . . . . . . . . . . . . . . 477

    50.4 Pell’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

  • 24 Napkin, by Evan Chen (v1.5.20190220)

    50.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 479

    XIV Algebraic NT II: Galois and Ramification Theory 481

    51 Things Galois 483

    51.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

    51.2 Field extensions, algebraic closures, and splitting fields . . . . . . . . . . 484

    51.3 Embeddings into algebraic closures for number fields . . . . . . . . . . . 485

    51.4 Everyone hates characteristic 2: separable vs irreducible . . . . . . . . . 486

    51.5 Automorphism groups and Galois extensions . . . . . . . . . . . . . . . . 488

    51.6 Fundamental theorem of Galois theory . . . . . . . . . . . . . . . . . . . 491

    51.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 492

    51.8 (Optional) Proof that Galois extensions are splitting . . . . . . . . . . . 493

    52 Finite fields 495

    52.1 Example of a finite field . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

    52.2 Finite fields have prime power order . . . . . . . . . . . . . . . . . . . . 496

    52.3 All finite fields are isomorphic . . . . . . . . . . . . . . . . . . . . . . . . 497

    52.4 The Galois theory of finite fields . . . . . . . . . . . . . . . . . . . . . . . 498

    52.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 499

    53 Ramification theory 501

    53.1 Ramified / inert / split primes . . . . . . . . . . . . . . . . . . . . . . . . 501

    53.2 Primes ramify if and only if they divide ∆K . . . . . . . . . . . . . . . . 502

    53.3 Inertial degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

    53.4 The magic of Galois extensions . . . . . . . . . . . . . . . . . . . . . . . 503

    53.5 (Optional) Decomposition and inertia groups . . . . . . . . . . . . . . . 505

    53.6 Tangential remark: more general Galois extensions . . . . . . . . . . . . 507

    53.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 507

    54 The Frobenius element 509

    54.1 Frobenius elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

    54.2 Conjugacy classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

    54.3 Chebotarev density theorem . . . . . . . . . . . . . . . . . . . . . . . . . 512

    54.4 Example: Frobenius elements of cyclotomic fields . . . . . . . . . . . . . 512

    54.5 Frobenius elements behave well with restriction . . . . . . . . . . . . . . 513

    54.6 Application: Quadratic reciprocity . . . . . . . . . . . . . . . . . . . . . 514

    54.7 Frobenius elements control factorization . . . . . . . . . . . . . . . . . . 516

    54.8 Example application: IMO 2003 problem 6 . . . . . . . . . . . . . . . . . 519

    54.9 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 520

    55 Bonus: A Bit on Artin Reciprocity 521

    55.1 Infinite primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

    55.2 Modular arithmetic with infinite primes . . . . . . . . . . . . . . . . . . 521

    55.3 Infinite primes in extensions . . . . . . . . . . . . . . . . . . . . . . . . . 523

    55.4 Frobenius element and Artin symbol . . . . . . . . . . . . . . . . . . . . 524

    55.5 Artin reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

    55.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 529

  • Contents 25

    XV Algebraic Topology I: Homotopy 531

    56 Some topological constructions 53356.1 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

    56.2 Quotient topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

    56.3 Product topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

    56.4 Disjoint union and wedge sum . . . . . . . . . . . . . . . . . . . . . . . . 535

    56.5 CW complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

    56.6 The torus, Klein bottle, RPn, CPn . . . . . . . . . . . . . . . . . . . . . 53756.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 543

    57 Fundamental groups 54557.1 Fusing paths together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

    57.2 Fundamental groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

    57.3 Fundamental groups are functorial . . . . . . . . . . . . . . . . . . . . . 550

    57.4 Higher homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

    57.5 Homotopy equivalent spaces . . . . . . . . . . . . . . . . . . . . . . . . . 552

    57.6 The pointed homotopy category . . . . . . . . . . . . . . . . . . . . . . . 554

    57.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 555

    58 Covering projections 55758.1 Even coverings and covering projections . . . . . . . . . . . . . . . . . . 557

    58.2 Lifting theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

    58.3 Lifting correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

    58.4 Regular coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

    58.5 The algebra of fundamental groups . . . . . . . . . . . . . . . . . . . . . 564

    58.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 566

    XVI Category Theory 567

    59 Objects and morphisms 56959.1 Motivation: isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 569

    59.2 Categories, and examples thereof . . . . . . . . . . . . . . . . . . . . . . 569

    59.3 Special objects in categories . . . . . . . . . . . . . . . . . . . . . . . . . 573

    59.4 Binary products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

    59.5 Monic and epic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

    59.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 579

    60 Functors and natural transformations 58160.1 Many examples of functors . . . . . . . . . . . . . . . . . . . . . . . . . . 581

