an overview of origin, morphology and distribution of...

31
Open access e-Journal Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135 http://www.earthscienceindia.info/ 105 An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern Arabian Peninsula Arun Kumar and Mahmoud M. Abdullah Center for Petroleum and Minerals, Research Institute King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia Email: [email protected] Abstract Rub’ al Khali or the “Empty Quarter” is the largest erg or continuous sand desert in the world and occupies southern part of the Arabian Peninsula. It is a broad depression that covers approximately 560,000 km 2 extending from United Arab Emirates in the east to ~1500 km west to the hills of southwestern Saudi Arabia and Yemen. There are several types of sand dunes, vast sand sheets and rare ephemeral water bodies like lakes and ponds also occur in this region. This paper describes these morphological features and discusses their origin and evolution in the light of Pleistocene-Holocene climate change that alternated between humid and arid phases. Primarily two parameters have influenced the evolution of landscape in Rub’ al Khali, firstly, very low rainfall (< 50 mm/year) resulting in low natural vegetation cover, restricted soil formation, increased erosion, and expanded aeolian sand bodies and secondly, the dune morphology, which in this region is influenced by the changes of wind direction during Pleistocene-Holocene epochs. Strong wind in Rub’ al Khali plays an important role in sand drift and dune migration. Unidirectional winds form barchan dunes that range in size from small (4 m high) to large megabarchan dunes (250 m high). There are two dune-forming winds in this region; the Shamal that blows mainly from northeast to southwest direction and the Southwest monsoon that is active from June to August. During Quaternary repeated advances and retreats of polar ice caps resulted in shifting of desert belt towards the Equator that resulted in change in direction and intensity of dune-forming winds. Key Words: Arabian Peninsula, Deserts, Rub’ al Khali, Sabkhas, Sand Dunes, Desert Lakes Introduction About one third of the Arabian Peninsula is covered by sandy deserts and the Rub’ al Khali or the “Empty Quarter” is the largest erg (sand sea or desert) or continuous sand desert in the world (Fig.1). It is a broad depression that covers approximately 560,000 km 2 (522,340 km 2 : Edgell, 2006) and spreads across Saudi Arabia, United Arab Emirates (UAE), Oman and Yemen (Wilson, 1973; Glennie, 2005). It extends from UAE in the east to ~1500 km west to the hills of Yemen (Breed et al., 1979). Rub’ al Khali is a Neogene basin that is characterized by large sand dunes measuring 50 to over 250m high separated by up to 2 km wide flat valleys. The valley floors are either inland sabkhas, sandy or gravely or bed rocks. There are several types of sand dunes, vast sand sheets and few ephemeral water bodies (playas) reminiscent of lakes and ponds also occur in this region. Linear dunes, commonly 200 km long, barchans, barchanoid ridges and megabarchans cover large areas of this desert.

Upload: others

Post on 30-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

105

An overview of Origin, Morphology and Distribution of Desert

Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the

Southern Arabian Peninsula

Arun Kumar and Mahmoud M. Abdullah Center for Petroleum and Minerals, Research Institute

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia Email: [email protected]

Abstract

Rub’ al Khali or the “Empty Quarter” is the largest erg or continuous sand desert

in the world and occupies southern part of the Arabian Peninsula. It is a broad depression

that covers approximately 560,000 km2 extending from United Arab Emirates in the east to

~1500 km west to the hills of southwestern Saudi Arabia and Yemen. There are several

types of sand dunes, vast sand sheets and rare ephemeral water bodies like lakes and ponds

also occur in this region. This paper describes these morphological features and discusses

their origin and evolution in the light of Pleistocene-Holocene climate change that

alternated between humid and arid phases. Primarily two parameters have influenced the

evolution of landscape in Rub’ al Khali, firstly, very low rainfall (< 50 mm/year) resulting

in low natural vegetation cover, restricted soil formation, increased erosion, and expanded

aeolian sand bodies and secondly, the dune morphology, which in this region is influenced

by the changes of wind direction during Pleistocene-Holocene epochs. Strong wind in Rub’

al Khali plays an important role in sand drift and dune migration. Unidirectional winds

form barchan dunes that range in size from small (4 m high) to large megabarchan dunes

(250 m high). There are two dune-forming winds in this region; the Shamal that blows

mainly from northeast to southwest direction and the Southwest monsoon that is active

from June to August. During Quaternary repeated advances and retreats of polar ice caps

resulted in shifting of desert belt towards the Equator that resulted in change in direction

and intensity of dune-forming winds.

Key Words: Arabian Peninsula, Deserts, Rub’ al Khali, Sabkhas, Sand Dunes, Desert

Lakes

Introduction

About one third of the Arabian Peninsula is covered by sandy deserts and the Rub’ al

Khali or the “Empty Quarter” is the largest erg (sand sea or desert) or continuous sand desert

in the world (Fig.1). It is a broad depression that covers approximately 560,000 km2 (522,340

km2: Edgell, 2006) and spreads across Saudi Arabia, United Arab Emirates (UAE), Oman

and Yemen (Wilson, 1973; Glennie, 2005). It extends from UAE in the east to ~1500 km

west to the hills of Yemen (Breed et al., 1979). Rub’ al Khali is a Neogene basin that is

characterized by large sand dunes measuring 50 to over 250m high separated by up to 2 km

wide flat valleys. The valley floors are either inland sabkhas, sandy or gravely or bed rocks.

There are several types of sand dunes, vast sand sheets and few ephemeral water bodies

(playas) reminiscent of lakes and ponds also occur in this region. Linear dunes, commonly

200 km long, barchans, barchanoid ridges and megabarchans cover large areas of this desert.

Page 2: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

The sand dunes in Rub’ al Khali are basically of two types: transverse and linear.

