an introduction to the virtual element method

58
An introduction to the Virtual Element Method L. Beirão da Veiga Department of Mathematics University of Milan in collaboration with: F. Brezzi, A. Cangiani, D. Marini, G. Manzini, A. Russo DURHAM, July 2014 L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 1 / 35

Upload: others

Post on 11-Sep-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An introduction to the Virtual Element Method

An introduction to the Virtual Element Method

L. Beirão da VeigaDepartment of Mathematics

University of Milan

in collaboration with:

F. Brezzi, A. Cangiani, D. Marini, G. Manzini, A. Russo

DURHAM, July 2014

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 1 / 35

Page 2: An introduction to the Virtual Element Method

The Virtual Element Method

The Virtual Element Method (VEM) is a generalization of the FiniteElement Method that takes inspiration from modern Mimetic FiniteDifference schemes.

VEM allow to use very general polygonal and polyhedral meshes,also for high polynomial degrees and guaranteeing the patch test.The flexibility of VEM is not limited to the mesh: an example willbe shown later.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 2 / 35

Page 3: An introduction to the Virtual Element Method

Why polygons/polyhedrons?

The interest (and use in commercial codes?) for polygons/polyhedra isrecently growing.

Immediate combination of tets and hexahedrons

Easier/better meshing of domain (and data) features

Automatic inclusion of “hanging nodes”

Adaptivity: more efficient mesh refinement/coarsening

Generate meshes with more local rotational simmetries

Robustness to distortion

.......

? for example CD-ADAPCO and ANSYS.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 3 / 35

Page 4: An introduction to the Virtual Element Method

Some polytopal methods

Mimetic F.D. Shashkov, Lipnikov, Brezzi, Manzini, BdV, ....

HMM: Eymard, Droniou, ...

Polygonal FEM: Sukumar, Paulino, ...

Weak Galerkin FEM: Wang, ....

HHO: Ern, di Pietro

Polygonal DG: Cangiani, Houston, Georgoulis, ...

VEM: this talk !!!

..........

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 4 / 35

Page 5: An introduction to the Virtual Element Method

The model problem

We consider the Poisson problem in two dimensions

−∆u = f in Ω, u = 0 on ∂Ω,

whereΩ ⊂ R2 is a polygonal domain;the loading f is assumed in L2(Ω).

Variational formulation:

find u ∈ V := H10 (Ω) such that

a(u, v) =

Ωf v dx ∀v ∈ V ,

wherea(v ,w) =

Ω∇v · ∇w dx , ∀v ,w ∈ V .

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 5 / 35

Page 6: An introduction to the Virtual Element Method

A Virtual Element Method

We will build a discrete problem in following form

find uh ∈ Vh such thatah(uh, vh) =< fh, vh > ∀ vh ∈ Vh,

whereVh ⊂ V is a finite dimensional space;ah(·, ·) : Vh ×Vh → R is a discrete bilinear form approximating thecontinuous form a(·, ·);< fh,vh > is a right hand side term approximating the load

Let m ≥ 1 be a fixed integer index. Such index will represent thedegree of accuracy of the method.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 6 / 35

Page 7: An introduction to the Virtual Element Method

A Virtual Element Method

We will build a discrete problem in following form

find uh ∈ Vh such thatah(uh, vh) =< fh, vh > ∀ vh ∈ Vh,

whereVh ⊂ V is a finite dimensional space;ah(·, ·) : Vh ×Vh → R is a discrete bilinear form approximating thecontinuous form a(·, ·);< fh,vh > is a right hand side term approximating the load

Let m ≥ 1 be a fixed integer index. Such index will represent thedegree of accuracy of the method.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 6 / 35

Page 8: An introduction to the Virtual Element Method

The local spaces Vh|E

Let Ωh be a simple polygonal mesh on Ω. This can be anydecomposition of Ω in non overlapping polygons E with straight faces.

The space Vh will be defined element-wise, by introducinglocal spaces Vh|E ;the associated local degrees of freedom.

For all E ∈ Ωh:

Vh|E =

v ∈ H1(E) : −∆v ∈ Pm−2(E),

v |e ∈ Pm(e) ∀e ∈ ∂E.

the functions v ∈ Vh|E are continuous (and known) on ∂E ;the functions v ∈ Vh|E are unknown inside the element E !it holds Pm(E) ⊆ Vh|E

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 7 / 35

Page 9: An introduction to the Virtual Element Method

The local spaces Vh|E

Let Ωh be a simple polygonal mesh on Ω. This can be anydecomposition of Ω in non overlapping polygons E with straight faces.

The space Vh will be defined element-wise, by introducinglocal spaces Vh|E ;the associated local degrees of freedom.