    60.2 Covariant functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

    60.3 Contravariant functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

    60.4 Equivalence of categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

    60.5 (Optional) Natural transformations . . . . . . . . . . . . . . . . . . . . . 586

    60.6 (Optional) The Yoneda lemma . . . . . . . . . . . . . . . . . . . . . . . . 588

    60.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 590

    61 Limits in categories (TO DO) 59161.1 Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

    61.2 Pullback squares (TO DO) . . . . . . . . . . . . . . . . . . . . . . . . . . 592

  • 26 Napkin, by Evan Chen (v1.5.20190220)

    61.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59261.4 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 592

    62 Abelian categories 59362.1 Zero objects, kernels, cokernels, and images . . . . . . . . . . . . . . . . 59362.2 Additive and abelian categories . . . . . . . . . . . . . . . . . . . . . . . 59462.3 Exact sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59662.4 The Freyd-Mitchell embedding theorem . . . . . . . . . . . . . . . . . . 59762.5 Breaking long exact sequences . . . . . . . . . . . . . . . . . . . . . . . . 59862.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 599

    XVII Algebraic Topology II: Homology 601

    63 Singular homology 60363.1 Simplices and boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 60363.2 The singular homology groups . . . . . . . . . . . . . . . . . . . . . . . . 60563.3 The homology functor and chain complexes . . . . . . . . . . . . . . . . 60863.4 More examples of chain complexes . . . . . . . . . . . . . . . . . . . . . 61263.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 613

    64 The long exact sequence 61564.1 Short exact sequences and four examples . . . . . . . . . . . . . . . . . . 61564.2 The long exact sequence of homology groups . . . . . . . . . . . . . . . . 61764.3 The Mayer-Vietoris sequence . . . . . . . . . . . . . . . . . . . . . . . . 61964.4 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 624

    65 Excision and relative homology 62565.1 The long exact sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 62565.2 The category of pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62665.3 Excision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62765.4 Some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62865.5 Invariance of dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62965.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 630

    66 Bonus: Cellular homology 63166.1 Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63166.2 Cellular chain complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63266.3 The cellular boundary formula . . . . . . . . . . . . . . . . . . . . . . . . 63566.4 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 637

    67 Singular cohomology 63967.1 Cochain complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63967.2 Cohomology of spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64067.3 Cohomology of spaces is functorial . . . . . . . . . . . . . . . . . . . . . 64167.4 Universal coefficient theorem . . . . . . . . . . . . . . . . . . . . . . . . . 64267.5 Example computation of cohomology groups . . . . . . . . . . . . . . . . 64367.6 Relative cohomology groups . . . . . . . . . . . . . . . . . . . . . . . . . 64467.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 645

    68 Application of cohomology 64768.1 Poincaré duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

  • Contents 27

    68.2 de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

    68.3 Graded rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

    68.4 Cup products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

    68.5 Relative cohomology pseudo-rings . . . . . . . . . . . . . . . . . . . . . . 652

    68.6 Wedge sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

    68.7 Künneth formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

    68.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 655

    XVIII Algebraic Geometry I: Classical Varieties 657

    69 Affine varieties 65969.1 Affine varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

    69.2 Naming affine varieties via ideals . . . . . . . . . . . . . . . . . . . . . . 660

    69.3 Radical ideals and Hilbert’s Nullstellensatz . . . . . . . . . . . . . . . . . 661

    69.4 Pictures of varieties in A1 . . . . . . . . . . . . . . . . . . . . . . . . . . 66269.5 Prime ideals correspond to irreducible affine varieties . . . . . . . . . . . 663

    69.6 Pictures in A2 and A3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66469.7 Maximal ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

