analysis of complex reaction networks using mathematical...

77
Marianthi Ierapetritou Department Chemical and Biochemical Engineering Piscataway, NJ 08854-8058 Analysis of complex reaction networks using mathematical programming approaches

Upload: phungxuyen

Post on 18-Mar-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi Ierapetritou

Department Chemical and Biochemical EngineeringPiscataway, NJ 08854-8058

Analysis of complex reaction networks using mathematical programming approaches

Page 2: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Complex Process Engineering Systems?

Page 3: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

General Motivation

Diverse complex systems spanning different scales

Liver metabolism (molecular level)

Combustion systems (process level)

Scheduling of multiproduct-multipurpose plants (plant level)

Page 4: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Motivation -1: Liver Support Devices

Acute and chronic liver failure account for 30,000 deaths each year in the USA large number of liver diseases:

- Alagille Syndrome- Alpha 1 - Antitrypsin Deficiency- Autoimmune Hepatitis- Biliary Atresia- Chronic Hepatitis- Cancer of the Liver - Cirrhosis - Cystic Disease of the Liver - Fatty Liver - Galactosemia- Hepatitis A, B, C

Currently liver transplantation is primary therapeutic option. Scarcity of donor organs limits this treatment

Page 5: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Solutions

Adjunct Internal Liver Support With Implantable Devices

Hepatocyte TransplantationImplantable DevicesEncapsulated Hepatocytes

Extracorporeal Temporary Liver SupportNonbiological devices: hemodialysis, hemofiltration,

plasma exchange unitsHepatocyte- and liver

cell–based extracorporeal devices

Page 6: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

a) How to maximize long-term functional stability of hepatocytes in inhospitable environments

b) How to manufacture a liver functional unit that is scalable without creating transport limitations or excessive priming volume that must be filled by blood or plasma from the patient

c) How to procure the large number of cells that is needed for a clinically effective device

Challenges

Page 7: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

… and the Reality

Problem complexity: System of large interconnectivity

Large number of adjustable variables

Uncertainty

Page 8: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Accuracy depends on :• Flow model• Kinetic model

Fluid flows significantly affected by chemical reaction :Combustion, Aerospace propulsion

Conversion of chemical energy to mechanical energy

Require alternate representation of complex kinetic mechanism, without sacrificing accuracy

Motivation – 2 : Combustion

Page 9: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Challenges: Combine Flow and Chemistry

How should these be combined ?

Composition mapVelocity map

Page 10: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

…and the Reality

Complex kinetics(LLNL Report, 2000)

H2 mole fraction vs. time

Uncertaintyin kinetic

parameters

Page 11: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Motivation-3: Large-Scale Process Operations

Crude Oil Marine Vessels

StorageTanks

ChargingTanks

CrudeDistillation

Units

OtherProduction

Units

ComponentStock Tanks

BlendHeader

Finished ProductTanks

Lifting/ShippingPoints

Product Blending & DistributionCrude-oil Unloading and Blending Production

Max ProfitSubject to: Material Balance Constraints

Allocation Constraints, Sequence ConstraintsDuration Constraints, Demand Constraints …

Goal: Address the optimization of large-scale short-term scheduling problem,specifically in the area of refinery operations

Add $100s of million/year profit by optimizing crude-oil-marketing enterprise

Page 12: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Challenges: Parameter Fluctuations

Page 13: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

10%

90%

Product 2

Product 1

Feed A Hot A

40%60%

60%

IntAB

80%

Feed B

50%

Feed C

Imp E

50%20%

Int BC

Heating Reaction 2

Reaction 1 Reaction 3

Separation

40%

TTiimmee NNuummbbeerr ooff EEvveenntt PPooiinnttss

OObbjjeeccttiivvee ffuunnccttiioonn vvaalluuee

CCPPUU ttiimmee ((sseecc))

88 hhoouurrss 55 11449988..1199 00..4477 1166hhoouurrss 99 33773377..1100 117777..9933 2244 hhoouurrss 1133 66003344..9922 9922336677..9944

As time horizon of scheduling problem increases, the solution requires exponential computational time which makes the problem intractable.

…and the Reality

Page 14: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Systems Approaches Mathematical programming

Systematic consideration of variable dependences

Continuous and discrete representation

Sensitivity – parametric analysis

Identification of important features and parameters

Feasibility evaluation

Conditions of acceptable operation

Optimization

Multiobjective since we have more than one objective to optimize

Uncertainty

Evaluation of solutions that are robust to highly fluctuating environment

Page 15: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Presentation Outline

Complexity reduction using mathematical programming approaches

Optimization of hepatocyte functionalityReduction of complex chemistry

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions

Page 16: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Hepatic Metabolic Network

45 internal metabolites

76 reactions:

33 irreversible + 43 reversible

34 measured (red) + 42 unknown

Chan et al (2003) Biotechnol & Bioengineering

Main Assumptions

1) Gluconeogenic and fatty acid oxidation enzymes are active in plasma

2) Energy-requiring pathways are negligible

3) Metabolic pools are at pseudo-steady state.