For all E ∈ Ωh:

Vh|E =

v ∈ H1(E) : −∆v ∈ Pm−2(E),

v |e ∈ Pm(e) ∀e ∈ ∂E.

the functions v ∈ Vh|E are continuous (and known) on ∂E ;the functions v ∈ Vh|E are unknown inside the element E !it holds Pm(E) ⊆ Vh|E

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 7 / 35

Page 10: An introduction to the Virtual Element Method

The local spaces Vh|E

Let Ωh be a simple polygonal mesh on Ω. This can be anydecomposition of Ω in non overlapping polygons E with straight faces.

The space Vh will be defined element-wise, by introducinglocal spaces Vh|E ;the associated local degrees of freedom.

For all E ∈ Ωh:

Vh|E =

v ∈ H1(E) : −∆v ∈ Pm−2(E),

v |e ∈ Pm(e) ∀e ∈ ∂E.

the functions v ∈ Vh|E are continuous (and known) on ∂E ;the functions v ∈ Vh|E are unknown inside the element E !it holds Pm(E) ⊆ Vh|E

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 7 / 35

Page 11: An introduction to the Virtual Element Method

Degrees of freedom for Vh|E

The dimension of the space Vh|E is clearly

dim(Vh|E ) = Ne m + m(m − 1)/2,

with Ne number of edges of E .

pointwise values vh(ν) at all corners ν of E ;(m − 1) pointwise values on each edge:

vh(xei ) , xe

i m−1i=1 distinct points on edge e ;

volume moments:∫

Evh · pm−2 ∀pm−2 ∈ Pm−2(E) .

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 8 / 35

Page 12: An introduction to the Virtual Element Method

Degrees of freedom for Vh|E

The dimension of the space Vh|E is clearly

dim(Vh|E ) = Ne m + m(m − 1)/2,

with Ne number of edges of E .

pointwise values vh(ν) at all corners ν of E ;(m − 1) pointwise values on each edge:

vh(xei ) , xe

i m−1i=1 distinct points on edge e ;

volume moments:∫

Evh · pm−2 ∀pm−2 ∈ Pm−2(E) .

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 8 / 35

Page 13: An introduction to the Virtual Element Method

Depiction of the degrees of freedom for Vh|E

m=1 m=2 m=3

Green dots stand for vertex pointwise valuesRed squares represent edge pointwise valuesBlue squares represent internal (volume) moments

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 9 / 35

Page 14: An introduction to the Virtual Element Method

Degrees of freedom for Vh|E

The following holds[BdV,Brezzi,Cangiani,Manzini,Marini,Russo, M3AS 2013].

PropositionThe proposed collection of operators Vh|E → R constitutes a set ofdegrees of freedom for Vh|E , ∀E ∈ Vh|E .

We already know #dofs = dim(Vh|E ).If vh ∈ Vh|E is null on all the d.o.f.s, then it clearly vanishes on theboundary.The function ∆vh ∈ Pm−2 and thus

0 =

Evh ·∆vh =

E(∇vh) · (∇vh).

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 10 / 35

Page 15: An introduction to the Virtual Element Method

The space Vh

The global space Vh is built by assembling the local spaces Vh|E asusual:

Vh = v ∈ H10 (Ω) : v |E ∈ Vh|E ∀E ∈ Ωh

The total d.o.f.s are one per internal vertex, m − 1 per internal edgeand m(m − 1)/2 per element.

The choice of degrees of freedom guarantees the global continuity ofthe functions in Vh.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 11 / 35

Page 16: An introduction to the Virtual Element Method

The bilinear form ah(·, ·)

The bilinear form ah(·, ·) is built element by element

ah(vh,wh) =∑

E∈Ωh

aEh (vh,wh) ∀ vh, wh ∈ Vh,

whereaE

h (·, ·) : Vh|E × Vh|E −→ R

are symmetric bilinear forms that mimic

aEh (·, ·) ' a(·, ·)|E

by satisfying a stability and a consistency condition.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 12 / 35

Page 17: An introduction to the Virtual Element Method

The stability property

StabilityThere exist two positive constants α∗ and α∗, independent of h and ofE , such that

α∗ aE (vh, vh) ≤ aEh (vh, vh) ≤ α∗ aE (vh, vh) ∀vh ∈ Vh|E .

The stability property guarantees that ah(·, ·) is uniformly coerciveand continuous;

clearly, it is sufficient for the (uniform) well posedness of thediscrete problem, but not for convergence.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 13 / 35

Page 18: An introduction to the Virtual Element Method

The consistency property

ConsistencyFor all h and for all E ∈ Ωh it holds

aEh (p, vh) = aE (p, vh) ∀p ∈ Pm(E), vh ∈ Vh|E .