    69.8 Motivating schemes with non-radical ideals . . . . . . . . . . . . . . . . . 666

    69.9 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 666

    70 Affine varieties as ringed spaces 66770.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

    70.2 The Zariski topology on An . . . . . . . . . . . . . . . . . . . . . . . . . 66770.3 The Zariski topology on affine varieties . . . . . . . . . . . . . . . . . . . 669

    70.4 Coordinate rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

    70.5 The sheaf of regular functions . . . . . . . . . . . . . . . . . . . . . . . . 671

    70.6 Regular functions on distinguished open sets . . . . . . . . . . . . . . . . 672

    70.7 Baby ringed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

    70.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 674

    71 Projective varieties 67571.1 Graded rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

    71.2 The ambient space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

    71.3 Homogeneous ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

    71.4 As ringed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

    71.5 Examples of regular functions . . . . . . . . . . . . . . . . . . . . . . . . 680

    71.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 681

    72 Bonus: Bézout’s theorem 68372.1 Non-radical ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

    72.2 Hilbert functions of finitely many points . . . . . . . . . . . . . . . . . . 684

    72.3 Hilbert polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

    72.4 Bézout’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

    72.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

    72.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 689

    73 Morphisms of varieties 69173.1 Defining morphisms of baby ringed spaces . . . . . . . . . . . . . . . . . 691

    73.2 Classifying the simplest examples . . . . . . . . . . . . . . . . . . . . . . 692

  • 28 Napkin, by Evan Chen (v1.5.20190220)

    73.3 Some more applications and examples . . . . . . . . . . . . . . . . . . . 694

    73.4 The hyperbola effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

    73.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 697

    XIX Algebraic Geometry II: Affine Schemes 699

    74 Sheaves and ringed spaces 70374.1 Motivation and warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

    74.2 Pre-sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

    74.3 Stalks and germs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

    74.4 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

    74.5 For sheaves, sections “are” sequences of germs . . . . . . . . . . . . . . . 710

    74.6 Sheafification (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

    74.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 713

    75 Localization 71575.1 Spoilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

    75.2 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

    75.3 Localization away from an element . . . . . . . . . . . . . . . . . . . . . 717

    75.4 Localization at a prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . 718

    75.5 Prime ideals of localizations . . . . . . . . . . . . . . . . . . . . . . . . . 720

    75.6 Prime ideals of quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

    75.7 Localization commute with quotients . . . . . . . . . . . . . . . . . . . . 721

    75.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 723

    76 Affine schemes: the Zariski topology 72576.1 Some more advertising . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

    76.2 The set of points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

    76.3 The Zariski topology on the spectrum . . . . . . . . . . . . . . . . . . . 727

    76.4 On radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

    76.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 731

    77 Affine schemes: the sheaf 73377.1 A useless definition of the structure sheaf . . . . . . . . . . . . . . . . . . 733

    77.2 The value of distinguished open sets (or: how to actually compute sections)734

    77.3 The stalks of the structure sheaf . . . . . . . . . . . . . . . . . . . . . . . 736

    77.4 Local rings and residue fields: linking germs to values . . . . . . . . . . . 737

    77.5 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

    77.6 Functions are determined by germs, not values . . . . . . . . . . . . . . . 740

    77.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 741

    78 Interlude: nineteen examples of affine schemes 74378.1 Example: Spec k, a single point . . . . . . . . . . . . . . . . . . . . . . . 743

    78.2 SpecC[x], a one-dimensional line . . . . . . . . . . . . . . . . . . . . . . 74378.3 SpecR[x], a one-dimensional line with complex conjugates glued (no fear

    nullstellensatz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

    78.4 Spec k[x], over any ground field . . . . . . . . . . . . . . . . . . . . . . . 745

    78.5 SpecZ, a one-dimensional scheme . . . . . . . . . . . . . . . . . . . . . . 74578.6 Spec k[x]/(x2 − x), two points . . . . . . . . . . . . . . . . . . . . . . . . 74678.7 Spec k[x]/(x2), the double point . . . . . . . . . . . . . . . . . . . . . . . 746