Main ReactionsGlucose Metabolism (v1-v7)

Lactate Metabolites & TCA Cycle(v8-v14 )

Urea Cycle (v15-v20)

Amino acid uptake & metabolism (v21-v68, ,v76)

Lipid & Fatty Acid Metabolism (v46-v50,v71-v75)

Page 17: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Measure 2 fluxes: Uniquely-determined system Measure 3 fluxes: Overdetermined System- Least Square methodMeasure 1 flux: Underdetermined System- Linear Programming

Pseudo-steady State = 0Sv

1

2

3

4

5

1

2

3

4

1 0 0 0 0 1 0 0 01 1 1 0 0 0 0 0 00 1 0 0 0 0 1 0 00 0 1 1 1 0 0 0 00 0 0 1 0 0 0 1 00 0 0 0 1 0 0 0 10 1 0 0 2 0 0 0 0

dA vdtvdB

dt vdC

dt vdD vdt

bdEdt b

dF bdtdN b

dt

⎡ ⎤⎢ ⎥

−⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥ −⎢ ⎥

= − −⎢ ⎥⎢ ⎥ −⎢ ⎥

−⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎣ ⎦

A B

C

D

E

F

N

2 N

v1 v2

v3

v4

v5

b1

b2

b3

b4 = −u u m mS v S v

Metabolic Flux Analysis (MFA) is developed to calculate unknown intracellular fluxes based on the extracellular measured fluxes.

Rationale for Metabolic ModelingInterpretation and coupling to experimental data.Gain insights into how cells adapt to environmental changes.To identify key pathways for hepatocyte function.

Page 18: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Optimization in Metabolic Networks

Single-level Optimization: Optimize a single objective function (e.g. maximization of a single metabolic flux).

Multi-Objective Optimization Multi-level Optimization≠

Uygun et al., (2006) Ind. Eng. Chem. Res. Lee S. et al (2000) Computer & Chem. Eng.Schilling. et al., (2001) Biotechnol BioengEward & Palsson (2000) PNAS

Segre D. et al (2002) PNAS

Multi-level Optimization: Several objectives acting hierarchically to optimize their own objective function (e.g. Minimize the difference of predicted fluxes from experimentally observed values to optimize the cellular objective function).

Nolan R.P et al (2005) Metabolic EngineeringBurgard & Maranas (2003) Biotechnol Bioeng

Uygun et al., (2007) Biotechnol Bioeng

Sharma N.P. et al., (2005) Biotechnol Bioeng

Multi-objective Optimization: Several objective functions are simultaneously optimized (e.g. minimizing the toxicity and maximizing metabolic production).

Nagrath D. et al. (2007) Annals of Biomedical Engineering

Page 19: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Aim: Identify the flux distributions for optimal urea production that can fulfill metabolites balances and flux constraints

Unit: µmol/million cells/day

1

min max

:

: 0

ureaN

ij jj

j j j

Max Z v

Subject to S v i M

v v v j K=

=

= ∀ ∈

≤ ≤ ∀ ∈

Single-level Optimization: Maximize Urea Secretion

> 2 fold 2.35±0.52LPAA> 15 fold0.17±0.24LIP> 3 fold1.32±0.69HPAA> 10 fold

6.81

0.23±0.43HIPIncreaseOptimal ValueExperimental Data*

*Chan & Yarmush et al (2003) Biotechnol Prog

Page 20: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Results for Single-Level Optimization

Increased fluxes

Gluconeogenesis (R2-R6)

TCA Cycle (R13,R14)

Urea Cycle (R16,R17)

Amino Acid Catabolism (R21,R23,R27,R30,R36,R38,R43)

Fatty Acid Metabolism (R47,R48)

Pentose Phosphate Pathway (R54)

Amino acid uptake fluxes (e.g: Arginine, Serine, Glycine.....)

Fluxes significantly altered through the pathways (more than 30 % change)

Decreased fluxesAmino Acid Catabolism (R33,34)Fatty Acid Oxidation (R46)Glycerol uptake and metabolism, glycogen storage

(R70,R71,R73,R74)

Page 21: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Multi-objective Optimization

Sharma NS, Ierapetritou MG,Yarmush ML.,Biotechnol Bioeng. 2005 Nov 5;92(3): 321-35.

albuminN

ij j ij 1

min maxj j j

urea

max v

subject to : S v b, i 1,...., M

v v v

v ε

=

= =

≤ ≤

•Pareto optimal set yields the feasible region for BAL operation•Point A,D and B belong to the Pareto Set•Both urea and albumin secretion can be improved at point C by moving towards the Pareto set

Resultsε-Constraint Method

Different values of ε were used tocalculate the maximum albumin Production = Pareto set

0

0.0001

0.0002

0.0003

0.0004

0.0005

6.69577 6.71836 6.74095 6.76353 6.78612 6.80871

Urea Secrection (µmol/million cells/day)

Alb

umin

Sec

rect

ion

(µm

ol/m

illio

n ce

lls/d

ay)

C

DA

B

Feasible Region

0

0.0001

0.0002

0.0003

0.0004

0.0005

6.69577 6.71836 6.74095 6.76353 6.78612 6.80871

Urea Secrection (µmol/million cells/day)