NOTE: an integration by parts gives

aE (p, vh) =

E∇p · ∇vh dx

= −∫

E(∆p) vh dx +

∂E(∇p · nE ) vh ds.

for all p ∈ Pm(E), vh ∈ Vh|E .

Therefore the right hand side above is explicitly computable even if weignore vh inside E .

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 14 / 35

Page 19: An introduction to the Virtual Element Method

The consistency property

ConsistencyFor all h and for all E ∈ Ωh it holds

aEh (p, vh) = aE (p, vh) ∀p ∈ Pm(E), vh ∈ Vh|E .

NOTE: an integration by parts gives

aE (p, vh) =

E∇p · ∇vh dx

= −∫

E(∆p) vh dx +

∂E(∇p · nE ) vh ds.

for all p ∈ Pm(E), vh ∈ Vh|E .

Therefore the right hand side above is explicitly computable even if weignore vh inside E .

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 14 / 35

Page 20: An introduction to the Virtual Element Method

The discrete load term

We consider m ≥ 2 first. Let, for all E ∈ Ωh, the approximated load fh|Ebe the L2-projection of f |E on Pm−2(E) .

Then(fh, vh)h :=

E∈Ωh

Efhvh dx

that is computable due to the internal dofs of Vh|E .

In the case m = 1 a simple integration rule based on the vertex valuesof the polygon can be used, for instance

(fh, vh)h :=∑

E∈Ωh

(∫

Ef dx

) 1NE

ν∈∂E

vh(ν) dx .

Note: for m = 2 better choices can be made [Ahmad, Alsaedi, Brezzi,Marini, Russo, CMA 2013], [BdV, Brezzi, Marini, SINUM 2013].

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 15 / 35

Page 21: An introduction to the Virtual Element Method

The discrete load term

We consider m ≥ 2 first. Let, for all E ∈ Ωh, the approximated load fh|Ebe the L2-projection of f |E on Pm−2(E) .

Then(fh, vh)h :=

E∈Ωh

Efhvh dx

that is computable due to the internal dofs of Vh|E .

In the case m = 1 a simple integration rule based on the vertex valuesof the polygon can be used, for instance

(fh, vh)h :=∑

E∈Ωh

(∫

Ef dx

) 1NE

ν∈∂E

vh(ν) dx .

Note: for m = 2 better choices can be made [Ahmad, Alsaedi, Brezzi,Marini, Russo, CMA 2013], [BdV, Brezzi, Marini, SINUM 2013].

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 15 / 35

Page 22: An introduction to the Virtual Element Method

A convergence result

Let the sequence Ωhh satisfy the following mesh assumptions:

each element E in Ωh is star-shaped with respect to a ball ofuniform radius

(or suitable union of

);

for each element E in Ωh, the lenght of all edges is comparablewith its diameter hE

(not needed by paying |log(he)|

).

Then the following holds [... volley team ..., M3AS 2013].

TheoremLet the stability and consistency assumptions hold. Then, if f ∈ Hs(Ωh)and u ∈ Hs+1(Ωh), we have

|u − uh|H1(Ω) ≤ C hs (|u|Hs+1(Ωh) + |f |Hs(Ωh)

)

for 0 ≤ s ≤ m and with C independent of h.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 16 / 35

Page 23: An introduction to the Virtual Element Method

k-plain

−div(K∇u) + αu = f

exact solution:

ue(x, y) = y − x + logy3 + x + 1

− x y − x y2 + x2 y + x2 + x3 + sin(5 x) sin(7 y) − 1

diffusion:

K(x, y) = 1

zero-order term:

α(x, y) = 1

right-hand-side:

f(x, y) = logy3 + x + 1

− y − 5 x +

1

(y3 + x + 1)2 +9 y4

(y3 + x + 1)2 − x y − x y2 + x2 y + x2 + x3 − 6 y

y3 + x + 1+ 75 sin(5 x) sin(7 y) − 3

L2 norm of the exact solution:

||ue||0,Ω = 0.6431084584

H1 seminorm of the exact solution:

|ue|1,Ω = 5.031264492

Generated by genue on 09-Nov-2013 16:08:59

Page 24: An introduction to the Virtual Element Method

10−2

10−1

100

10−8

10−7

10−6

10−5

10−4

10−3

10−2

h=hmean slope: ||Π0uh−u

e||

0,Ω = 4.011, ||Π∇u

h−u

e||

0,Ω = 4.014

h1

h2

h3

h4

h5

||Π0uh−u

e||

0,Ω

||Π∇uh−u

e||

0,Ω

10−2

10−1

100

10−6

10−5

10−4

10−3

10−2

10−1

100

h=hmean slope: ||∇Π0u

h−∇u

e||

0,Ω = 3.010, ||∇Π

∇uh−∇u

e||

0,Ω = 3.013

h1

h2

h3

h4

h5

||∇Π0u

h−∇u

e||

0,Ω

||∇Π∇u

h−∇u

e||

0,Ω

L2 error k = 3 H1 error

triangle0.0188 polygons, h

max = 0.174116, h

mean = 0.149291

triangle0.005177 polygons, h

max = 0.133616, h

mean = 0.107452

triangle0.001809 polygons, h

max = 0.063418, h

mean = 0.049083

triangle0.00051627 polygons, h

max = 0.044872, h

mean = 0.034516

triangle0.00017921 polygons, h

max = 0.019754, h

mean = 0.015641

Page 25: An introduction to the Virtual Element Method

10−2

10−1

100

10−10

10−9

10−8

10−7

10−6

10−5

10−4

h=hmean slope: ||Π0uh−u

e||

0,Ω = 5.009, ||Π∇u

h−u

e||

0,Ω = 5.017

h1

h2

h3

h4

h5

||Π0uh−u

e||

0,Ω

||Π∇uh−u

e||

0,Ω

10−2

10−1

100

10−8

10−7

10−6

10−5

10−4

10−3

10−2

h=hmean slope: ||∇Π0u

h−∇u

e||

0,Ω = 4.003, ||∇Π

∇uh−∇u

e||

0,Ω = 4.013

h1

h2

h3

h4

h5

||∇Π0u

h−∇u

e||

0,Ω

||∇Π∇u

h−∇u

e||

0,Ω

L2 error k = 4 H1 error

triangle0.0188 polygons, h

max = 0.174116, h

mean = 0.149291

triangle0.005177 polygons, h

max = 0.133616, h

mean = 0.107452

triangle0.001809 polygons, h

max = 0.063418, h

mean = 0.049083

triangle0.00051627 polygons, h

max = 0.044872, h

mean = 0.034516

triangle0.00017921 polygons, h

max = 0.019754, h

mean = 0.015641

Page 26: An introduction to the Virtual Element Method

10−2

10−1

100

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

h=hmean slope: ||Π0uh−u

e||

0,Ω = 5.928, ||Π∇u

h−u

e||

0,Ω = 5.871

h1

h2

h3

h4

h5

||Π0uh−u

e||

0,Ω

||Π∇uh−u

e||

0,Ω

10−2

10−1

100

10−10

10−9

10−8

10−7

10−6

10−5

10−4

h=hmean slope: ||∇Π0u

h−∇u

e||

0,Ω = 5.020, ||∇Π

∇uh−∇u

e||

0,Ω = 5.010

h1

h2

h3

h4

h5

||∇Π0u

h−∇u

e||

0,Ω

||∇Π∇u

h−∇u

e||

0,Ω

L2 error k = 5 H1 error

triangle0.0188 polygons, h

max = 0.174116, h

mean = 0.149291

triangle0.005177 polygons, h

max = 0.133616, h

mean = 0.107452

triangle0.001809 polygons, h

max = 0.063418, h

mean = 0.049083

triangle0.00051627 polygons, h

max = 0.044872, h

mean = 0.034516

triangle0.00017921 polygons, h

max = 0.019754, h

mean = 0.015641

Page 27: An introduction to the Virtual Element Method

Just for fun ...

We consider a family of meshes based on the following pattern:

Courtesy of A. Russo !!

