an introduction to g-estimation with sample covariance matrices

41
An introduction to G-estimation with sample covariance matrices Xavier Mestre [email protected] Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) "Matrices aleatoires: applications aux communications numeriques et a l’estimation statistique" ENST (Paris), January 10, 2007

Upload: vunhi

Post on 03-Jan-2017

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An introduction to G-estimation with sample covariance matrices

An introduction to G-estimation with sample covariance matricesXavier Mestre

[email protected]

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)

"Matrices aleatoires: applications aux communications numeriques et a l’estimation statistique"

ENST (Paris), January 10, 2007

Page 2: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Outline

• Convergence of the eigenvalues and eigenvectors of the sample covariance matrix.• Characterization of the clusters/support of the asymptotic sample eigenvalue distribution.• The principle of G-estimation: M,N -consistency versus N -consistency. Some examples.

• An application in array signal processing: subspace-based estimation of directions-of-arrival (DoA).

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 2/41

Page 3: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

The sample covariance matrix

We assume that we collect N independent samples (snapshots) from an array of M antennas:RM =

1N

PNn=1 y(n)y

H(n).

It is usual to model the observations {y(n)} as independent, identically distributed random vectorswith zero mean and covariance RM .

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 3/41

Page 4: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

The sample covariance matrix

We assume that we collect N independent samples (snapshots) from an array of M antennas:RM =

1N

PNn=1 y(n)y

H(n). Example: RM has 4 eigenvalues {1, 2, 3, 7} with equal multiplicity.

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25Histogram of the eigenvalues of the sample covariance matrix, M=80, N=800

lambda

Num

ber

of e

igen

valu

es

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

30

lambda

Num

ber

of e

igen

valu

es

Histogram of the eigenvalues of the sample covariance matrix, M=400, N=4000

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 4/41

Page 5: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

The sample covariance matrix

We assume that we collect N independent samples (snapshots) from an array of M antennas:RM =

1N

PNn=1 y(n)y

H(n). Example: RM has 4 eigenvalues {1, 2, 3, 7} with equal multiplicity.

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25Histogram of the eigenvalues of the sample covariance matrix, M=80, N=800

lambda

Num

ber

of e

igen

valu

es

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

30

lambda

Num

ber

of e

igen

valu

es

Histogram of the eigenvalues of the sample covariance matrix, M=400, N=4000

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 5/41

Page 6: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

The sample covariance matrix: asymptotic properties

When both M,N → ∞, M/N → c, 0 < c < ∞, the e.d.f. of the eigenvalues of RM tends to adeterministic density function. Example: RM has 4 eigenvalues {1, 2, 3, 7} with equal multiplicity.

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Eigenvalues

Aysmptotic density of eigenvalues of the sample correlation matrix

c=0.01c=0.1c=1

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 6/41

Page 7: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Convergence of the eigenvalues and eigenvectors of the samplecovariance matrix

• Can we characterize the asymptotic sample eigenvalue behavior analytically? What about the eigen-vectors?

• We will consider the following two quantities:

bM (z) =1

Mtr

·³RM − zIM

´−1¸, mM (z) = a

H³RM − zIM

´−1b

where z ∈ C and a,b ∈ CM .

• Note that bM(z) depends only on the eigenvalues of RM , whereas mM(z) depends on both theeigenvalues and the eigenvectors of this matrix.

• Much of the asymptotic behavior of the eigenvalues and eigenvectors of RM can be inferred fromthis two quantities.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 7/41

Page 8: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Stieltjes transforms

The function bM(z) is the classical Stieltjes transform of the empirical distribution of eigenvalues:

bM (z) =1

M

MXm=1

1

λm − z=

Z1

λ− zdFRM

(λ)

where

FRM(λ) =

1

M#nm = 1 . . .M : λm ≤ λ

o=1

M

MXm=1

I³λm ≤ λ

´.