Transverse dunes are oriented perpendicular and linear dunes are parallel to the dominant

wind direction. Unidirectional winds form simple crescent shaped dunes, known as barchan

dunes ranging in height from 4 to 250 m as in the case of megabarchans. When these dunes

are linked on their slip face, a row of dunes called a barchanoid ridge. When the barchan

dunes have three or more arms with slip faces, they are called star dunes. When winds blow

in two opposing directions, linear dunes are formed and they are of three main types (a)

simple linear dunes; (b) compound linear dunes; and (c) complex linear dunes.

Sand dune morphology (see Fig. 2) primarily depends upon the amount of sand

supply, shape, size and composition of the sand grains, surface topography, wind speed,

direction and duration, humidity, and nature of the surface vegetation (Edgell, 1990). The

deposition of sand and subsequent formation and accumulation of dunes generally occurs as a

result of an interruption of sand-laden wind masses due to the presence of obstacles or

variations in the ground relief (Bagnold, 1951). A complete understanding of the mechanisms

of dune formation is still poorly understood (Warren and Knott, 1983). A review of sand

dune studies and distribution of types of sand dunes using Landsat Imagery in Rub’ al Khali

is described by McKee (1979). In deserts, the dry sand on an avalanche slope has a maximum

angle of repose of 340

and the minimum height for an avalanche slope to form is 30 cm.

Transverse dunes migrate downwind as sand is deflated from its windward slope and is re-

deposited on the leeward avalanche slope (Glennie, 2005).

Fig.1: Location of Rub’ al Khali desert in the Arabian Peninsula showing the prevailing wind

direction.

Page 3: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

107

Fig.2: Morphology of sand dune (modified after http://en.wikipedia.org/wiki/Dune).

Edgell (2006) gave the most comprehensive account of different topics on study of

deserts covering not just the Rub’al Khali desert but also all deserts of the Arabian Peninsula

and modifies some of the existing geomorphological details. According to Edgell (op. cit.)

the Rub’ al Khali covers an area of 522,340 km2

(not ~ 560,000 km2 as stated earlier) with

huge linear dunes and its types, transverse dunes including barchan dunes, megabarchan

dunes and barchnoid ridges, and large inter-dunal gravel deposits and sand sheets. The inter

dune areas are greater than the areas covered by dunes. This is a sedimentary basin whose

axis trends NE to SW and is bordered to the north and northwest by the Arabian Shield, and

to the south and southeast by Hadramwat – Dofar arch. The basin opens in the north in the

Arabian Gulf and northeast by the arc of mountains in Oman. Topographically, this basin

gradually rises towards the southwest from < 50 m in the United Arab Emirates (UAE)

territory to > 900 m near the eastern ridge of the Asir Plateau of southwestern Saudi Arabia.

Previous Work

Some of the earliest publications on sand dunes of Rub’ al Khali is from Thesiger

(1949), Bagnold (1951), Powers et al. (1966) and McLure (1976; 1978). Edgell (1990) and

Clark (1989) published details about the geology, structure and evolution of the Rub al Khali

basin and origin of various types of sand dunes. Powers et al. (1966) stated that R. A.

Bramkamp recognized four classes of sand terrains as follows: (1) Transverse: predominantly

simple and compound barchan dunes in areas of more mobile sand and/or simple rounded

ridges, oriented transverse to the prevailing wind direction; (2) Longitudinal: Primarily bush

or grass covered sand and various types of undulating sand sheets characterized by elongation

of the individual forms parallel to the prevailing wind direction; (3) ‘Urūq: Various forms of

Page 4: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Fig. 3-A: Landsat ETM image showing non-pattern sand dunes.

Fig. 3-B: Photograph of non-pattern sand dunes (22o 33′ 55.3′′ N; 53

o 16′ 05.6′′ E).

Page 5: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

109

Fig. 4-A: Landsat ETM image showing undulating terrain of sand sheet.

Fig. 4-B: Photograph showing undulating terrain of sand sheet (22o 33′ 55.3′′ N; 53

o 16′

05.6′′ E).

Page 6: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

long, nearly parallel, sharp-crested narrow sand ridges and dune chains separated by broad

sand valleys usually including elements of Transverse type sand terrain. Such forms result

from two dominant wind directions; and (4) Sand Mountains: Dominated by large sand

massifs commonly cresting 50 to 250 m above the base, often with superimposed dune

patterns consisting of various types of complex barchans. Common forms are giant barchans

spanning several kilometers from horn to horn, sigmoidal and pyramidal sand peaks, and

giant oval to elongate sand mounds.

Two volumes of several research papers dealing with mechanics of sand movement

and transport, dune formation and various aspects of physics of desertification in arid lands

were edited by El-Baz and Hassan (1986) and El-Baz et al. (1990). Thomas (1997) also

edited another significant volume on arid zone geomorphology which contains authoritative

papers discussing weathering processes and formation of desert soils, role of wind and water

on the geomorphology of arid regions of the world. Among the more recent texts covering

diverse aspects of desert study is from Laity (2008). This book begins with definitions and

descriptions of the global desert systems and how climatic and hydrologic factors influence

weathering and aeolian erosion; and formation of desert dust. Desert lakes, flora, fauna and

impact of anthropogenic activities on desertification are also discussed. Quaternary

geological evolution of deserts that are controlled by changing climate and environment,

particularly in Arabia, are discussed in two volumes edited by Alsharhan et al. (1998, 2003).

Glennie (1970) reported two forms of crescent shaped dunes in eastern Rub’ al Khali,

as ‘predominantly barchan dunes, both simple and complex’ and as ‘giant sand massifs in

various forms, often of complex barchan like structure with their axes transverse to the

dominant wind’. These have been termed ‘giant crescentic massifs’ and ‘compound

crescentic dunes’ (Breed and Grow, 1979; Breed et al., 1979). A ‘hooked’ variety of

‘compound crescentic dunes’ are known from the north-central Rub’ al Khali (Holm, 1960).