Alb

umin

Sec

rect

ion

(µm

ol/m

illio

n ce

lls/d

ay)

C

DA

B

Feasible Region

Page 22: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Modulation by optimal AA. Supplementation

Optimal Amino Acid Supplementation

0

0.5

1

1.5

Proline

Serine

Histid ine

Glycine

Alanine

Arginin

eTyro

sine

Isoleu

cine

Leuc

ineThre

onine

Valine

Conc

entr

atio

n (m

M)

Optimal Flux DistributionCulture media supplementation to improve

cellular functionAdvantage is no direct genetic intervention

Assumption: Linear Relationship

Higher Amino Acid Supplementation Similar & Low Amino Acid Supplementation

Plasma AA supplementation in low-insulin Optimal AA supplementation

0

1

2

3

4

5

6

7

Aparta

teAsp

aragin

eCyst

eine

Glutamate

Methion

inePhe

nylala

nine

Lysin

eGluta

mine

Con

cent

ratio

n (m

M)

Page 23: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Bi-level Optimization

Leader Objective: Minimize the difference between the native type and the knockout condition after reaction deletion

NAjv : represents the flux distribution

of native type determined from MILP model

Aim: Compare the flux distributions between the wild-type and knock out condition and identify the essential reactions for target cell functions

Segre D. et al (2002) PNAS; 99: 15112-15117Burgard et al., (2003) Biotechnol Bioeng; 84: 647-657

0

2,1,0..

:..

||:

maxmin

1

=

≤≤

==

=

d

jjj

N

jjij

urea

Nj

NAjj

vvvv

MivSts

vMaxts

vvMin

……Follower Objective: Maximize the particular cell function (urea production)

Critical Pathways for Urea and Albumin Function

Page 24: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

R16

,17

R43

R2,

3,4

R5,

6 R36 R

38 R30 R47 R54

R73 R

7R

39 R23 R32 R48 R21 R34

R50 R25

R57 R8

R40

R55

R33

R56

R45

R74

R71

R69

R72 R1

R75

0

0.2

0.4

0.6

0.8

1

Deleted Reaction

Zkn

ocko

ut/Z

Important Pathways

optimal value after individual reaction deletion

optimal value of native type

Gluconeogenesis(R2-R6), Urea Cycle (R16,R17)

:knockoutZ

:Z

Amino Acid Catabolism (R30,R36,R38,R43) Fatty Acid Metabolism (R47),

Pentose Phosphate Pathway (R54)

Using Extended Kuhn-Tucker ApproachC. Shi. (2005) Applied Mathematics & Computation

Page 25: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Comparison of Different Methodologies

II) AA supplementsLow Insulin (50 µU/ml) III) no supplements

IV) AA supplements

I) no supplementsHigh Insulin (0.5 U/ml)

Experiments:

Model:

Subject to:

Results:

Subject to:

6.80959.886Primal-Dual2.2540.246KKT UreaErrorApproach

Case 2:NAjv - Measured fluxes from Experiment LPAA

6.809269.239Primal-Dual0.1650.079KKT UreaErrorApproach

Case 1: NAjv - Measured fluxes from Experiment LIP

kjvvv

MivS

vMax

vvMin

jjj

N

Jjij

urea

fluxesMeasuredj

NAjj

∈∀≤≤

==

=

⋅∈

,

2,1,0

:

||:

maxmin

1

……

Hong, Roth, Ierapetritou, AIChE Annual Meeting, Nov 2007

Page 26: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Critical Pathways for Urea and Albumin Function

j

N

jj 1

N

ij j ij 1

m in m axj j j j j

m in

subject to : S v b , i 1, ..., M

v v v , j 1, ..., N

λ =

=

Φ = λ

= =

λ ≤ ≤ λ =

Logic based programming

λj is a binary variable corresponding to the presence or absence ofreaction (j) in the network.

Page 27: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Critical pathways for urea and albumin function

UnsupplementedHigh InsulinHIP

Optimal Amino AcidsLow InsulinOptimal

Amino AcidsLow Insulin LIPAA

UnsupplementedLow InsulinLIP

Plasma Supplementation

MediumPre-Conditioning

Condition

Different Conditions

Elucidate Insulin Effects

Elucidate AA Effects

Page 28: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Optimal Condition vs. LIPAA •Compensatory effects in TCA cycle fluxes •Lower gluconeogenic and lipid metabolism pathway fluxes.•Higher urea cycle fluxes.•Higher AA uptake rates

Thick red lines correspond to higher fluxes for optimal condition as compared to LIPAA. Thick blue lines correspond to lower fluxes for optimal condition as compared to LIPAA. Dotted red lines correspond to reactions not important in Optimal case for maximal urea and albumin function.