  • Contents 29

    78.8 Spec k[x]/(x3 − x), a double point and a single point . . . . . . . . . . . 74778.9 SpecZ/60Z, a scheme with three points . . . . . . . . . . . . . . . . . . 74778.10 Spec k[x, y], the two-dimensional plane . . . . . . . . . . . . . . . . . . . 748

    78.11 SpecZ[x], a two-dimensional scheme, and Mumford’s picture . . . . . . . 74978.12 Spec k[x, y]/(y − x2), the parabola . . . . . . . . . . . . . . . . . . . . . 75078.13 SpecZ[i], the Gaussian integers (one-dimensional) . . . . . . . . . . . . . 75178.14 Long example: Spec k[x, y]/(xy), two axes . . . . . . . . . . . . . . . . . 752

    78.15 Spec k[x, x−1], the punctured line (or hyperbola) . . . . . . . . . . . . . 75478.16 Spec k[x](x), zooming in to the origin of the line . . . . . . . . . . . . . . 755

    78.17 Spec k[x, y](x,y), zooming in to the origin of the plane . . . . . . . . . . . 756

    78.18 Spec k[x, y](0) = Spec k(x, y), the stalk above the generic point . . . . . . 756

    78.19 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 756

    79 Morphisms of locally ringed spaces 75779.1 Morphisms of ringed spaces via sections . . . . . . . . . . . . . . . . . . 757

    79.2 Morphisms of ringed spaces via stalks . . . . . . . . . . . . . . . . . . . . 758

    79.3 Morphisms of locally ringed spaces . . . . . . . . . . . . . . . . . . . . . 759

    79.4 A few examples of morphisms between affine schemes . . . . . . . . . . . 760

    79.5 The big theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

    79.6 More examples of scheme morphisms . . . . . . . . . . . . . . . . . . . . 765

    79.7 A little bit on non-affine schemes . . . . . . . . . . . . . . . . . . . . . . 766

    79.8 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

    79.9 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 768

    XX Algebraic Geometry III: Schemes (TO DO) 769

    XXI Set Theory I: ZFC, Ordinals, and Cardinals 771

    80 Interlude: Cauchy’s functional equation and Zorn’s lemma 77380.1 Let’s construct a monster . . . . . . . . . . . . . . . . . . . . . . . . . . 773

    80.2 Review of finite induction . . . . . . . . . . . . . . . . . . . . . . . . . . 774

    80.3 Transfinite induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

    80.4 Wrapping up functional equations . . . . . . . . . . . . . . . . . . . . . . 776

    80.5 Zorn’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

    80.6 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 779

    81 Zermelo-Fraenkel with choice 78181.1 The ultimate functional equation . . . . . . . . . . . . . . . . . . . . . . 781

    81.2 Cantor’s paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

    81.3 The language of set theory . . . . . . . . . . . . . . . . . . . . . . . . . . 782

    81.4 The axioms of ZFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78381.5 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

    81.6 Choice and well-ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

    81.7 Sets vs classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

    81.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 787

    82 Ordinals 78982.1 Counting for preschoolers . . . . . . . . . . . . . . . . . . . . . . . . . . 789

    82.2 Counting for set theorists . . . . . . . . . . . . . . . . . . . . . . . . . . 790

  • 30 Napkin, by Evan Chen (v1.5.20190220)