Linear dunes 20-200 km long, up to 100 m high separated by 1–2 km wide flat interdune

corridors were described from Qa’amiyat region of the southwestern Rub’ al Khali (Bunker,

1953; Holm, 1960). Remote sensing techniques have been extensively used to study deserts

and arid lands (McKee, 1979, El –Baz, 1984). The linear dunes having subsidiary linear

ridges oblique and parallel to the main ridge are classified as compound linear dunes (Breed

and Grow, 1979; Breed et al., 1979). Star dunes, also known as ‘Pyramidal’ dunes, have been

reported from Ramlat as Sahama at the southeastern margin of Rub’ al Khlai by Thesiger

(1949), Beydoun (1966) and Glennie (1970). Using Landsat imagery and Skylab photographs

Breed et al. (1979) defined three principal areas in Rub’ al Khlai, they are (1) the

northeastern, Al Uruq al Mu’taridah area characterized by crescentic dunes, (2) the eastern

and southern margins characterized by star dunes, and (3) the western half consisting mainly

of linear dunes.

Anton (1984, 1985) and Edgell (1990) provide details on evolution of various types of

sand dunes in light of Quaternary climate and environmental changes leading to aeolian

dynamics of the Arabian Peninsula. El-Sayed (1999, 2000) discusses sedimentological

characteristics and morphology of sand dunes and concludes that the size of dunes in the

Liwa area in United Arab Emirates (northeastern part of Rub’ al Khali) was directly

controlled by the effects of Quaternary climatic changes. Multiple generations of

superimposed dunes are separated by calcrete horizons indicating alternate relatively arid to

humid environments. Breed et al. (1979) contended that the source of aeolian sand in the

Rub’ al Khali is unknown but McClure (1978) considers that Quaternary sediments of this

Page 7: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

111

Fig. 5-A: Vegetated sand sheet (22o 29′ 39.3′′ N; 53

o 15′ 00.1′′ E).

Fig. 5 B: Barchanoid ridges over gravel sheet (210 23.674

/ N, 47

0 48.348

/ E). significant work

on the study of global sand seas using such techniques was edited by McKee.

Page 8: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

region are reworked Pliocene alluvial sediments. The source of sand could also be from

alluvial (wadi) sediments (Holm, 1960; Brown, 1960). According to Bishop (2010) sand

dunes in Rub’ al Khali were formed from multi-provenance supplies of quartz sand that

includes Pleistocene emergent sea-floor lands due to significant drop in the sea-level in the

Arabian Gulf, alluvial and wadi sands, and eroded sedimentary cover of the crystalline

highlands of the Arabian Peninsula. The mechanism of sand dune movement in Rub’ al Khali

is not fully known, but field observations indicate that megabarchan dunes and linear dunes

are usually stationary, whereas superimposed dunes including barchan, star, and barchanoid

ridges move relatively faster under the contemporary climate regime. Generally, smaller sand

dunes and open vast sand sheets drift at an even higher rate.

Glennie’s book (2005) ‘The Desert of Southeast Arabia’ discusses extensively a broad

range of topics from geographical setting, how and where deserts form and their geological

history. Chapter 9 of the book entitled ‘The Action of Wind in Deserts’ discusses dune

systems and describes various types of sand dunes in the Rub’ al Khali. Glennie (2005)

divided Rub’ al Khali dunes into two major groups, one a western group dominated by linear

dunes that are parallel to Shamal winds and the other eastern groups of large barchanoid

dunes of Uruq al Mutaridah which is considered a sub-basin within Rub’ al Khali. Star dunes

are found in south and west of Umm as Samim in the southeastern part. Such dunes are

formed by various wind directions during different seasons resulting in the various

orientations of avalanche slopes.

Edgell (2006) describes three main types of dunes, linear, transverse and solitary.

Linear dunes occur mostly in the southwestern part of the Rub’ al Khali and are up to 200 km

long, 20-160 m high, 0.2-1.5 km wide and spacing between them varies from 0.5 to 3.5 km.

Seif dunes are secondary dunes that form on the surface of Linear dunes and are generally

oblique to the dune length. Small sigmoidal dunes and dome dunes too may form on linear

dunes. Plumate dunes, also called feather dunes, are a category of linear dunes that seem to

occur when the sand supply is insufficient to form other types (Edgell, 1990, 2006).

Geomorphological Features of Rub’ al Khali

The geomorphological features of Rub’ al Khali can be classified into two major groups

as follows.

A. Non-pattern features a. Non pattern dunes and sand sheet

b. Gravel sheets

c. Sabkhas

d. Outcrops of pre-Quaternary formations

e. Saline and freshwater lakes and ponds

B. Sand dunes

a. Linear sand dunes i. Simple

ii. Compound

iii. Complex

iv. Seif dunes (smaller linear dunes)

b. Transverse sand dunes i. Barchan and megabarchan dunes

ii. Barchanoid ridges

iii. Star dunes

Page 9: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

113

Fig. 6: Dry salted crust of sabkha (21o 24′ 12.8′′ N; 54

o 44′ 05.9′′ E).

Fig. 7: Salt tolerant vegetation on the periphery of sabkha (21o 33′ 14.5′′ N; 54

o 35′ 33.0′′ E).

Page 10: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Fig. 8-A: Areas of gravel sheets (210 33.928

/ N, 48

0 34.472

/ E).

Fig. 8-B: Close up of gravel sheet (210 33.928

/ N, 48

0 34.472

/ E).