Glycogen

Glucose-6-PGlucose

2-G3P

PEP

Pyruvate

Lactate

Glycerol-3-P

PPP

Glycerol

Triglyceride storage

Triglyceride

Tyrosine Leucine

TyrosineLeucine

Ketone Bodies

ACAC

Phenylalanine

Phenylalanine

Arginine

Aspartate

Ac-CoA

OAACysteine

Serine

Malate

Cysteine

Serine

Threonine

Alanine

Glycine

Prop-CoA

Tyrosine

ValineMethionineIsoleucine

GlutamineHistidineProline

Glutamate

Citrate

Fumarate Alpha-ketoglutarate

SCC-CoA

14

Glycine

NH3

61,63,62

GlutamineHistidineProline

Lysine

ACAC-CoA

Citrulline

Ornithine

Arginine

NH3

Ornithine

20

Urea

Fatty Acids

Fatty Acids CoA

46

5

2,3,4

Aspartate

43

Asparagine

Asparagine

NH3NH3

Respiratory Chain

NADH

H2ONAD+

O2

51

17

15

18

16

16

19

ValineMethionineIsoleucine

64,66,67

1112

13

6

7

Methionine

24

Alanine22

8

34

29

28

Glutamate37

36

10

9

Lysine

Threonine

O2

53

39

23

9

21

25

31

32

4834

7671

54

72

42

38,4

1,40

48

60

55,4

2,56

57

4735,68

33

59

58

65

45

70

74

731

27

Tryptophan

30

ADP +PiATP

26

44

49,50

Page 29: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Complexity reduction using mathematical programming approaches

Optimization of hepatocyte functionalityReduction of complex chemistry

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions

Page 30: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

H2 + O2 2OH OH + H2 H2O+H O + OH O2+H O + H2 OH+H H + O2 HO2OH + HO2 H2O+O2H + HO2 2OH O + HO2 O2+OH 2OH O+H2OH + H H2H + H + H2 H2 + H2H + H + H2O H2 + H2O H + OH H2O H + O OH O + O O2H + HO2 H2 + O2HO2 + HO2 H2O2 + O2H2O2 OH + OH H2O2 + H HO2 + H2H2O2 + OH H2O + HO2

Detailed kinetic modelsare extremely complexDetailed kinetic modelsare extremely complex

Reduction of complex kinetic mechanism to enable detailed flame simulation

Model Reduction Using Mathematical Programming

Page 31: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Objective function : i

NN

i

RS

∑=

/

1λmin

Constraint : δχ ≤

represents total number of species / reactionsi

NN

i

RS

∑=

/

1

λ

where χ is an error measure representing deviation of full profile from reduced profile

Constraint : retain desired system behavior within prescribed accuracy

: Binary variable corresponding to ith reaction/species

Optimization Based Reduction

Page 32: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

skkk Nk

MRdt

tdy,,1

)( …=ρ

=

∑=

−=sN

k p

kkk

ChMR

dtdT

1 ρi

fki

rki

N

i

k qRr

i )(1

γ−γλ=∑=

(Solved using DVODE)

Detailed mechanism

Reduced model

Time (sec)

Tem

pera

ture

(K)

Detailed mechanism

Reduced model

Time (sec)CH

4m

ass

frac

Perfectly Stirred R.

(absolute mixing)

Perfectly Stirred R.

(absolute mixing)

Constraint : δχ ≤

CH4=0.055, O2=0.19 T=1200 K

Methane mechanism(GRI-3.0) : 53 species, 325 reactionsReduced Model : 17 species, 59 reactions, δ = 0.085

Initial Condition:

21

22

)()()(

)()()(

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ −+⎟⎟

⎞⎜⎜⎝

⎛ −= ∑ ∫ ∫

∈κ

χk t t

full

fullreduced

fullk

fullk

reducedk dt

tTtTtTdt

tytyty

δχ ≤Constraint :

Batch Reactor

Evaluation of Constraint Function

Page 33: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Perform reaction reduction withNr binary variables

Two Step Solution Procedure

Binary variables for species reduction (Ns) : 53 Binary variables for reaction reduction (Nr) : 325

Species reduction

Eliminate reactions associated with removed species

Generate initial reduced reaction set (Ns < Nr)

Final reduced model

Mathematical Model: MINLP with embedded ODEsMethane

mechanism: GRI 3.0

(17 species,113 reactions)

(17 species,59 reactions)Banerjee and Ierapetritou, Chem. Eng. Sci, 8, 4537, 2003.

Page 34: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Detailed model

Reduced model

Detailed model

Reduced model

Wat

ched

Spe

cies

Non

-Wat

ched

Spe

cies

Reduced Model : 17 species, 59 reactions, δ = 0.085 CH4=0.26, O2=0.086 T=1200 K

Reduced model

Detailed model

Tempe

ratu

re (K

)CO

mas

s fr

ac.

CH3mas

s fr

ac.

Time (s)

Detailed model

Reduced model

CH4mas

s fr

ac.