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 17 / 35

Page 28: An introduction to the Virtual Element Method

−∆u = f

10−2

10−1

100

10−5

10−4

10−3

10−2

10−1

h=hmean slope: ||Π0uh−u

e||

0,Ω = 3.989

h1

h2

h3

h4||Π0u

h−u

e||

0,Ω

10−2

10−1

100

10−4

10−3

10−2

10−1

100

101

h=hmean slope: ||∇Π 0uh−∇ u

e||

0,Ω = 3.009

h1

h2

h3

h4

||∇Π 0uh−∇ u

e||

0,Ω

L2 error k = 3 H1 error

VEM−2x228 polygons, Ndof=627, h

max = 5.21e−01, h

mean = 4.46e−01

VEM−4x4112 polygons, Ndof=2445, h

max = 2.60e−01, h

mean = 2.23e−01

VEM−8x8448 polygons, Ndof=9657, h

max = 1.30e−01, h

mean = 1.11e−01

VEM−16x161792 polygons, Ndof=38385, h

max = 6.51e−02, h

mean = 5.57e−02

Generated by ploterrors on 29-Jun-2014 18:40:30

Page 29: An introduction to the Virtual Element Method

−∆u = f

10−2

10−1

100

10−7

10−6

10−5

10−4

10−3

10−2

10−1

h=hmean slope: ||Π0uh−u

e||

0,Ω = 4.991

h1

h2

h3

h4

h5

||Π0uh−u

e||

0,Ω

10−2

10−1

100

10−5

10−4

10−3

10−2

10−1

100

101

h=hmean slope: ||∇Π 0uh−∇ u

e||

0,Ω = 3.982

h1

h2

h3

h4

h5

||∇Π 0uh−∇ u

e||

0,Ω

L2 error k = 4 H1 error

VEM−2x228 polygons, Ndof=901, h

max = 5.21e−01, h

mean = 4.46e−01

VEM−4x4112 polygons, Ndof=3521, h

max = 2.60e−01, h

mean = 2.23e−01

VEM−8x8448 polygons, Ndof=13921, h

max = 1.30e−01, h

mean = 1.11e−01

VEM−16x161792 polygons, Ndof=55361, h

max = 6.51e−02, h

mean = 5.57e−02

Generated by ploterrors on 29-Jun-2014 18:50:05

Page 30: An introduction to the Virtual Element Method

Construction of the stiffness matrix

We introduce the following energy projector

Π : Vh|E −→ Pm(E)

defined by, for all vh ∈ Vh|E ,

aE (Πvh,p) = aE (vh,p) ∀p ∈ Pm(E)/RP0(Πvh) = P0(vh)

The operator P0 is a projection on constants, that for m ≥ 2 is simplythe average, and for m = 1 the vertex value average.

NOTE: due to the consistency assumption, the projection operatorabove is computable (more later).

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 18 / 35

Page 31: An introduction to the Virtual Element Method

Construction of the stiffness matrix

It is immediate to check that ∀ vh,wh ∈ Vh|E

aE (vh,wh) = aE (Πvh,Πwh) + aE ((I − Π)vh, (I − Π)wh).

Then the bilinear form

aEh (vh,wh) = aE (Πvh,Πwh) + sE ((I − Π)vh, (I − Π)wh)

is consistent and stable, provided the positive bilinear formsE : Vh|E × Vh|E → R scales like the original bilinear form a.

Let now the local stiffness matrix ME

MEij := aE

h (φi , φj) ∀i , j = 1,2, ...,N

with φi the canonical basis associated to the degrees of freedom.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 19 / 35

Page 32: An introduction to the Virtual Element Method

Construction of the stiffness matrix

It is immediate to check that ∀ vh,wh ∈ Vh|E

aE (vh,wh) = aE (Πvh,Πwh) + aE ((I − Π)vh, (I − Π)wh).

Then the bilinear form

aEh (vh,wh) = aE (Πvh,Πwh) + sE ((I − Π)vh, (I − Π)wh)

is consistent and stable, provided the positive bilinear formsE : Vh|E × Vh|E → R scales like the original bilinear form a.

Let now the local stiffness matrix ME

MEij := aE

h (φi , φj) ∀i , j = 1,2, ...,N

with φi the canonical basis associated to the degrees of freedom.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 19 / 35

Page 33: An introduction to the Virtual Element Method

Construction of the stiffness matrix

We introduce also mαnα=1 a basis for the polynomial space

Pm = spanmαnα=1.

Since Pm ⊆ Vh|E , the matrix

D =

dof1(m1) dof1(m2) . . . dof1(mn)dof2(m1) dof2(m2) . . . dof2(mn)

......

. . ....

dofN(m1) dofN(m2) . . . dofN(mn)

.

expresses the mα in terms of the Vh|E basis.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 20 / 35

Page 34: An introduction to the Virtual Element Method

Construction of the stiffness matrix

We have also a matrix

B =

P0φ1 . . . P0φNaE (φ1,m2) . . . aE (φN ,m2)

.... . .

...aE (φ1,mn) . . . aE (φN ,mn)

expressing (in terms of the bases) the right hand side in the definition

aE (Πvh,p) = aE (vh,p) ∀p ∈ Pm(E)/RP0(Πvh) = P0(vh)

NOTE: such matrix is computable! (integration by parts and d.o.f.sdefinition)

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 21 / 35

Page 35: An introduction to the Virtual Element Method

Construction of the stiffness matrix

Let

G = BD =

P0m1 P0m2 . . . P0mn0

(∇m2,∇m2

)0,P . . .

(∇m2,∇mn

)0,P

......

. . ....

0(∇mn,∇m2

)0,P . . .

(∇mn,∇mn

)0,P

.

Compute the matrices corresponding to the projection operator:

Π? = (G)−1B , Π = DΠ?.

Finally compute the local stiffness matrix

ME = ΠT? GΠ? + (I−Π)T (I−Π).

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 22 / 35

Page 36: An introduction to the Virtual Element Method

Construction of the stiffness matrix

Let

G = BD =

P0m1 P0m2 . . . P0mn0

(∇m2,∇m2

)0,P . . .