Page 11: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

115

i. Fishhook dunes

ii. Sigmoidal dunes

c. Dome dunes

A. Non-pattern features:

a. Non-pattern dunes and sand sheet:

Non-pattern dunes and ridges occur widely in the region (Figs. 3A & B). Sand sheets

covering enormous areas may be up to several square kilometers in size. The sheets are more

or less horizontal or gently undulating (Figs. 4A, 4B). Sheet thickness varies between < 1 to

several meters. Such areas are generally poorly vegetated and thus have higher rate of sand

drift than vegetated areas and usually cover bedrock or gravel sheets. Rarely a few plants may

be observed along their periphery (Fig. 5A). Sand sheets usually cover low lands, interdune

areas, streams and channels that flowed during the Quaternary wet episodes. The sand sheets

occur within the interdune areas.

b. Gravel sheets:

Gravel sheets cover large areas and occur between linear sand dunes. They are

composed primarily of pebbles and gravels of quartz, limestone; pebbles from the basement

complex, and gypsum that are embedded in silt and sand (Figs. 8A, 8B). There are some

older (Tertiary and Quaternary) gravel sheets that are composed of lacustrine deposits, loess

flats, and alluvium. Mostly gravel sheets are characterized by lack of any vegetation.

c. Sabkhas:

Sabkhas are evaporite deposits. In the Rub’ al Khali sabkhas appear as bare flat surfaces

of grey to brown color (Fig. 6). They cover extensive low land areas and occur between sand

dunes. They are formed of fine grained sediments, mainly silty or clayey sediment with minor

sand. The groundwater level in sabkhas ranges from 50 to 150 cm below the ground surface

which results in a hyper-saline environment without any vegetation. Sometimes along the

margins of sabkha thin sand sheets are found that support salt tolerant bushes and shrubs (Fig.

7).

d. Outcrops of pre-Quaternary formations:

Outcrops of primarily Cretaceous and Tertiary formations form small hills or form hard

almost flat surfaces and cover wide areas in this region (Fig. 8). Usually these outcrops form

bedrock surfaces over which aeolian sand accumulates in various forms and they generally

lack vegetation cover.

e. Saline and freshwater lakes and ponds (playas):

Saline and freshwater lakes and ponds are rare in the region but sometimes they occur

between sand dunes and barchanoid ridges (Figs. 10A, B). Due to high levels of evaporation

salinity of the waters becomes high. Small ponds may also form within the bedrock area (Fig.

10C). Sometimes lake water is connected to a shallow aquifer of the area where some salt

Page 12: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

tolerant plants also flourish. The first report on lakes of the Rub’ al Khali was by Philby

(1932). These lakes were probably formed by a summer monsoon rainfall in between dunes.

Rain runoff brought clay and silts from the dune surface and ultimately formed impervious

clay or silt pans inhibiting water percolation in to the ground thus forming shallow short

spanned lakes. McClure (1984) studied several such ancient lake beds. Due to wider

catchments area, the life span of lakes in the Mundafan area in the southeast were

significantly longer (~ 800 years) during the latest period of lake formation (Clark, 1989).

Geologically, two periods of lake formation are recognized: the Pleistocene (17-36 Kyr ago)

and the Holocene (5-10 Kyr ago), both associated with major wet phases (Edgell, 1990).

Evidence of Neolithic age culture has been reported from these lake surroundings (Field,

1958, 1960).

B. Sand dunes

a. Linear sand dunes

i. Simple linear dunes: These are single or bifurcated, narrow, symmetrical sand

ridges without slip faces and occur as parallel ridges with interdune areas covered by sand

sheets, sabkhas, gravels and bedrocks (Figs. 11A, B). Landsat Imagery show the pronounced

northeast-southwest orientation of the linear dunes in the Rub’ al Khali. The simple linear

dunes generally take the form of a continuous line of barchanoid ridges with gentle slopes on

both sides of the dune. Bishop (2010) defines simple dunes as having one pattern and

complex dunes as superimposed multiple patterns.

ii. Compound linear dunes: These dunes have wider ridges than simple linear dunes,

and subsidiary linear ridges intersect obliquely the main ridge. Compound linear dunes

consist of two or more similar dunes that are coalescing or overlapping on one another (Fig.

12). Some compound linear dunes occur as solitary features, which may extend up to 150 km

in length.

iii. Complex linear dunes: Complex linear dunes are formed when several types of

dunes, such as star dunes, barchan dunes, or barchanoid ridges, are superimposed on a linear

dune (Figs. 13A, B & 14). Compound and complex linear dunes occur widely in the region.

Both are almost rigid and move gradually. However, in the case of complex linear dunes, the

superimposed dunes migration rates are relatively higher than the linear dune.

iv. Seif dunes: Seif (sword in Arabiac) dunes are smaller linear dunes than the other

types that have a slightly sinuous outline. Primarily they are alternating series of parallel

straight sand ridges with slip faces on both sides and with a northeast-southwest orientation.

They are distributed in nearly equal repeated distances (Figs. 15A, B). They are formed when

winds blow in two opposing directions. Seif dunes may be considered a type of simple linear

dune with only a single sharp symmetrical sand ridge. They are found mainly within a thick

layer of sand sheet areas, and sometimes are found individually in the simple dune field.

Page 13: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

117

Fig. 9: Landsat ETM image of Dammam Formation (limestone) within star dunes.

Fig. 10-A: Landsat ETM image of a saline lake formed between the giant sand dunes.

Page 14: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Fig. 10-B: Saline lake between giant sand dunes (21o 23′ 28.4′′ N; 54

o 50′ 19.0′′ E).

Fig. 10-C: Water pond on a bedrock (22o 39′ 06.0′′ N; 53

o 17′ 41.5′′ E).

Page 15: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

119

Fig. 11-A: Landsat ETM image showing simple linear dunes.

Fig. 11-B: Simple linear dunes moving over gravel sheets (20o 31′ 25.8′′ N; 47

o 21′ 55.6′′

E).