Time (s)

Time (s) Time (s)

Performance of Reduced Models

Page 35: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Ns Nr Sparsity Cummulative(CPU)53 325 1227 (0.07) 190.329 126 461 (0.126) 29.5722 81 291 (0.163 13.8722 35 131 (0.17) 5.6719 59 210 (0.187) 5.7520 30 112(0.187) 3.920 25 95 (0.19) 2.3420 22 84 (0.19) 1.83

Full Mechanism

Reduced Mechanisms

Computational Savings by Reduction

50%

96%

Page 36: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Detailed mechanism Reduced

model

Nominal condition

Tempe

ratu

re (K

)

Time (s)

Reduced model

Detailed mechanism

Outside feasible range

Tempe

ratu

re (K

)

Time (s)

Reduced Model has Limited Range of Validity

Page 37: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Complexity reduction using mathematical programming approaches

Optimization of hepatocyte functionalityReduction of complex chemistry

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions

Page 38: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Feasibility Quantification

Pressure

Tem

pera

ture

Safe Operating Regime

Determine the range operating conditionsfor safe and productive operations

Given a design/plant or process

Design

Page 39: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Feasible Range

Desired Range of Variability

Feasibility Quantification

Convex Hull Approach (Ierapetritou, AIChE J., 47, 1407, 2001)Systematic Way of Boundary Approximation

Flexibility Range(Grossmann andcoworkers)

Deviation of nominal conditions

Nominal Value of Product 1

Nominal Value of Product 2

Page 40: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

A powerful, approach available to identify the uncertainty ranges where the design, process or material is feasible to operate or function.

Process Flexibility

θ1θ1N

θ2N

θ2 0),( =θψ d

∆Θ1+∆Θ1

-

∆Θ2+

∆Θ2-

++

Δ

−=

j

Njj

j θθθ

δ−

Δ

−=

j

jNj

j θθθ

δ pj ,..,1=

T

(Swaney & Grossmann 1985)

Page 41: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

δ1

δ2

F

Flexibility Index

+− Δ+≤≤Δ− θθθθθ FF NNFeasible operation can be guaranteed for

T

Flexibility Index F – one-half the length of the side of hypercube T

Page 42: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

δmin=FI..ts 0),( =θψ d

udz

min),( =θψ

Iixzdhi ∈= ,0),,,( θ( , , , ) ,jg d z x u j Jθ ≤ ∈

}|{)( +− Δ−≤≤Δ−= θδθθθδθθδ NNT

0≥δ

Mathematical Formulation (Swaney & Grossmann 1985)

( )max min max

zT i Iθ δ∈ ∈0),,( ≤θzdfi

}|{)( +− Δ−≤≤Δ−= θδθθθδθθδ NNT

..ts δmax=FIFeasibility test

Page 43: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Active Set Strategyδmin=FI

..ts Iixzdhi ,...,1,0),,,( ==θ( , , , ) 0, 1,...,j jg d z x s j Jθ + = =

11

=∑=

J

jjλ

011

=∂∂

+∂

∂∑∑

==

I

i

ii

J

j

jj z

hz

gμλ

0≤− jj wλ

0)1( ≤−− jj wUs

11

+=∑=

z

J

jj nw

+− Δ−≤≤Δ− θδθθθδθ NN},1,0{=jw

0,, ≥jj sλδ

Inner problem is replaced by KKT

constraints

(Grossmann & Floudas 1987)

Page 44: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Simplicial Approximation

1

2

3

Find mid point oflargest tangent plane

Insert the largest hyperspherein the convex hull

Find Convex hull with these points (1-2-3)

Choose m n+1 points for n dimensions (points

1,2,3) 1

2

3

1

2

3

Find new boundary points by line search from the mid point

4Inflate the convex hull using all the new points

After 4 iterations Approximate Feasible Region1-

2-3-4-5-6-7

Goyal and Ierapetritou, Comput. Chem. Engng. 28, 1771, 2004

Page 45: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Noncovex Problems: Need for Alternative Methods

Failure of Existing Methods due to Convexity Assumptions

Assumption: The Non-Convex Constraints can be identified a priori

Page 46: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Alpha-shape method:Eliminate maximum possible circles of radius αwithout eliminating any data point

For the α shape degenerates to the original point set

For the α shape is the convex hull of the original point set

(Ken Clarkson http://bell-labs.com/netlib/voronoi/hull.html)

Improved Feasibility Analysis: Shape Recosntruction

0α →

α → ∞

Given a set of points, determine the shape formed by these points

Analogous to problem of shape reconstruction

Problem definition : Given a set of points (sample feasible points), determine mathematical representation of occupied space

Page 47: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Disjoint nonconvex object

Conventional techniques of inscribing hyper-rectangle or convex hull performs poorly

Inscribed convex hull

Boundary points identified by αshape

Identify boundary points using α shape

Polygonal approximation

Connect boundary points to form a polygon

Improved Feasibility Analysis by α - Shapes

Banerjee and Ierapetritou, Ind. Eng. Chem. Res., 44, 3638, 2005.

Page 48: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Broad range of species concentration and temperature encountered in flow simulation

Different reduced models for different conditions encountered in flow simulation

Reduced Set # 1

Reduced Set # 2

Reduced Set # 3

Reduced Set # 4

Adaptive Reduction

Banerjee and Ierapetritou, Comb. Flame, 144, 219, 2006.