(∇m2,∇mn

)0,P

......

. . ....

0(∇mn,∇m2

)0,P . . .

(∇mn,∇mn

)0,P

.

Compute the matrices corresponding to the projection operator:

Π? = (G)−1B , Π = DΠ?.

Finally compute the local stiffness matrix

ME = ΠT? GΠ? + (I−Π)T (I−Π).

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 22 / 35

Page 37: An introduction to the Virtual Element Method

Construction of the stiffness matrix

Let

G = BD =

P0m1 P0m2 . . . P0mn0

(∇m2,∇m2

)0,P . . .

(∇m2,∇mn

)0,P

......

. . ....

0(∇mn,∇m2

)0,P . . .

(∇mn,∇mn

)0,P

.

Compute the matrices corresponding to the projection operator:

Π? = (G)−1B , Π = DΠ?.

Finally compute the local stiffness matrix

ME = ΠT? GΠ? + (I−Π)T (I−Π).

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 22 / 35

Page 38: An introduction to the Virtual Element Method

The three dimensional case

In principle the 3D case is analogous; the degrees of freedom are

one point value per vertex(m − 1) point values per edgeM f

0,Mf1, ..,M

fm−1 moments per face

ME0 ,M

E1 , ..,M

Em−2 moments per element.

A more efficient formulation with less degrees of freedom per faceM f

0,Mf1, ..,M

fm−2 moments per face

can be built using the L2 projector in [Ahmed, Alsaedi, Brezzi, Marini,Russo, CMA 2013].

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 23 / 35

Page 39: An introduction to the Virtual Element Method

The three dimensional case

In principle the 3D case is analogous; the degrees of freedom are

one point value per vertex(m − 1) point values per edgeM f

0,Mf1, ..,M

fm−1 moments per face

ME0 ,M

E1 , ..,M

Em−2 moments per element.

A more efficient formulation with less degrees of freedom per faceM f

0,Mf1, ..,M

fm−2 moments per face

can be built using the L2 projector in [Ahmed, Alsaedi, Brezzi, Marini,Russo, CMA 2013].

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 23 / 35

Page 40: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: introduction

Consider the diffusion problem in mixed form

Find F ∈ V := Hdiv(Ω),p ∈ Q := L2(Ω) :∫

ΩF ·G +

Ω(divG)p = 0 ∀G ∈ V ,

Ω(divF )q = −

Ωf q ∀q ∈ Q.

We introduce the VEM spaces:

Qh = q ∈ L2(Ω) : q|E ∈ Pk−1(E) ∀E ∈ Ωh ⊂ Q,

Vh = G ∈ Hdiv(Ω) : G|E ∈ Vh|E ∀E ∈ Ωh ⊂ V .

What follows taken from [BdV, Brezzi, Marini, Russo, submitted].(se also [Brezzi, Falk, Marini, M2AN, 2014])

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 24 / 35

Page 41: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: local spaces

Let E ∈ Ωh. We introduce the local VEM space

Vh|E =

G ∈ Hdiv(E) ∩ Hrot(E) : divG ∈ Pk−1(E), rotG ∈ Pk−1(E),

G|e · neE ∈ Pk (e) ∀e ∈ ∂E

.

This space is associated to the problem

divG = f1 , rotG = f2 on E ,G · n = f∂ on ∂E .

that is well posed if∫

E f1 =∫∂E f∂ .

Thusdim(Vh|E ) = 2 dim(Pk−1(E)) + Ne dim(Pk (e))− 1 .

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 25 / 35

Page 42: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: local spaces

Let E ∈ Ωh. We introduce the local VEM space

Vh|E =

G ∈ Hdiv(E) ∩ Hrot(E) : divG ∈ Pk−1(E), rotG ∈ Pk−1(E),

G|e · neE ∈ Pk (e) ∀e ∈ ∂E

.

This space is associated to the problem

divG = f1 , rotG = f2 on E ,G · n = f∂ on ∂E .

that is well posed if∫

E f1 =∫∂E f∂ .

Thusdim(Vh|E ) = 2 dim(Pk−1(E)) + Ne dim(Pk (e))− 1 .

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 25 / 35

Page 43: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: local degrees of freedom

edge moments∫

e(G · ne

E )pk ∀pk ∈ Pk (e), ∀e ∈ ∂E .

div volume moments:∫

E(divG)pk−1 ∀pk−1 ∈ Pk−1(E)/R .

additional volume moments:∫

EG · pk ∀pk ∈ G⊥k (E) .

The space

G⊥k =

p ∈ Pk :

Ep · ∇q = 0 ∀q ∈ Pk+1(E)

.

has dimension equal to Pk−1(E).