Page 16: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

b. Transverse sand dunes:

i. Barchan and megabarchan dunes: The barchan dunes are of crescent shape with

horns pointing downwind and the sharp slip face on the concave side. These dunes have a

gentle windward slope and leeward slip face and are oriented transversely to the prevailing

wind direction (Figs. 19, 20). Due to changes in wind direction, distorted non-pattern barchan

dunes and barachanoid ridges also form in the region. Non-pattern barchan dunes and

barachanoid ridges occur commonly in the region and they are formed when morphometric

parameters such as sharp edges, slip faces, and interdunes become unclear that results in

formation of non-pattern barchan dunes.

Megabarchan dunes consist of aligned belts of giant crescent dunes (pyramidal dunes)

and their height ranges between 50 to 250 m (Figs. 17A, B). They have a gentle windward

slope and a distinct leeward slip face. Mostly their surfaces are covered by relativity small

and different types of dunes, for example, barchan dunes, star dunes, and barchanoid ridges

(Fig. 24). Scattered vegetation occurs on top and sides of the megabarchan dunes. The

interdunal areas are commonly covered by sabkhas.

ii. Barchanoid ridges: These are elongated megabarchan dune chains almost parallel

to each other and with sharp slip faces. Ridges are commonly separated by sabkhas and silty

saline soil. Smaller barchans and star dunes overlie barchanoid ridges (Figs. 18, 21). Barchan

dunes develop into a barchanoid ridge when two or more slip faces of barchan dunes get

connected creating a long ridge (Fig. 22, 23 & 24). Some vegetation grows under the shade of

ridges.

iii. Star dunes: These dunes are complex dunes in which two different types of dunes

grow together due to variation in wind flow and direction. Simple star dunes have three or

four arms all with slip faces (Fig. 25A, B). The compound star dunes have both primary arms

and small subsidiary arms with slip faces. These dunes are usually composed of several slip

faces in different directions. The interdune ares are commonly sabkhas and bedrocks.

iv. Fishhook dunes: These dunes are long linear ridges with crescentic northeasterly

ends (Edgell, 1990) and are formed from the remains of compound linear dunes. Due to

changes in wind intensity and direction the shape forms a characteristic fishhook shape with

only one slip face arm (Figs. 16A, B). They indicate high rates of sand movement and sand

dune migration.

v. Sigmoidal dunes: These are sharp-crested dunes with narrow symmetrical sand

ridges that are formed mainly due to the variable wind directions with alternating winds

oblique to the prominent length of the simple or compound linear dunes (Fig. 26). Sigmoidal

dunes may occur as solitary features or complex or compound linear dunes. Such dunes are

found mainly in the fields of barchan dunes and barchanoid ridges and commonly have

moderate height of from 5 to15 m.

Page 17: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

121

Fig. 12: Landsat ETM image showing Compound linear dunes.

Fig. 13-A: Complex linear dunes.

Page 18: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Fig. 13-B: Complex linear dunes (21o 43′ 38.5′′ N; 53

o 21′ 32.1′′ E).

Fig. 14: Scattered vegetation covered complex linear dunes surface and the barchanoid

ridges are covering the linear dune (21o 41′ 28.7′′ N; 54

o 29′ 33.2′′ E)

Page 19: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

123

Fig. 15 A: Landsat ETM image showing Seif Dune within interdune areas.

Fig. 15 B: Seif dune (18o 18′ 40.4′′ N; 46

o 54′ 19.2′′ E).

Page 20: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

C. Dome dunes:

According to McKee (1979) dome dunes normally show no vertical slip face and are

circular or elliptical in plan view. Most of them display steep internal bedding dipping in one

direction, which indicates that initially they were formed as barchan dunes. The dome form

probably results from disturbances in wind regime and low wind speed that will gradually

truncate and flatten the top edge of the slipface of the barchan dunes. Parabolic dunes are

primarily bush or grass covered sand dunes and various types of undulating sand sheets

characterized by elongation of the individual forms parallel to the prevailing wind direction.

Such dunes are common in the Arabian Peninsula where vegetation has grown over

undulating sand bodies but due to a lack of good vegetation cover such dunes are not seen in

the Rub’ al Khali region.

Evolution of Rub’ al Khali Basin and Origin of Desert Forms

The source of massive amounts of sand present in Rub’ al Khali is not very clear

(Breed et al. 1979). During the long span of geological history of the Arabian Peninsula

Precambrian crystalline basement rocks and Palaeozoic-Mesozoic sedimentary rocks were

weathered and re-deposited forming various Tertiary Formations. Subsequent weathering and

erosion of semi-consolidated or unconsolidated Tertiary formations were deposited as alluvial

plain sediments during Late Pliocene. Ultimately these sediments were reworked by

Quaternary wind movements and rains forming wadis which were primarily considered to be

the source of Rub’ al Khali sand (Holm, 1960; Brown, 1960; and Edgell, 1990). Thus,

basically, Quaternary sediments of Rub’ al Khali are reworked Pliocene alluvial sediments

(McClure, 1978).

Several authors have discussed the evolution of Rub’ al Khlali desert in response to

Quaternary climate history of the region. Early works by McClure (1978), Edgell (1990), and

Anton (1990) are representative. McClure (1978) provided a preliminary Pleistocene-

Holocene climate history dividing wet and arid periods and inferred that this region was a

plain of old alluvium throughout Pleistocene that gradually changed to undulating plains and

dune topography between 17-9 Ka yr ago. Present topography began to form during a hyper-

arid phase beginning 6 Ka yr. Anton (1990) provides a very generalized climate history of the

region between Oligocene (25 Ma yr) to present, whereas Edgell (1990) discussed a

provisional yet detailed climate history beginning Early Pleistocene (~ 2.5 Ma yr) to

Holocene and dividing this span of time into16 alternating humid and arid climate phases in

the region. The duration of these alternating climate phases varies from few hundred years to

a few thousand years. While discussing the Quaternary evolution of the Dawhat Zulum (Half

Moon Bay) region of the Eastern Province of Saudi Arabia, Weijermars (1999) also

summarized Edgell’s (1990) climate history of the region.