Page 49: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Sample the feasible space

Construct α – shape with the sampled points

Determine points forming the boundary of the feasible region

Estimation of Feasible Region: α –shape

20 reduced sets

Page 50: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Model 1 Species = 22, Reactions = 81 Information of feasible regionModel 2 Species = 19, Reactions = 59 Information of feasible regionModel 3 Species = 20, Reactions = 22 Information of feasible region

: :

Model 20 Species = 53, Reactions = 325 Information of feasible region

Library of reduced models

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

=

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

++

=

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

=

ssss nnn

t

n

t

S

uy

uyuy

uPEPu

u

F

y

yy

Eu

W

ρωλ

ρωλρωλ

ρ

ρρ

ρ

ρ

ρ

ρρ

ρρ

22

11

2

1

2

2

1

000

,)(

,

y1,y2, …, yns, T

(Checks for a feasible model)

Determine λ1, λ2, …, λns

Set 6

Set 7Set 3

Set 1

Set 5

Set 4

Set 2

,SxF

tW

=∂∂

+∂

Reactive flow model

Generate Library of Reduced Model

Page 51: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Detailed model

Adaptive Reduced model

Single Reduced model

Detailed model

Adaptive Reduced model

Single Reduced model

Detailed model

Detailed modelSingle Reduced model

Single Reduced model

Adaptive Reduced model Adaptive Reduced model

Tempe

ratu

re (K

)

Time (s) Time (s)

Time (s) Time (s)

CH4mas

s fr

ac.

H m

ass

frac

.

H2mas

s fr

ac.

Single reduced model : 38% error Adaptive reduced model : 3% error

Adaptive Reduction Model in PMSR Simulation

Page 52: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Uncertainty in kinetic parameters

Uncertainty inherent in kinetic parameter data

Commonly characterized byError bounds (Δlogkf,i, ΔEi etc.), confidence intervals/ranges.Multiplicative Uncertainty Factor (UF ≥1)

Upper bound = UF*kf,i,Lower Bound = kf,i/UF

Objective: Development of an accurate, systematic and efficient framework of analysis, that characterizes uncertainty in kinetic mechanisms

⎟⎟⎠

⎞⎜⎜⎝

⎛ −= β

TRE

TAkg

iaiif

i ,, exp

Page 53: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Representation of Uncertainty

Classical/Rough Set Theory, Fuzzy Measure/Set Theory, Interval Mathematics andProbabilistic/Statistical Analysis

Sensitivity Testing MethodsAnalytical Methods

– Differential Analysis e.g. Perturbation Methods– Green’s Function Method– Spectral Based Stochastic Finite Element Method

forms the basis of the Stochastic Response Surface Method (SRSM)

Sampling Based Methods e.g.– Monte Carlo Methods – Latin Hypercube Methods

Page 54: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Stochastic Response Surface Method

Extension of classical deterministic Response Surface Method and newer Deterministic Equivalent Modeling Method The outputs are represented as a polynomial chaos expansion in terms of Hermite polynomials:

Allows for direct and probabilistic evaluation of statistical parameters of the outputs e.g., for the second order output U2: Mean = α0,2 Variance =

∑=

ξ+=n

iiiaaU

11,1,01

∑∑∑∑−

= >==

ξξ+−ξ+ξ+=1

12,

1

22,

12,2,02 )1(

n

ijiij

n

ij

n

iiii

n

iii aaaaU

2 21,2 11,22a a+

1st order

2nd order

Page 55: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Stochastic Response Surface Method

Method Outline: Choice of order of expansion and transformation of the set of parametric input uncertainties in terms of a set of standard random variables (srv’s) ξ’s - Gaussian (N(0,1)). Commonly encountered transformations include :

Exponential

Lognormal (μ,σ)

Normal (μ,σ)

Uniform (a,b)

TransformationDistribution Type

⎟⎠⎞

⎜⎝⎛ ξ+

λ− )2/(

21

21log1 erf

( )σξ+μexp

σξ+μ

⎟⎠⎞

⎜⎝⎛ ξ+−+ )2/(

21

21)( erfaba

Page 56: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Stochastic Response Surface Method

Generation of input points following the Efficient Collocation Method (ECM)

Points are selected from the roots of Hermitepolynomials of higher order than the expansion Borrows from Gaussian quadrature

Application of the model to these input points and computation of relevant model outputs

Estimation of the unknown coefficients of the expansion via regression using singular value decomposition (SVD)

Statistical and direct analysis of the series expression of the outputs

Page 57: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

SRSM - Algorithm

Input Distributions

Select a set of srv’sand transform inputs

in terms of these

Express outputs as aseries (of chosen order)

in srv’s withunknown coefficients

Generate a set of regression points

Model

Estimate thecoefficients of the

output approximation

Output Distributions

Page 58: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Implementation

Discretization of time interval2nd order SRSM expansion fit for each output species at each time point

MODELy = f(k1, k2, …, k19)

A19

P(A19)

.

.

.