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 26 / 35

Page 44: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: local degrees of freedom

edge moments∫

e(G · ne

E )pk ∀pk ∈ Pk (e), ∀e ∈ ∂E .

div volume moments:∫

E(divG)pk−1 ∀pk−1 ∈ Pk−1(E)/R .

additional volume moments:∫

EG · pk ∀pk ∈ G⊥k (E) .

The space

G⊥k =

p ∈ Pk :

Ep · ∇q = 0 ∀q ∈ Pk+1(E)

.

has dimension equal to Pk−1(E).L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 26 / 35

Page 45: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: local degrees of freedom

Unisolvence. Let G ∈ Vh|E , null on all dofs. Since

• rot : G⊥k → Pk−1 is a bijection,

• rotG ∈ Pk−1,

it exists ϕ ∈ G⊥k such that

0 = rot(G −ϕ) =⇒ G = ∇ψ + ϕ with ψ ∈ H1(E).

Thus

||G||2L2(E) =

EG (∇ψ + ϕ)

= −∫

E(divG)ψ +

∂E(G · nE )ψ +

EG ϕ = 0.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 27 / 35

Page 46: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: local degrees of freedom

Unisolvence. Let G ∈ Vh|E , null on all dofs. Since

• rot : G⊥k → Pk−1 is a bijection,

• rotG ∈ Pk−1,

it exists ϕ ∈ G⊥k such that

0 = rot(G −ϕ) =⇒ G = ∇ψ + ϕ with ψ ∈ H1(E).

Thus

||G||2L2(E) =

EG (∇ψ + ϕ)

= −∫

E(divG)ψ +

∂E(G · nE )ψ +

EG ϕ = 0.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 27 / 35

Page 47: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: computing the L2 projection

the first set of dofs determines G · n on ∂E ;since divG ∈ Pk−1(E), the second set of dofs determines divG.therefore we can compute

EG∇ψ = −

E(divG)ψ +

∂E(G · nE )ψ ∀ψ polynomial;

any q ∈ [Pk (E)]2 can be written as

q = p +∇ψ , p ∈ G⊥k , ψ ∈ Pk+1(E).

Thus we can compute∫

EG · q =

EG · p +

EG · ∇ψ.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 28 / 35

Page 48: An introduction to the Virtual Element Method

Virtual Elements for Hdiv: computing the L2 projection

the first set of dofs determines G · n on ∂E ;since divG ∈ Pk−1(E), the second set of dofs determines divG.therefore we can compute

EG∇ψ = −

E(divG)ψ +

∂E(G · nE )ψ ∀ψ polynomial;

any q ∈ [Pk (E)]2 can be written as

q = p +∇ψ , p ∈ G⊥k , ψ ∈ Pk+1(E).

Thus we can compute∫

EG · q =

EG · p +

EG · ∇ψ.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 28 / 35

Page 49: An introduction to the Virtual Element Method

Hdiv Virtual Elements : final observations

The proposed Virtual spaces (Vh,Qh) satisfy a commuting diagramproperty.

Thus are suitable for the approximation of the problem:

Find Fh ∈ Vh, p ∈ Qh :∫

ΩFh ·Gh +

Ω(divGh)ph = 0 ∀Gh ∈ Vh,

Ω(divFh)qh =

Ωf qh ∀qh ∈ Qh.

NOTE: with the choices that we made, everything above is computable(up to the usual VEM construction and using the local L2 projections).

VEM exact sequencesA full “Safari” of VEM to appear in [BdV, Brezzi, Marini, Russo].

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 29 / 35

Page 50: An introduction to the Virtual Element Method

Hdiv Virtual Elements : final observations

The proposed Virtual spaces (Vh,Qh) satisfy a commuting diagramproperty.

Thus are suitable for the approximation of the problem:

Find Fh ∈ Vh, p ∈ Qh :∫

ΩFh ·Gh +

Ω(divGh)ph = 0 ∀Gh ∈ Vh,

Ω(divFh)qh =

Ωf qh ∀qh ∈ Qh.

NOTE: with the choices that we made, everything above is computable(up to the usual VEM construction and using the local L2 projections).

VEM exact sequencesA full “Safari” of VEM to appear in [BdV, Brezzi, Marini, Russo].

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 29 / 35

Page 51: An introduction to the Virtual Element Method

An application: the Cahn-Hilliard equation

With standard finite elements it is very complicated to buildspaces with global regularity higher than C0.

With VEM, this is instead easy to achieve. We can build elementswith arbitrary Ck regularity:

[Brezzi and Marini, CMAME, 2013]: C1 VEM for Kirchhoff plates

[BdV, Manzini, IMA J. Num. An. 2013]: Ck VEM for diffusion.