The size of mega-dunes in the Liwa region (UAE) in the northeastern part of Rub’ al

Khali represent multiple generations of superimposed sand dunes separated by calcrete beds.

They were formed due to Quaternary climate changes that alternated between arid and humid

climate (El-Sayed, 2000). More recent work based on optical dating chronologies conclude

that rapid accretion of sand dunes began in Mid-Late Holocene followed by 5 ka and 2.8 ka

rapid phases of dune deposition (Bray and Stokes, 2003). Major humid periods were 35-25 ka

and 10 -6 ka and abrupt change from a humid to arid phase began ~ 6 ka leading to formation

of aeolian sediments in large bed forms (Bray and Stokes, 2004). Such repeated arid and

Page 21: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

125

Fig. 16-A: Landsat ETM image showing fishhook dunes.

Fig. 16 B: Photograph of fishhook dunes (19o 31′ 00.8′′ N; 49

o 48′ 43.0′′ E).

Page 22: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Fig. 17 A: Landsat ETM image showing megabarchan dunes with sabkha as interdunes area.

Fig. 17 B: Photograph of megabarchan dune over sabkha (21o 22′ 48.3′′ N; 54

o 50′ 54.3′′ E).

Page 23: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

127

humid phases are linked to Late Quaternary global climate change that led to changing

intensity and spatial extent of paleo-monsoonal rainfall.

Parker (2009) and Parker et al. (2004, 2006) carried out detailed palynological and

geochemical studies on Holocene lacustrine sediments from the southeastern Arabian

Peninsula (UAE) and several radiocarbon dates provided time constrains to the 350 cm Awafi

core. They concluded that variations in lake level resulted from changes in the strength and

duration of Indian Ocean Monsoon (IOM) summer rainfall and winter cyclonic rainfall. The

late glacial-Holocene transition in the region was characterized by development of mega-

linear dunes which became stabilized and vegetated during the early Holocene and interdunal

lakes formed due to the onset of IOM at ~ 8.5 Ka yr ago. The IOM weakened ~ 6 Ka yr ago

with the onset regional aridity that led to development of extensive and wide spread sand

dunes. They record precipitation minima at 8.2, 5.0, and 4.2 Ka yr that coincide with Bond

events in the North Atlantic. Parker and Goudie (2008) discuss the history of Neolithic

peoples in this region based on several archaeological finds who inhabited this region during

the wet phases.

Edgell’s (2006) book titled ‘Arabian Deserts’ is by far the most comprehensive

description of diverse aspects of desert study available concerning this region and includes

extensive discussions on the influence of climate change on the development of sand dunes

and other morphological features of Rub al Khali desert. Buckler (2008) presented additional

information on the provenance and variety of sediments related to dune formation in the Rub

al Khali desert. Preusser (2009) reviewed chronology of Quaternary climate change and its

impact on the terrestrial environments of the Arabian Peninsula. A recent study using

palynological and mineralogical proxies along with large numbers of radiocarbon dates

describes the impact of the last deglaciation and the Holocene climate change on human

occupation and distribution in Rub’ al Khali (Lézine et al. 2010). Changes in dune

morphology and dimensions and their spatial relationship have been found to be associated

with the directional differences and varying intensities of ‘shamal’ and Indian Ocean

Monsoon wind regimes (Bishop, 2010).

Conclusions

Rub’ al Khali desert is covered with diverse types of sand dunes. The dunes move

through deflation on the windward side and accretion on the leeward face. Primarily Rub’ al-

Khali sand dunes are of two types, transverse and linear, depending on whether the dune crest

orientation is perpendicular or parallel to the dominant wind direction. Such dunes are of

three types: basic or simple dunes, compound dunes, and complex dunes. Compound dunes

are composed of two or more similar dunes, coalescing or overlapping and complex dunes

form when two different basic dune types are combined or superimposed (McKee, 1979).

There are two main parameters that have influenced the evolution of the Rub’ al

Khali’s landscape. Firstly, there is the very low rainfall (< 50 mm/year) which has limited

the density and permanence of the natural vegetation cover, restricted soil formation,

increased erosion, and expanded existing aeolian sand bodies and sand sheets. Secondly, the

dune morphology in this region is primarily influenced by the changes of wind direction

during Pleistocene-Holocene epochs. Predominantly, the dunes are linear, forming a series of

Page 24: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

parallel ridges with a northeast-southwest orientation. Longitudinal and barchan dunes

dominate the northern and eastern parts of the desert but barchanoid ridges, dome dunes and

star dunes are also found in this region.

Fig. 18: Barchanoid ridges over sand sheets (19o 07′ 51.3′′ N; 49

o 51′ 32.4′′ E).

Fig. 19: Barchan dunes over bedrock (21

o 51′ 45.0′′ N; 53

o 16′ 12.7′′ E).

Page 25: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

129

Strong wind in Rub’ al Khali plays an important role in sand drift and dune migration.

Sand moves in two different ways. Firstly, sand may drift with the direction of the wind by

saltation and creeping. Secondly, the whole dune can advance as a single body. The exact

movement rate and direction of sand dune migration depends upon the direction and speed of

the prevailing winds. Unidirectional winds form simple crescentic dunes known as barchan

dunes that range in size from small (4 m high) to large megabarchan dunes (250 m high).

The branchoid ridges form when these dunes are interlinked on the slip face in a row of

dunes. Barchan dunes with three or more arms are known as star dunes.