P(y)

yA1

P(A1)

Initial Conditions

} P(y)

y

y

t

t=t1

t=t2

Page 59: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Uncertainty Propagation: Results

Concentration profiles display time varying distributions Number of model simulations required by SRSM is orders of magnitude less than Monte Carlo (723 vs. 15,000)

Distributions of H2 at t=1, 2 and 5 seconds generated by Monte Carlo (MC) simulation and SRSM

Nominal H2 mole fraction vs. time plot

Page 60: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Uncertainty Propagation: Results

Output distributions at each time point very well approximated by second order SRSM

Sensitivity information easily obtained via expansion coefficients -aids understanding how the reaction sequence progresses

Means for successfully preprocessing the reduction of the kinetic model taking into account uncertainty

Page 61: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Presentation Outline

Complexity reduction using mathematical programming approaches

Optimization of hepatocyte functionalityReduction of complex chemistry

Uncertainty analysis & feasibility evaluation

Analysis of alternative solutions

Page 62: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Uncertainty with Unknown Behavior Uncertainty with Unknown Behavior

Alternative solutions that

spans the range of uncertainty

Alternative solutions that

spans the range of uncertainty

MILP parametric

optimization

MILP parametric

optimization

model robustness

model robustness

solution robustness

solution robustness

Determine a Set of Alternative Solutions

Known Behavior of UncertaintyKnown Behavior of Uncertainty

Robust optimization

method

Robust optimization

method

A set of solutions represent trade-

off between various objectives

A set of solutions represent trade-

off between various objectives

Li and Ierapetritou, Comp. Chem. Eng. in press, 2007 (doi:10.1016/j.compchemeng.2007.03.001).

Page 63: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Multiparametric MILP (mpMILP) Approach

min ( ). .

0 {0,1}, 1,...,

T

l u

j

z c D xs t Ax b E

x

x j kθ θ

θ

θ

θ= +≥ +

≤ ≤∈ =

BASIC IDEA

∗ One critical region with one starting point

∗ Complete solution is retrieved with different starting points (parallelization)

mpMILP problem generalized from scheduling under uncertainty

∗ same integer solution∗ same parametric objective: z*=f(θ) ∗ same parametric solution (continuous variable): x*= f(θ)

In any Critical Region of an mpMILP

Li and Ierapetritou, AIChE Jl. 53, 3183, 2007; Ind. Eng. Chem. Res. 46, 5141, 2007.

Page 64: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Illustrating Example

Ierapetritou MG, Floudas CA, 1998

Determine:Task SequenceExact Amounts of material processed

Given:Raw MaterialsRequired ProductsProduction RecipeUnit Capacity

Objective:Maximize Profit

S1 S2 S3 S4mixing reaction purification

Page 65: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Demand and Price Only Demand, Price, Processing Time Uncertainty

2 21 2 1 1 2 2Profit 88.55 49.07 0.25 20 1.2 0.01θ θ θ θ θ θ= + − + − +

21 2 1Profit 88.55 44 25.16 20θ θ θ= + − −

Page 66: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

minimize H or maximize ∑price(s)d(s,n)

subject to ∑wv(i,j,n) ≤ 1

st(s,n) = st(s,n-1) – d(s,n) + ∑ρP∑b(i,j,n-1) + ∑ρc∑b(i,j,n)

st(s,n) ≤ stmax(s)

Vmin(i,j)wv(i,j,n) ≤ b(i,j,n) ≤ Vmax(i,j)wv(i,j,n)

∑d(s,n) ≥ r(s) Tf(i,j,n) = Ts(i,j,n) + α(i,j)wv(i,j,n) + β(i,j)b(i,j,n)

Ts(i,j,n+1) ≥ Tf(i,j,n) – U(1-wv(i,j,n))Ts(i,j,n+1) ≥ Tf(i’,j,n) – U(1-wv(i’,j,n))Ts(i,j,n+1) ≥ Tf(i’,j’,n) – U(1-wv(i’,j’,n))

Ts(i,j,n) ≤ H, Tf(i,j,n) ≤ H

Duration Constraints

Demand Constraints

Allocation Constraints

Capacity Constraints

Material Balances

Objective Function

Ierapetritou MG, and Floudas CA, Ind. & Eng. Chem. Res., 37, 11, 4341, 1998

Uncertainty with Known Behavior: Robust Optimization

Scenario-based Robust Stochastic ProgrammingRequires some statistic knowledge of the input dataOptimization of expectations is a practice of questionable validityProblem size will increase exponentially with the number of uncertain parameters

Page 67: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

⎣ ⎦⎣ ⎦ l

SmtltllmlmSMtSMStSm

mlm pxaxaxal

lllllllllll

≤⎭⎬⎫

⎩⎨⎧

Γ−Γ++ ∑∑∈

∈Γ=⊆∪||ˆ)(||ˆmax

}\,||,|}{{

Robust Counterpart Optimization

Soyster’s, Soyster (1973)

Soyster’s Ben-Tal and Nemirovski’s Bertsimas and Sim’s

- Linear- No flexibility - Most pessimistic

- Nonlinear- Flexibility- Relative smaller number of variables and constraints

- Linear- Higher flexibility - Relative larger number ofvariables and constraints

Ben-Tal and Nemirovski’s, Ben-Tal and Nemirovski (2000); Lin, Janak et al. (2004)