In the same way, mM(z) is the Stieltjes transform of a different empirical distribution function

mM(z) =MX

m=1

aHemeHmb

λm − z=

Z1

λ− zdGRM

(λ)

where

GRM(λ) =

MXm=1

aH emeHmb I

³λm ≤ λ

´.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 8/41

Page 9: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Graphical representation of the considered empirical distributionfunctions

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 9/41

Page 10: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Convergence of the eigenvalues and eigenvectors of the samplecovariance matrix

Theorem. Under some statistical assumptions,

|mM(z)− mM (z)|→ 0,¯bM (z)− bM(z)

¯→ 0

almost surely for all z ∈ C+ = {z ∈ C : Im [z] > 0} asM,N →∞ at the same rate, where bM (z) =b is the unique solution to the following equation in the set {b ∈ C : −(1− c)/z + cb ∈ C+}:

b =1

M

MXm=1

1

λm (1− c− czb)− z

and

mM (z) =fM (z)

zaH (RM − fM (z)IM )

−1 b, fM(z) =z

1− c− czbM(z).

Assuming that b(z) = limM→∞ bM(z) exists, then the asymptotic sample eigenvalue density can beobtained as q(x) = 1

π limy→0+ Im£b(x+ j y)

¤.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 10/41

Page 11: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Determining the support of q(x)

Consider the following equation in f , which has 2Q solutions (counting multiplicities)

Ψ (f) =1

M

MXm=1

µλm

λm − f

¶2=1

c.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 11/41

Page 12: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Determining the support of q(x)

The solutions are denotednf−1 , f

+1 , . . . , f

−Q , f

+Q

o. For each eigenvalue λm, there exists a single

q ∈ {1 . . . Q}, such that λm ∈¡f−q , f+q

¢. In other words, each eigenvalue is associated with a single

cluster, but one cluster may be associated with multiple eigenvalues.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 12/41

Page 13: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Determining the support of q(x)

It turns out that Q is the number of clusters in q(x), and the position of each cluster is given by

x+q = Φ(f+q ), x−q = Φ(f−q )

where the function Φ(f) is defined as

Φ(f) = f

Ã1− c

M

MXm=1

λmλm − f

!.

Hence, the support of q(x) can be expressed as S = £x−1 , x+1 ¤ ∪ . . . ∪ hx−Q, x+Qi .Note: It may happen that λm /∈ ¡x−q , x+q ¢. even when λm ∈ ¡f−q , f+q ¢.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 13/41

Page 14: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Determining the support of q(x)

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 14/41

Page 15: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Determining the support of q(x)

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 15/41

Page 16: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Splitting number for two clusters in q(x)

Given two consecutive eigenvalues {λm, λm+1} there exists a minimumnumber of samples per antennato guarantee that the corresponding eigenvalue clusters split.µ

N

M

¶min

>1

M

MXk=1

µλk

λk − ξ

¶2where ξ is the mth real valued solution to Ψ0 (f) = 0.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 16/41

Page 17: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Modeling the finite sample size effect using random matrix theory

RandomMatrix Theory offers the possibility of analyzing the behavior of different quantities dependingon RM when the sample size and the number of sensors/antennas have the same order of magnitude.

Assume that we want to analyze the asymptotic behavior of a certain scalar function of RM , namelyφ³RM

´.

• Traditional Approach: Assuming that the number of samples is high, we might establish thatφ³RM

´→ φ (RM ) in some stochastic sense as N →∞ while M remains fixed.

• New Approach: In order to characterize the situation where M,N have the same order ofmagnitude, one might consider the limit N,M → ∞, M/N → c, 0 < c < ∞. Note that, ingeneral, ¯

φ³RM

´− φ (RM )

¯9 0, N,M →∞,M/N → c

For example: ¯1

MtrhR−1M

i− 1

1− c

1

Mtr£R−1M

¤¯→ 0, c < 1.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 17/41

Page 18: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Using random matrix theory to analyze the finite sample size effect

Assume that the quantity that we need to characterize can be expressed in terms of a Stieltjestransform:

1

MtrhR−1M

i=1

M

MXm=1

1

λm=1

M

MXm=1

1

λm − z

¯¯z=0

= bM (0)

nR−1M

oi,j= uHi R

−1M uj = u

Hi

ÃMXm=1

emeHm

λm

!uj =

MXm=1

uHi emeHmuj

λm − z

¯¯z=0

= mM (0)

where ui =h0T 1|{z} 0T iT

ith position

. Now,

¯bM(z)− bM (z)

¯→ 0 “ =⇒ ”

¯1

MtrhR−1M

i− bM (0)

¯→ 0, bM(0) =

1

1− c

1

Mtr£R−1M

¤|mM(z)− mM (z)| → 0 “ =⇒ ”

¯nR−1M

oi,j− mM(0)

¯→ 0, mM(0) =

1

1− c

nR−1M

oi,j

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 18/41

Page 19: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Estimation under low sample support with random matrix theory

When designing an estimator of a certain scalar function ofRM , namely ϕ (RM), one can distinguishbetween:

• Traditional N-consistency: Consistency when N →∞ whileM remains fixed.