Crescent-shaped dunes are known as barchans and they form under moderate wind

regime with limited supply of sand. Barchanoid dunes and barchanoid ridges form by uniting

barchans that result from a more plentiful supply of sand. Transverse dunes are linear ridges

of sand whose axes are at right angles to the dune forming wind and are fairly common in

eastern Rub’ al Khali (Glennie, 2005). Linear dunes are elongated in the wind direction and

their axis runs parallel to the sand-transporting strong wind. There are two dune-forming

winds in southeast Arabia; the Shamal and the Southwest monsoon repeated advances and

retreats of polar ice caps resulted in shifting of the desert belt towards the Equator and that

resulted in a change in direction and intensity of dune-forming winds.

Acknowledgements: We thank Dr. Blair P. Bremberg of Research Institute, KFUPM for proof reading and

making linguistic corrections in the manuscript. We also thank King Fahd University of Petroleum and Minerals

for permission to publish this paper.

Fig. 20. Barchan dunes over gravel sheet (21o 33′ 55.2′′ N; 48

o 34′ 29.9′′ E)

Page 26: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Fig. 21: Barchanoid ridges over bedrock (21o 50′ 41.8′′ N; 53

o 15′ 12.6′′ E) (Glennie, 2005;

Edgell, 2006; Parker, 2009; Bishop, 2010) during the Quaternary Period.

Fig. 22: Barchanoid ridges over sand sheets (21o 51′ 44.4′′ N; 53

o 16′ 30.3′′ E).

Page 27: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

131

Fig. 23: Landsat ETM image showing barchanoid ridges as linear dunes.

Fig. 24: Small barchanoid ridges superimposed on the megabarchanoid ridges (21o 16′ 33.7′′

N; 54o 52′ 16.2′′ E)

Page 28: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Fig. 25-A: Landsat ETM image showing star dunes.

Fig. 25-B: Photograph of compound star dune (21o 36′ 33.2′′ N; 54

o 31′ 11.2′′ E).

Page 29: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

133

Fig. 26: Simple sigmoidal dune (19o 05′ 43.7′′ N; 49

o 47′ 11.2′′ E).

References

Alsharhan, A. S., Glennie, K. W., Whittle, G. L., Kendall, C. G. St. C. (1998) Quaternary deserts and climate

change. Proceedings of the International Conference on Quaternary deserts and climate change, Al Ain,

UAE, December 9-11, 1995. A.A. Balkema. 621 p.

Alsharhan, A. S., Wood, W. W., Goudie, A. S., Fowler, A., Abdellatif, E. M. (2003) Desertification in the third

millennium. Proceedings of an international conference, Dubai, February 12-15, 2000. A. A. Balkema.

490 p.

Anton, D. 1984. Aspects of geomorphological evolution: paleosols and dunes in Saudi Arabia. In: R.A.Jado and

J. Jotl (eds.), Quaternary Period in Saudi Arabia, Springer-Verlag, Wien., v. 2, pp. 275-297.

Anton, D. 1985 Environmental changes and aeolian dynamics during the Quaternary in the Arabian Peninsula.

In: F. El-Baz, I. A. El-Tayeb, and M. H. A. Hassan, (eds.), Proceedings of the International Workshop

on “Sand Transport and desertification in Arid Lands”, Khartoum, Sudan, November 17-26, pp. 209-

234. World Scientific, Singapore.

Bagnold, R. A. (1951) Sand formations in southern Arabia. Geog. Jour. v.117 (1), pp. 78-86.

Beydoun, Z. R. (1966) Geology of the Arabian Peninsula – Eastern Aden Protectorate and part of Dhufar: U. S.

Geol. Survey Prof. Paper 560-H, 49 p.

Breed, C. S., Fryberger, S. G., Andrews, S., McCauley, C., Lennartz, F., Gebel, D. and Horstman, K. (1979)

Chapter K. Regional studies of sand seas, using land sat (ERTS) imagery. In: E. D. McKee (ed.), A

Study of Global Sand Seas. United States Geological Survey Prof. Paper 1052. 429 p.

Bishop, M. A. (2010) Nearest neighbor analysis of mega-barchanoid dunes, Ar Rub’ al Khali, sand sea: The

application of geographical indices to the understanding of dune field self organization, maturity and

environmental change. Geomorphology, v. 120, pp. 186-194.

Bray, H. E. and Stokes, S. (2003) Chronologies of Late Quaternary barchan dune reactivation in the

southeastern Arabian Peninsula. Quaternary Science Reviews, v. 22, pp. 1027-1033.

Bray, H. E. and Stokes, S. (2004) Temporal patterns arid-humid transitions in the southeastern Arabian

Peninsula based on optical dating. Geomorphology, v.59, pp. 271-280.

Page 30: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

An overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub’ al Khali Desert of the Southern

Arabian Peninsula: Arun Kumar and Mahmoud M. Abdullah

Breed, C. S. and Grow, T. (1979) Chapter J. Morphology and distribution of dunes in sand seas observed by

remote sensing. In: E. D. McKee (ed.), A Study of Global Sand Seas. United States Geological Survey

Prof. Paper 1052. 429 p.

Brown, G. F. 1960. Geomorphology of western and central Saudi Arabia. 21st International geological Congress,

Copenhagen, ept. 21, pt 21, pp. 150-159.

Buckler, D. (2008) The provenance, variety, and deposition of sediment and the formation of dunes in the

eastern Rub al-Khali, southeast Arabia. Sedimentology and Stratigraphy Research Paper, May 1, 2008.

Bunker, D. G. (1953) The southwest borderlands of the Rub Al-Khali. Geog. Jour., v. 119 (4), pp. 420-430.

Clark, A. (1989) Lakes of Rub al Khali. ARAMCO World, v. 40 (1), pp. 28-33.

Edgell, H. S. 1990. Evolution of Rub’ al Khali desert. Jour. King Abdul Aziz University, Earth Sciences, 34,

Special Issue, 1st Saudi Arabia Symposium on Earth Sciences, Jeddah (1989), pp. 109-126.