Bertsimas and Sim’s, Bertsimas and Sim, 2003

2/2

,|]|,1max[Pr Ω−=≤⎭⎬⎫

⎩⎨⎧

+≥+ ∑∑ eppybxa llk

klkm

mlm κκδ

llMm

mlmlmMm

mlm ppuaaxall

ˆ)ˆ( −≤++ ∑∑∈∉

Efficient alternative to scenario based robust stochastic programming

]ˆ,ˆ[~lmlmlmlmlm aaaaa +−∈

Find solution which copes best with the various realizations of uncertain data

Page 68: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

700625625625Continuous variable

1239116711671167constraints

216216216216Binary variable

25443.44.8infeasible1504.2CPU time

p≤0.5p≤0.625p≤0.75k=75%--Probability of constraint violation

939.121005.51052.50-939.121052.50objective

Г=1Г=0.5Г=0

Bertsimas and SimBen-TalSoysterDeterministic

Comparison for the robust courterpart formulations for processing time uncertainty

•15% variability for all the processing time• 72 hours horizon, 24 event points

S1 S2 S3 S4mixing reaction purification

Illustration

Page 69: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

∗Study the effect of the different uncertainties

∗ Provide an efficient way to look up the reactive schedule with the realization of uncertainty (e.g., rush order, machine breakdown)

Parametric and Robust Solution

Parametric Solution

Robust Counterpart Solution

∗ Provide an effective way to generate robust preventive schedule with boundary information on uncertainty (e.g., processing time variability)

Page 70: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Uncertainty in Hepatocyte Functionality

How can we use these techniques to deal with experimental variability?

In many cases experimental error is more than 100%

How can we analyze the results?Is the results an artifact of uncertainty?

How can we move beyond experimental error?Can we determine which parameters are more important and what experiment to do next?

Page 71: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Aim: Identify the flux distributions for optimal urea production that can fulfill metabolites balances and flux constraints

Unit: µmol/million cells/day

1

min max

:

: 0

ureaN

ij jj

j j j

Max Z v

Subject to S v i M

v v v j K=

=

= ∀ ∈

≤ ≤ ∀ ∈

Single-level Optimization: Maximize Urea Secretion

> 2 fold 2.35±0.52LPAA> 15 fold0.17±0.24LIP> 3 fold1.32±0.69HPAA> 10 fold

6.81

0.23±0.43HIPIncreaseOptimal ValueExperimental Data*

*Chan & Yarmush et al (2003) Biotechnol Prog

Page 72: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Example of Multiple Solution in 2-D

Feasible Region

x ≥ 0 y ≥ 0

-2 x + 2 y ≤ 4

x ≤ 3

Subject to:

Minimize x - y

Multiple Optimal Solutions!

4

1

x31 2

y

0

2

0

31/3 x + y ≤ 4

Page 73: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Finding all Solutions

Nathan D, Price et al., 2004,Nature Review: Microbiology

A recursive MILP problem that has a set of constrains for changing the basis and identifying a new extreme point

A recursive MILP problem that has a set of constrains for changing the basis and identifying a new extreme point

Lee et al., 2000, Computer and Chemical Engineering

TZ zs t B z qz 0

=

=

m in. .

α

α

−∈

=

=

≤ − = −

≤ ≤ ∈

+ ≤ ∈

∑K 1

k

K T

ii NZ

ki

i NZ

i iK 1

i i

Z zs t Bz q

y 1

w NZ 1 k 1 2 K 1

0 z Uw i Iy w 1 i NZz 0

min. .

, , ,...,

,,

(MILP)

Question: How can you determine all solutions?Question: How can you determine all solutions?

Page 74: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Flux distributions including glucose production (left) & without glucose production (right)

MILP Model: Application to Hepatocytes

00000.3270.3270.5090.509R(1,72)

0.8060.8060.1780.1780.8060.8060.1780.178R(7,6)

3.763.763.763.763.763.763.763.76R6-R7

D8D7D6D5D4D3D2D1

1

1 7 2

(1, 7 2 ) vRv v

=+

76

7)6,7(vv

vR−

=

Enumerate Eight different flux distributions flux distributions that satisfy mass balance and all constraints with the same value of maximal urea production.

Page 75: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Develop Patient Specific TreatmentROBUST SOLUTION CONSIDERING

VARIABILITY

* All fluxes are in µmol/million cells/day

LINEAR VARIABILITY IN EXTRACELLULAR FLUXES

•All 19 amino acids are indispensable for maximum function

•Valine and Isoleucine are required at higher concentrations

0

1

2

3

4

5

6

7

Thr Lys Phe Gln Met Val Isoleu

Amino Acids

Supp

lem

enta

tion

Con

cent

ratio

n (m

M)

Point D of Pareto SetTwo Stage Approach

Page 76: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina

Acknowledgements

Kai He

Patricia Portillo

Eddie DavisHong YangMehmetOrman

Financial Support:NSF, ONR, PRF, ExxonMobil

Zukui Li

Our Web Page:http://sol.rutgers.edu/staff/marianth

Beverly Smith

George Saharidis

Zhenya Jia

Vidya Iyer

Yijie Gao

Page 77: Analysis of complex reaction networks using mathematical ...cepac.cheme.cmu.edu/pasi2008/slides/ierapetritou/library/slides/... · Analysis of complex reaction networks using mathematical

Marianthi IerapetritouPASI: August 12-21, 2008, Mar del Plata, Argentina