• M,N-consistency: Consistency whenM,N →∞ at the same rate.

We observe that M,N -consistency guarantees a good behavior when the number of samples N hasthe same order of magnitude as the observation dimensionM .

The objective of G-estimation (V.L. Girko) is to provide a systematic approach for the derivation ofM,N-consistent estimators of different scalar functions of the true covariance matrix. For example,the G-estimator of 1

M tr£R−1M

¤will be

(1− c)

MtrhR−1M

i.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 19/41

Page 20: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

The principle of G-estimation

We will assume that the quantity that we need to estimate, namely ϕ (RM ), can be expressed interms of the Stieltjes transforms associated with RM , namely

bM (ω) =1

Mtrh(RM − ωIM )

−1i, mM(ω) = a

H (RM − ωIM )−1 b.

For example, ©R−1M

ªi,j= uHi R

−1M uj = u

Hi

ÃMX

m=1

emeHm

λm

!uj = mM(0).

If we find M,N-consistent estimators of these two functions bM(ω), mM (ω), we will implicitly find(under some regularity conditions)M,N-consistent estimators of ϕ (RM ). The problem is, we don’thave access to bM (ω) and mM (ω) because the true covariance matrix RM is unknown.

We only have access to the sample covariance matrix, and hence

bM (z) =1

Mtr

·³RM − zIM

´−1¸, mM(z) = a

H³RM − zIM

´−1b.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 20/41

Page 21: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

The principle of G-estimation (ii)

Recall that, by definition, bM (z) and mM(z) are M,N -consistent estimators of bM(z) and mM(z)

respectively when z ∈ C+. Now bM(z) is solution to the equation

bM (z) =1

M

MXm=1

1

λm¡1− c− czbM (z)

¢− z

which can also be expressed as

bM(z) =fM (z)

z

1

M

MXm=1

1

λm − fM (z), fM (z) =

z

1− c− czbM (z).

Observe the similarity with bM (ω), the quantity that we need to estimate

bM(ω) =1

M

MXm=1

1

λm − ω.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 21/41

Page 22: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

The principle of G-estimation (iii)

Compare the quantity that needs to be estimated bM(ω) with zbM (z)/fM(z):

bM(ω) =1

M

MXm=1

1

λm − ω←→ 1

M

MXm=1

1

λm − fM (z)= z

bM(z)

fM (z).

Now, if the equation in zω = fM(z)

has a single solution, namely z = f−1M (ω), then

1

M

MXm=1

1

λm − ω=1

M

MXm=1

1

λm − fM(z)

¯¯z=f−1M (ω)

= zbM(z)

fM(z)

¯z=f−1M (ω)

= bM(z)¡1− c− czbM (z)

¢¯z=f−1M (ω)

.

As a conclusion, bM (ω) isM,N -consistently estimated by

GM (ω) = bM (z)³1− c− czbM (z)

´¯z=f−1M (ω)

.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 22/41

Page 23: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

An example of G-estimator

Assume that we want to estimate ϕ (RM) =1M tr

£R−2M

¤.

• We express ϕ (RM) as a function of bM(ω), namely

ϕ (RM ) =1

Mtr£R−2M

¤=1

M

MXm=1

1

λ2m=

d

"1

M

MXm=1

1

λm − ω

#ω=0

=dbM(ω)

¯ω=0

.

• The G-estimator is constructing replacing bM (ω) with the G-estimator G(ω), namely

ϕ (RM ) =dGM(ω)

¯ω=0

=d

·bM (z)

³1− c− czbM(z)

´¯z=f−1M (ω)

¸ω=0

=

= (1− c)21

MtrhR−2M

i− c (1− c)

µ1

MtrhR−1M

i¶2.

where we have used the chain rule, the inverse function theorem and the fact that 0 = fM(z) hasa single solution z = 0 whenever c < 1.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 23/41

Page 24: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

G-estimation of functions of mM(ω)

Assume that the function that we need to estimate ϕ (RM) can be expressed in terms of the Stieltjestransform mM (ω). In this case, the procedure to derive a G-estimator of ϕ (RM) boils down tofinding a G-estimator of mM(ω).