    82.3 Definition of an ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

    82.4 Ordinals are “tall” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

    82.5 Transfinite induction and recursion . . . . . . . . . . . . . . . . . . . . . 794

    82.6 Ordinal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

    82.7 The hierarchy of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796

    82.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 798

    83 Cardinals 799

    83.1 Equinumerous sets and cardinals . . . . . . . . . . . . . . . . . . . . . . 799

    83.2 Cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

    83.3 Aleph numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

    83.4 Cardinal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

    83.5 Cardinal exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

    83.6 Cofinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

    83.7 Inaccessible cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

    83.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 805

    XXII Set Theory II: Model Theory and Forcing 807

    84 Inner model theory 809

    84.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

    84.2 Sentences and satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . 810

    84.3 The Levy hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

    84.4 Substructures, and Tarski-Vaught . . . . . . . . . . . . . . . . . . . . . . 813

    84.5 Obtaining the axioms of ZFC . . . . . . . . . . . . . . . . . . . . . . . . 814

    84.6 Mostowski collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

    84.7 Adding an inaccessible . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

    84.8 FAQ’s on countable models . . . . . . . . . . . . . . . . . . . . . . . . . 817

    84.9 Picturing inner models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

    84.10 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 819

    85 Forcing 821

    85.1 Setting up posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822

    85.2 More properties of posets . . . . . . . . . . . . . . . . . . . . . . . . . . 823

    85.3 Names, and the generic extension . . . . . . . . . . . . . . . . . . . . . . 824

    85.4 Fundamental theorem of forcing . . . . . . . . . . . . . . . . . . . . . . . 827

    85.5 (Optional) Defining the relation . . . . . . . . . . . . . . . . . . . . . . . 827

    85.6 The remaining axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829

    85.7 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 829

    86 Breaking the continuum hypothesis 831

    86.1 Adding in reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

    86.2 The countable chain condition . . . . . . . . . . . . . . . . . . . . . . . . 832

    86.3 Preserving cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

    86.4 Infinite combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

    86.5 A few harder problems to think about . . . . . . . . . . . . . . . . . . . 835

  • Contents 31

    XXIII Backmatter 837

    A Pedagogical comments and references 839A.1 Basic algebra and topology . . . . . . . . . . . . . . . . . . . . . . . . . . 839A.2 Second-year topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840A.3 Advanced topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841A.4 Topics not in Napkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

    B Hints to selected problems 843

    C Sketches of selected solutions 853

    D Glossary of notations 875D.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875D.2 Functions and sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875D.3 Abstract and linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . 876D.4 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877D.5 Topology and real/complex analysis . . . . . . . . . . . . . . . . . . . . . 877D.6 Measure theory and probability . . . . . . . . . . . . . . . . . . . . . . . 878D.7 Algebraic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878D.8 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879D.9 Differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880D.10 Algebraic number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 880D.11 Representation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881D.12 Algebraic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882D.13 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

    E Terminology on sets and functions 885E.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885E.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886E.3 Equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888

  • IStarting Out

  • Part I: Contents

    0 Sales pitches 350.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350.2 Abstract algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360.3 Real and complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370.4 Algebraic number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380.5 Algebraic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390.6 Algebraic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390.7 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    1 Groups 411.1 Definition and examples of groups . . . . . . . . . . . . . . . . . . . . . . . . . . 411.2 Properties of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441.3 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461.4 Orders of groups, and Lagrange’s theorem . . . . . . . . . . . . . . . . . . . . . . 481.5 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491.6 Groups of small orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501.7 Unimportant long digression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . . . . . . 51

    2 Metric spaces 532.1 Definition and examples of metric spaces . . . . . . . . . . . . . . . . . . . . . . . 532.2 Convergence in metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552.3 Continuous maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562.4 Homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572.5 Extended example/definition: product metric . . . . . . . . . . . . . . . . . . . . . 582.6 Open sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592.7 Closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612.8 A few harder problems to think about . . . . . . . . . . . . . . . . . . . . . . . . 62

  • 0 Sales pitchesThis chapter contains a pitch for each part, to help you decide what you want to read

    and to elaborate more on how they are interconnected.

    For convenience, here is again the dependency plot that appeared in the frontmatter.

    Ch 1,3-5

    Abs AlgCh 2,6-8

    TopologyCh 9-15,18

    Lin Alg

    Ch 16

    Grp Act

    Ch 17

    Grp Classif

    Ch 19-22

    Rep Th

    Ch 23-25

    Quantum

    Ch 26-30

    Calc

    Ch 31-33

    Cmplx Ana

    Ch 34-41

    Measure/Pr

    Ch 42-45

    Diff Geo

    Ch 46-50

    Alg NT 1

    Ch 51-55

    Alg NT 2

    Ch 56-58

    Alg Top 1

    Ch 59-62

    Cat Th

    Ch 63-68

    Alg Top 2

    Ch 69-73

    Alg Geo 1

    Ch 74-79

    Alg Geo 2-3

    Ch 80-86

    Set Theory

    §0.1 The basics

    I. Starting Out.

    I made a design decision that the first part should have a little bit both of algebraand topology: so this first chapter begins by defining a group, while the secondchapter begins by defining a metric space. The intention is so that newcomersget to see two different examples of “sets with additional structure” in somewhatdifferent contexts, and to have a minimal amount of literacy as these sorts ofdefinitions appear over and over1

    II. Basic Abstract Algebra.

    The algebraically inclined can then delve into further types of algebraic structures:some more details of groups, and then rings and fields — which will let yougeneralize Z, Q, R, C. So you’ll learn to become familiar with all sorts of othernouns that appear in algebra, unlocking a whole host of objects that one couldn’ttalk about before.