We will here show some “spoiler” from a paper in collaborationwith Antonietti, Scacchi, Verani for applications to theCahn-Hilliard equation for phase transition.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 30 / 35

Page 52: An introduction to the Virtual Element Method

The Cahn-Hilliard equation

We search for u : Ω× [0,T ]→ R such that:

∂tu −∆(φ′(u)− γ2∆u(t)

)= 0 in Ω× [0,T ]

u(·,0) = u0(·) in Ω

∂nu = ∂n(φ′(u)− γ2∆u(t)

)= 0 on ∂Ω× [0,T ],

where the function φ(x) = (1− x2)2/4 and γ ∈ R+ “small”.

The natural variational space is H2(Ω), thus a C1 regularity is neededfor a conforming method.

• Mixed DG (Kay, Styles, Suli)• Morley element (Elliott)• Isogeometric Analysis (Hughes and co-workers)• ....

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 31 / 35

Page 53: An introduction to the Virtual Element Method

The Cahn-Hilliard equation

We search for u : Ω× [0,T ]→ R such that:

∂tu −∆(φ′(u)− γ2∆u(t)

)= 0 in Ω× [0,T ]

u(·,0) = u0(·) in Ω

∂nu = ∂n(φ′(u)− γ2∆u(t)

)= 0 on ∂Ω× [0,T ],

where the function φ(x) = (1− x2)2/4 and γ ∈ R+ “small”.

The natural variational space is H2(Ω), thus a C1 regularity is neededfor a conforming method.

• Mixed DG (Kay, Styles, Suli)• Morley element (Elliott)• Isogeometric Analysis (Hughes and co-workers)• ....

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 31 / 35

Page 54: An introduction to the Virtual Element Method

C1 VEM elements (of minimal degree)

Vh|E =

v ∈ H2(E) : −∆2v ∈ P0(E),

v|e ∈ P3(e), ∂nv|e ∈ P1(e) ∀e ∈ ∂E.

Degrees of freedom:

k=1, p=2

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 32 / 35

Page 55: An introduction to the Virtual Element Method

Some numerical result

We apply a primal VEM C1 discretization to the problem:

it involves Π0, Π∇ and Π∆ projections;it grants a conforming solution and accepts general polygons;theoretical convergence estimates hold;initial numerical tests are encouraging.

t = 0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t = 0.03

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t = 0.1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 33 / 35

Page 56: An introduction to the Virtual Element Method

More VEM literature

More VEM literature not mentioned in the previous slides:

Virtual Elements for linear elasticity problems[BdV, Brezzi, and Marini, SINUM, 2013]A stream function formulation for Stokes[Antonietti, BdV, Mora, Verani, SINUM, 2014]Three dimensional compressible elasticity[A.L. Gain, C. Talischi, G.H. Paulino, CMAME, 2014]IN PROGRESS: nonconforming elements (Ayuso, Lipnikov,Manzini), eigenvalue problems (Mora, Rodriguez), discretefracture network (Berrone at al.), contact problems (Wriggers etal.), topology optimization (Paulino et al.), etc..

Regarding VEM implementation:On M3AS: The hitchhikers guide to VEM, a paper all about VEMimplementation.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 34 / 35

Page 57: An introduction to the Virtual Element Method

More VEM literature

More VEM literature not mentioned in the previous slides:

Virtual Elements for linear elasticity problems[BdV, Brezzi, and Marini, SINUM, 2013]A stream function formulation for Stokes[Antonietti, BdV, Mora, Verani, SINUM, 2014]Three dimensional compressible elasticity[A.L. Gain, C. Talischi, G.H. Paulino, CMAME, 2014]IN PROGRESS: nonconforming elements (Ayuso, Lipnikov,Manzini), eigenvalue problems (Mora, Rodriguez), discretefracture network (Berrone at al.), contact problems (Wriggers etal.), topology optimization (Paulino et al.), etc..

Regarding VEM implementation:On M3AS: The hitchhikers guide to VEM, a paper all about VEMimplementation.

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 34 / 35

Page 58: An introduction to the Virtual Element Method

Conclusions

The Virtual Element Method is a generalization of FEM that takesinspiration from modern mimetic schemes

The freedom that is left to the local spaces allows for a largeflexibility, for instance in terms of meshes (polygons, “hangingnodes”), global regularity of the discrete space, definition of thelocal matrixes (M-optimization), etc ..

A lot of development is still to be done in VEM, and we believe itcan be a very interesting new field of research.

Morever, more complex coding and problems need to bechallenged in order to assess the impact of VEM in applications(various nonlinear problems already under development ...).

L. Beirão da Veiga (Univ. of Milan) The Virtual Element Method DURHAM - 2014 35 / 35