We recall that |mM (z)− mM (z)|→ 0 asM,N →∞ at the same rate, where

mM (z) =fM(z)

zaH (RM − fM(z)IM)

−1 b =fM(z)

z

MXm=1

aHemeHmb

λm − fM(z)

Compare now the above equation with the quantity that needs to be estimated, namely

mM (ω) =

MXm=1

aHemeHmb

λm − ω←→

MXm=1

aHemeHmb

λm − fM(z)= z

mM (z)

fM(z)= mM (z)

¡1− c− czbM(z)

¢.

Hence, if ω = fM (z) has a unique solution, then mM(ω) is M,N -consistently estimated by

H(ω) = mM(z)³1− c− czbM (z)

´¯z=f−1M (ω)

.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 24/41

Page 25: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Another example of G-estimator

Assume that we want to estimate ϕ (RM) =©R−1M

ªi,j.

• We express ϕ (RM) as a function of mM (ω), namely

ϕ (RM) = uHi R

−1M uj =

MXm=1

uHi emeHmuj

λm=

"MXm=1

uHi emeHmuj

λm − ω

#ω=0

= mM (ω)|ω=0 .

• The G-estimator is constructing replacing mM(ω) with the G-estimator H(ω), namely

ϕ (RM ) = H(ω)|ω=0 = mM(z)³1− c− czbM (z)

´¯z=f−1M (0)

= (1− c) mM (0) = (1− c)nR−1M

oi,j.

where we have used the fact that 0 = fM (z) has a single solution z = 0 whenever c < 1.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 25/41

Page 26: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Yet another example of G-estimator

Assume that we want to estimate ϕ (RM) =nR−1/2M

oi,j(whitening filter).

• Using the integral1√x=2

π

Z ∞0

1

x+ t2dt, x > 0,

We express ϕ (RM) as a function of mM (ω), namelynR−1/2M

oi,j=2

π

Z ∞0

uHi£RM + t2IM

¤−1ujdt =

2

π

Z ∞0

mM (−t2)dt

• If c < 1, the equation fM(z) = −t2 has a unique solution for any t ∈ R. The G-estimator isconstructing replacing mM (ω) with the G-estimator H(ω), namely

ϕ (RM ) =2

π

Z ∞0

mM(z)³1− c− czbM (z)

´¯z=f−1M (−t2)

dt =

=2

π

Z ∞0

MXm=1

uHi emeHmuj

λm − f−1M (−t2)

Ã1− c− cz

1

M

MXk=1

1

λk − f−1M (−t2)

!dt

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 26/41

Page 27: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Solutions to the equation ω = fM(z)

It turns out that fM (z) can be obtained as a particular root of the polynomial equation in f

Φ(f ) = f

Ã1− c

M

MXm=1

λmλm − f

!= z.

• If there exists a root f ∈ C+, it is unique and we choose fM (z) = f .

• Otherwise, all the roots are real, but there is only one root such that Φ0(f) > 0 or, equivalently,1

M

MXm=1

µλm

λm − f

¶2≤ 1

c

and we choose fM (z) = f .

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 27/41

Page 28: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Solutions to the equation ω = fM(x) for ω ∈ R

c < 1 c > 1

The equation has a unique solution when ω ∈ R\ £f−1 , f+1 ¤ ∪ . . . ∪ hf−Q , f+Qi.Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 28/41

Page 29: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Application to subspace-based DoA estimation. Introduction andsignal model

We consider DoA detection based on subspace approaches (MUSIC), that exploit the orthogonalitybetween signal and noise subspaces.

Consider a set of K sources impinging on an array of M sensors/antennas. We work with a fixednumber of snapshots N ,

{y(1), . . . ,y(N)}assumed i.i.d., with zero mean and covariance RM .