    1In particular, I think it’s easier to learn what a homeomorphism is after seeing group isomorphism,and what a homomorphism is after seeing continuous map.

    35

  • 36 Napkin, by Evan Chen (v1.5.20190220)

    We’ll also come into ideals, which generalize the GCD in Z that you might knowof. For example, you know in Z that any integer can be written in the form 3a+ 5bfor a, b ∈ Z, since gcd(3, 5) = 1. We’ll see that this statement is really a statementof ideals: “(3, 5) = 1 in Z”, and thus we’ll understand in what situations it can begeneralized, e.g. to polynomials.

    III. Basic Topology.

    The more analytically inclined can instead move into topology, learning more aboutspaces. We’ll find out that “metric spaces” are actually too specific, and that it’sbetter to work with topological spaces, which are based on the so-called opensets. You’ll then get to see the buddings of some geometrical ideals, ending withthe really great notion of compactness, a powerful notion that makes real analysistick.

    One example of an application of compactness to tempt you now: a continuousfunction f : [0, 1]→ R always achieves a maximum value. (In contrast, f : (0, 1)→ Rby x 7→ 1/x does not.) We’ll see the reason is that [0, 1] is compact.

    §0.2 Abstract algebra

    IV. Linear Algebra.

    In high school, linear algebra is often really unsatisfying. You are given these arraysof numbers, and they’re manipulated in some ways that don’t really make sense.For example, the determinant is defined as this funny-looking sum with a bunch ofproducts that seems to come out of thin air. Where does it come from? Why doesdet(AB) = detAdetB with such a bizarre formula?

    Well, it turns out that you can explain all of these things! The trick is to not thinkof linear algebra as the study of matrices, but instead as the study of linear maps.In earlier chapters we saw that we got great generalizations by speaking of “setswith enriched structure” and “maps between them”. This time, our sets are vectorspace and our maps are linear maps. We’ll find out that a matrix is actuallyjust a way of writing down a linear map as an array of numbers, but using the“intrinsic” definitions we’ll de-mystify all the strange formulas from high school andshow you where they all come from.

    In particular, we’ll see easy proofs that column rank equals row rank, determinantis multiplicative, trace is the sum of the diagonal entries, how the dot productworks, and all the words starting with “eigen-”. We’ll even have a bonus chapterfor Fourier analysis showing that you can also explain all the big buzz-words byjust being comfortable with vector spaces.

    V. More on Groups.

    Some of you might be interested in more about groups, and this chapter will giveyou a way to play further. It starts with an exploration of group actions, thengoes into a bit on Sylow theorems, which are the tools that let us try to classifyall groups.

    VI. Representation Theory.

    If G is a group, we can try to understand it by implementing it as a matrix, i.e.considering embeddings G ↪→ GLn(C). These are called representations of G; itturns out that they can be decomposed into irreducible ones. Astonishingly we

  • 0 Sales pitches 37

    will find that we can basically characterize all of them: the results turn out to beshort and completely unexpected.

    For example, we will find out that there are finitely many irreducible representationsof a given finite group G; if we label them V1, V2, . . . , Vr, then we will find that ris the number of conjugacy classes of G, and moreover that

    |G| = (dimV1)2 + · · ·+ (dimVr)2

    which comes out of nowhere!

    The last chapter of this part will show you some unexpected corollaries. Here isone of them: let G be a finite group and create variables xg for each g ∈ G. A|G| × |G| matrix M is defined by setting the (g, h)th entry to be the variable xg·h.Then this determinant will turn out to factor, and the factors will correspond tothe Vi we described above: there will be an irreducible factor of degree dimViappearing dimVi times. This result, called the Frobenius determinant, is saidto have given birth to representation theory.