Edgell, H. S. (2006) Arabian Deserts: Nature, Origin and Evolution. Springer. 592 p.

El-Baz, F. 1984. Deserts and arid lands. Martinus Nijhoff Publ., The Hague. 222 p.

El-Baz, F. and Hassan, M. H. A. (1986) Physics of desertification. Martinus Nijhoff Publ., The Hague. 473 p.

El-Baz, F., El-Tayeb, I. A. and Hassan, M. H. A. (1990) Sand transport and desertification in arid lands. World

Scientific, Singapore. 469 p.

El-Sayed, M. I. (1999) Sedimentological characteristics and morphology of the aeolian sand dunes in the eastern

part of the UAE: a case study from Ar Rub’ al Khali. Sedimentary Geology, v. 123, pp. 219-238.

El-Sayed, M. I. (2000) The nature and possible origin of mega-dunes in Liwa, Ar Rub’ Al Khali. Sedimentary

Geology, v. 134, pp. 305-330.

Field, H. C. (1958) Stone implements from the Rub al Khali, southern Arabia. Man, v. 58 (30), pp. 25-26.

Field, H. C. (1960) Stone implements from the Rub al Khali, southern Arabia. Man, v. 60 (121), pp. 93-94.

Glennie, K. W. (1970) Desert sedimentary environments. In: K. W. Glennie (ed.), Developments in

Sedimentology, v. 14, Elsevier, 222 p.

Glennie, K. W. (2005) The desert of southeast Arabia: Desert Environments and Sediments. Gulf Petrolink,

Bahrain. 215 p.

Goudie, A. S. (2002) Great warm deserts of the world: landscapes and evolution. Oxford University Press,

Oxford. 476p.

Holm, D. A. (1960) Desert geomorphology in the Arabian Peninsula. Science, v. 132 (3437), pp. 1369-1379.

Laity, J. (2008) Deserts and desert environments. Wiley-Blackwell, 342 p.

Lézine, A-M, Robert, C., Cleuziou, S., Inizan, M-L., Braemer, F., Saliège, J-F., Sylvestre, F., Tiercelin, J-J.,

Crassard, R., Méry, S., Charpetier, V. and Steimer-Herbert, T. (2010) Climate change and human

occupation in the southern Arabian lowlands during the last deglaciation and the Holocene. Global and

Planetary Change, v. 72, pp. 412-428.

McKee, E. D. (1979) A study of global sand seas. Geological Survey Prof. Paper 1052. Washington, D. C. 429

p.

McClure, H. A. (1976) Radiocarbon chronology of the Late Quaternary Lakes in the Arabian Desert. Nature, v.

263, pp. 755-756.

McClure, H. A. (1978) Ar Rub’ Al Khali. In: S. S. Al-sayari and J. G. Zölt (eds.), Quaternary Period in Saudi

Arabia. Springer-Verlag. 334 p.

Parker, A. G. (2009) Pleistocene climate change in Arabia: developing a framework for Hominin dispersal over

the last 350 ka. In: M. D. Petraglia and J. I. Rose (eds.) The Evolution of Human Population in Arabia,

vertebrate Paleontology and Paleoanthropology. Springer. pp. 39-49.

Parker, A. G. and Goudie, A. S. (2008) Geomorphological and paleoenvironmental investigations in the

southeastern Arabian Gulf region and the implication for the archaeology of the region.

Geomorphology, v. 101, pp. 458-470.

Parker, A. G., Eckersley, L., Smith, M. M., Goudie, A. S., Stokes, S., White, K. and Hodson, M. J. (2004)

Holocene vegetation dynamics in the southeastern Rub al Khali desert, Arabian Peninsula: a pollen,

phytolith and carbon isotope study. Journal of Quaternary Science, v. 19, pp. 665-676.

Parker, A. G., Goudie, A. S., Stokes, S., White, K., Hodson, M. J., Manning, M. and Kennet, D. 2004. A record

of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quaternary

Research, v. 66, pp. 465-476.

Philby, H. S. (1932) The Empty Quarter. London, 389 p.

Powers, R. W., Ramirez, C.D., Redmond, C. D. and Elberg Jr., E. L. (1966) Geology of the Arab Peninsula:

Sedimentary Geology of Saudi Arabia. U.S.G.S. Professional Paper 560-D. U. S. Government Printing

Office, Washington, D. C. 147 p.

Preusser, F. (2009) Chronology of the impact of Quaternary climate change on continental environments in the

Arabian Peninsula. Comptes Rendus Geoscience, v. 341, pp. 621-632.

Thesiger, W. (1949) A further journey across the Empty Quarter. Geographical Journal, v. 113, pp. 21-46.

Page 31: An overview of Origin, Morphology and Distribution of ...earthscienceindia.info/pdfupload/download.php?file=tech_pdf-1328.pdf · edited another significant volume on arid zone geomorphology

Open access e-Journal

Earth Science India, eISSN: 0974 – 8350 Vol. 4(III), July, 2011, pp. 105-135

http://www.earthscienceindia.info/

135

Thomas, D. S. G. (1997) Arid zone geomorphology; processes, form and changes in drylands. 2nd Edition.

Wiley, 713 p.

Warren, A. and Knott, P. (1983) Desert dunes: a short review of the needs in desert research and a recent study

of micrometeorological dune initiation mechanisms. In: M. E. Brookfield and T. S. Ahlbrandt (eds.),

Eolian sediments and processes, Developments in Sedimentology, Elsevier, v. 38, pp. 343-352,

Weijermars, R. (1999) Quaternary evolution of Dawhat Zulum (Half Moon Bay) region, eastern Province, Saudi

Arabia. GeoArabia, v. 4 (1), pp. 71-90.

Wilson, I. G. (1973) Ergs. Sedimentary Geology, v. 10(2), pp. 77-106.