The true spatial covariance matrix can be described as

RM= S (Θ)ΦSS (Θ)H + σ2IM

where S (Θ) is anM ×K matrix that contains the steering vectors corresponding to the K differentsources,

S (Θ) =£s (θ1) s (θ2) · · · s (θK)

¤and σ2 is the background noise power.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 29/41

Page 30: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Introduction and signal model (ii)

The eigendecomposition of RM allows us to differentiate between signal and noise subspaces:

RM =£ES EN

¤ · ΛS 0

0 σ2IM−K

¸ £ES EN

¤H.

It turns out that EHNs (θk)= 0, k = 1 . . . K.

Since RM is unknown, one must work with the sample covariance matrix

RM =1

N

NXn=1

y(n)yH(n).

The MUSIC algorithm uses the sample noise eigenvectors, and searches for the deepest local minimaof the cost function

ηMUSIC (θ) = sH (θ) ENE

HNs (θ) .

It is interesting to investigate the behavior of ηMUSIC (θ)whenM,N have the same order of magnitude.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 30/41

Page 31: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Noise sample eigenvalue cluster separation assumption

In our asymptotic approach, we assume that there exists separation between noise and signal eigenvalueclusters in the asymptotic sample eigenvalue distribution.

This implies that there is a minimum number of samples per antenna:µN

M

¶>1

M

MXm=1

µλm

λm − ξ

¶2where ξ is the smallest real valued solution to the following equation:

1

M

MXm=1

λ2m

(λm − ξ)3= 0.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 31/41

Page 32: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Asymptotic behavior of MUSIC

The MUSIC algorithm suffers from the breakdown effect. The performance breaks down whenthe number of samples or the SNR falls below a certain threshold. Cause: EN is not a very goodestimator of EN whenM,N have the same order of magnitude.

The performance breakdown effect can be easily analyzed using randommatrix theory, especially undera noise eigenvalue separation assumption: |ηMUSIC (θ)− ηMUSIC (θ)|→ 0

ηMUSIC (θ) = sH (θ)

ÃMXk=1

w(k)ekeHk

!s (θ)

w(k) =

1− 1M−K

PMr=M−K+1

³σ2

λr−σ2 −µ1

λr−µ1

´k ≤M −K

σ2

λk−σ2 −µ1

λk−µ1k > M −K

where {µr, r = 1, . . . ,M} are the solutions to 1M

PMr=1

λrλr−µ =

1c .

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 32/41

Page 33: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Asymptotic behavior of MUSIC: an example

We consider a scenario with two sources impinging on a ULA (d/λc = 0.5, M = 20) from DoAs:35◦, 37◦.

−100 −80 −60 −40 −20 0 20 40 60 80 100−35

−30

−25

−20

−15

−10

−5

0MUSIC asymptotic pseudospectrum, M=20, DoAs=[35,37]deg

Azimuth (deg)

32 34 36 38 40−32

−30

−28

−26

−24

−22

−20

−18

N=25N=15

SNR=12dB

SNR=17dB

2 4 6 8 10 12 14 16 18 20

25

30

35

40

45

50

SNR (dB)

Azi

mut

h (d

eg)

Position of the two deepest local minima of the asymptotic MUSIC cost function

10 12 1435

36

37

N=15N=25

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 33/41

Page 34: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

M,N-consistent subspace detection: G-MUSIC

We propose to use anM,N-consistent estimator of the cost function η (θ) = sH (θ)ENEHNs (θ):

ηG-MUSIC (θ) = sH (θ)

ÃMXk=1

φ(k)ekeHk

!s (θ)

φ(k) =

1 +PM

r=M−K+1³

λrλk−λr −

µrλk−µr

´k ≤M −K

−PM−Kr=1

³λr

λk−λr −µr

λk−µr

´k > M −K

where now µ1, . . . , µM are the solutions to the equation

1

M

MXk=1

λk

λk − µ=1

c.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 34/41

Page 35: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Sketch of the derivation

The quantity that needs to be estimated can be written as

η (θ) = sH (θ)ENEHNs (θ) = ks (θ)k2 − sH (θ)ESE

HS s (θ)

sH (θ)ESEHS s (θ) =

1

2π j

IC−mM(ω)dω

wheremM (ω) = s

H (θ) (RM − ωIM)−1 s (θ)

and C− is a negatively oriented contour enclosing only the signal eigenvalues {λM−K+1, . . . , λM}.The idea of the derivation is based on obtaining a proper parametrization of the contour C−.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 35/41