    VII. Quantum Algorithms.

    If you ever wondered what Shor’s algorithm is, this chapter will use the built-uplinear algebra to tell you!

    §0.3 Real and complex analysis

    VIII. Calculus 101.

    In this part, we’ll use our built-up knowledge of metric and topological spaces togive short, rigorous definitions and theorems typical of high school calculus. Thatis, we’ll really define and prove most everything you’ve seen about limits, series,derivatives, and integrals.

    Although this might seem intimidating, it turns out that actually, by the time westart this chapter, the hard work has already been done: the notion of limits, opensets, and compactness will make short work of what was swept under the rug in APcalculus. Most of the proofs will thus actually be quite short, instead, we sit backand watch all the pieces slowly come together, the reward for our careful study oftopology beforehand.

    That said, if you are willing to suspend belief, you can actually read most of theother parts without knowing the exact details of all the calculus here, so in somesense this part is “optional”.

    IX. Complex Analysis.

    It turns out that holomorphic functions (complex-differentiable functions) areclose to the nicest things ever: they turn out to be given by a Taylor series (i.e. arebasically polynomials). This means we’ll be able to prove unreasonably nice resultsabout holomorphic functions C→ C, like

    – they are determined by just a few inputs,

    – their contour integrals are all zero,

    – they can’t be bounded unless they are constant,

    – . . . .

  • 38 Napkin, by Evan Chen (v1.5.20190220)

    We then introduce meromorphic functions, which are like quotients of holomor-phic functions, and find that we can detect their zeros by simply drawing loopsin the plane and integrating over them: the famous residue theorem appears.(In the practice problems, you will see this even gives us a way to evaluate realintegrals that can’t be evaluated otherwise.)

    X. Measure Theory.

    Measure theory is the upgraded version of integration. The Riemann integration isfor a lot of purposes not really sufficient; for example, if f is the function equalling 1at rational numbers but 0 at irrational numbers, we would hope that

    ∫ 10 f(x) dx = 0,

    but the Riemann integral is not capable of handling this function f .

    The Lebesgue integral will handle these mistakes by assigning a measure to ageneric space Ω, making it into a measure space. This will let us develop a richertheory of integration where the above integral does work out to zero because the“rational numbers have measure zero”. Even the development of the measure willbe an achievement, because it means we’ve developed a rigorous, complete way oftalking about what notions like area and volume mean — on any space, not justRn! So for example the Lebesgue integral will let us integrate functions over anymeasure space.

    XI. Probability (TO DO).

    Using the tools of measure theory, we’ll be able to start giving rigorous definitionsof probability, too. We’ll see that a random variable is actually a functionfrom a measure space of worlds to R, giving us a rigorous way to talk about itsprobabilities. We can then start actually stating results like the law of largenumbers and central limit theorem in ways that make them both easy to stateand straightforward to prove.

    XII. Differential Geometry.

    Multivariable calculus is often confusing because of all the partial derivatives. Butwe’ll find out that, armed with our good understanding of linear algebra, that we’rereally looking at a total derivative: at every point of a function f : Rn → R wecan associate a linear map Df which captures in one object the notion of partialderivatives. Set up this way, we’ll get to see versions of differential forms andStoke’s theorem, and we finally will know what the notation dx really means. Inthe end, we’ll say a little bit about manifolds in general.

    §0.4 Algebraic number theory

    XIII. Algebraic NT I: Rings of Integers.

    Why is 3 +√

    5 the conjugate of 3−√

    5? How come the norm∥∥a+ b

    √5∥∥ = a2− 5b2

    used in Pell equations just happens to be multiplicative? Why is it we can dofactoring into primes in Z[i] but not in Z[

    √−5]? All these questions and more will

    be answered in this part, when we learn about number fields, a generalizationof Q and Z to things like Q(

    √5) and Z[

    √5]. We’ll find out that we have unique

    factorization into prime ideals, that there is a real multiplicative norm in play here,and so on. We’ll also see that Pell’s equation falls out of this theory.

    XIV. Algebraic NT II: Galois and Ramification Theory.

  • 0 Sales pitches 39

    All the big buzz-words come out now: Galois groups, the Frob