Page 36: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Sketch of the derivation (ii)

The derivation is based on the following random matrix theory result. Let

mM (z) = sH (θ)

³RM − zIM

´−1s (θ) , bM(z) =

1

Mtr

·³RM − zIM

´−1¸It turns out that

|mM(z)− mM (z)|→ 0,¯bM (z)− bM(z)

¯→ 0

almost surely for all z ∈ C+ asM,N →∞ at the same rate, where bM(z) = b is the unique solutionto the following equation in the set {b ∈ C : −(1− c)/z + cb ∈ C+}:

b =1

M

MXm=1

1

λm (1− c− czb)− z

and

mM(z) =fM (z)

zsH (θ) (RM − fM (z)IM )

−1 s (θ) , fM(z) =z

1− c− czbM(z).

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 36/41

Page 37: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Sketch of the derivation (iii)

It turns out that, surprisingly enough, fM (x) gives us a valid parametrization of C−:

η (θ) = sH (θ)ENEHNs (θ) = ks (θ)k2 −

1

πIm

·Z σ2

σ1

mM (fM(x))f0M(x)dx

¸

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 37/41

Page 38: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Sketch of the derivation (iv)

From this point, we can express the integral in terms of mM (z) and bM(z), namely

η (θ) = ks (θ)k2 − 1

2π j

IC−mM (ω)dω = ks (θ)k2 − 1

πIm

·Z σ2

σ1

mM(x)1− c + cx2b0M(x)1− c− cxbM (x)

dx

¸and we only need to replace m(z) and b(z) with their M,N -consistent estimates:

ηG-MUSIC (θ) = ks (θ)k2 −1

πIm

"Z σ2

σ1

mM(x)1− c + cx2b0M(x)

1− c− cxbM(x)dx

#.

Integrating this expression, we get to the proposed estimator:

ηG-MUSIC (θ) = sH (θ)

ÃMXk=1

φ(k)ekeHk

!s (θ)

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 38/41

Page 39: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Performance evaluation MUSIC vs. G-MUSIC

Comparative evaluation of MUSIC and G-MUSIC via simulations. Scenarios with four(−20◦,−10◦, 35◦, 37◦) and two (35◦, 37◦) sources respectively, ULA (M = 20, d/λc = 0.5).

−80 −60 −40 −20 0 20 40 60 8010

−4

10−3

10−2

10−1

100

Example of MUSIC and GMUSIC cost function, SNR=18dB, M=20, N=15, DoAs=35, 37, −10, −20 deg.

Angle of arrival (azimuth), degrees

MUSICGMUSIC

34 36 3810

−4

10−3

10−2

5 10 15 20 2510

−3

10−2

10−1

100

101

102

103

104

SNR (dB)

MS

E

Mean Squared Error

MUSICGMUSICCRB

M=20, N=15

M=20, N=75

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 39/41

Page 40: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Some references

J. Silverstein, “Strong convergence of the empirical distribution of eigenvalues of large dimensionalrandom matrices,” Journal of Multivariate Analysis, vol. 5, pp. 331—339, 1995.

V. Girko, An Introduction to Statistical Analysis of Random Arrays. The Netherlands: VSP, 1998.

J. Silverstein and P. Combettes, “Signal detection via spectral theory of large dimensional randommatrices,” IEEE Trans. on Signal Processing, vol. 40, pp. 2100—2105, Aug. 1992.

X. Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated subspacesusing their sample estimates,” 2006. Preprint. Available at http://www.cttc.es/drafts/cttc-rc-2006-004.pdf.

Z. Bai and J. Silverstein, “No eigenvalues outside the support of the limiting spectral distribution oflarge dimensional sample covariance matrices,” Annals of probability, vol. 26, pp. 316—345, 1998.

Z. Bai and J. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample CovarianceMatrices,” Annals of probability, vol. 27, pp. 1536-1555, 1999.

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 40/41

Page 41: An introduction to G-estimation with sample covariance matrices

Centre Tecnològic de Telecomunicacions de Catalunya - CTTCParc Mediterrani de la Tecnologia, Castelldefels (Barcelona), Spain, http://www.cttc.cat/

Thank you for your attention!!!

Xavier Mestre: An introduction to G-estimation with sample covariance matrices. 41/41