analytic center cutting-plane methodnewton step f best − f ⋆ prof. s. boyd, ee364b, stanford...

27
Analytic Center Cutting-Plane Method analytic center cutting-plane method computing the analytic center pruning constraints lower bound and stopping criterion Prof. S. Boyd, EE364b, Stanford University

Upload: others

Post on 22-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Analytic Center Cutting-Plane Method

• analytic center cutting-plane method

• computing the analytic center

• pruning constraints

• lower bound and stopping criterion

Prof. S. Boyd, EE364b, Stanford University

Page 2: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Analytic center cutting-plane method

analytic center of polyhedron P = {z | aTi z � bi, i = 1, . . . ,m} is

AC(P) = argminz

−m

i=1

log(bi − aTi z)

ACCPM is localization method with next query point x(k+1) = AC(Pk)(found by Newton’s method)

Prof. S. Boyd, EE364b, Stanford University 1

Page 3: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

ACCPM algorithm

given an initial polyhedron P0 known to contain X .

k := 0.repeat

Compute x(k+1) = AC(Pk).Query cutting-plane oracle at x(k+1).If x(k+1) ∈ X , quit.Else, add returned cutting-plane inequality to P.Pk+1 := Pk ∩ {z | aTz ≤ b}

If Pk+1 = ∅, quit.k := k + 1.

Prof. S. Boyd, EE364b, Stanford University 2

Page 4: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Constructing cutting-planes

minimize f0(x)subject to fi(x) ≤ 0, i = 1, . . . , m

f0, . . . , fm : Rn → R convex; X is set of optimal points; p⋆ is optimal value

• if x is not feasible, say fj(x) > 0, we have (deep) feasibility cut

fj(x) + gTj (z − x) ≤ 0, gj ∈ ∂fj(x)

• if x is feasible, we have (deep) objective cut

gT0 (z − x) + f0(x) − f

(k)best ≤ 0, g0 ∈ ∂f0(x)

Prof. S. Boyd, EE364b, Stanford University 3

Page 5: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Computing the analytic center

we must solve the problem

minimize Φ(x) = −∑m

i=1 log(bi − aTi x)

where domΦ = {x | aTi x < bi, i = 1, . . . , m}

• challenge: we are not given a point in domΦ

• some options:

– use phase I method to find a point in domΦ (or determine thatdomΦ = ∅); then use standard Newton method to compute AC

– use infeasible start Newton method starting from a point outsidedomΦ

Prof. S. Boyd, EE364b, Stanford University 4

Page 6: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Infeasible start Newton method

minimize −∑m

i=1 log yi

subject to y = b − Ax

with variables x and y

• can be started from any x and any y ≻ 0

• e.g.: take initial x as previous point xprev, and choose y as

yi =

{

bi − aTi x bi − aT

i x > 01 otherwise

Prof. S. Boyd, EE364b, Stanford University 5

Page 7: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

• define primal and dual residuals as

rp = y + Ax − b, rd =

[

ATνg + ν

]

where g = −diag(1/yi)1 is gradient of objective and r = (rd, rp)

• Newton step at (x, y, ν) is defined by

0 0 AT

0 H IA I 0

∆x∆y∆ν

= −

[

rd

rp

]

,

where H = diag(1/y2i ) is Hessian of the objective

Prof. S. Boyd, EE364b, Stanford University 6

Page 8: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

• solve this system by block elimination

∆x = −(ATHA)−1(ATg − ATHrp)

∆y = −A∆x − rp

∆ν = −H∆y − g − ν

• options for computing ∆x:

– form ATHA, then use dense or sparse Cholesky factorization– solve (diagonally scaled) least-squares problem

∆x = argminz

∥H1/2Az − H1/2rp + H−1/2g

2

– use iterative method such as conjugate gradients to (approximately)solve for ∆x

Prof. S. Boyd, EE364b, Stanford University 7

Page 9: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Infeasible start Newton method algorithm

given starting point x, y ≻ 0, tolerance ǫ > 0, α ∈ (0, 1/2), β ∈ (0, 1).

ν := 0.

repeat

1. Compute Newton step (∆x, ∆y, ∆ν) by block elimination.2. Backtracking line search on ‖r‖2.

t := 1.while y + t∆y 6≻ 0, t := βt.while ‖r(x + t∆x, y + t∆y, ν + t∆ν)‖2 > (1 − αt)‖r(x, y, ν)‖2,

t := βt.3. Update. x := x + t∆x, y := y + t∆y, ν := ν + t∆ν.

until y = b − Ax and ‖r(x, y, ν)‖2 ≤ ǫ.

Prof. S. Boyd, EE364b, Stanford University 8

Page 10: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Properties

• once any equality constraint is satisfied, it remains satisfied for all futureiterates

• once a step size t = 1 is taken, all equality constraints are satisfied

• if domΦ 6= ∅, t = 1 occurs in finite number of steps

• if domΦ = ∅, algorithm never converges

Prof. S. Boyd, EE364b, Stanford University 9

Page 11: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Pruning constraints

• let x∗ be analytic center of P = {z | aTi z � bi, i = 1, . . . ,m}

• let H∗ be Hessian of barrier at x∗,

H∗ = −∇2m

i=1

log(bi − aTi z)

z=x∗

=

m∑

i=1

aiaTi

(bi − aTi x∗)2

• then, P ⊆ E = {z | (z − x∗)TH∗(z − x∗) ≤ m2}

define (ir)relevance measure ηi =bi − aT

i x∗

aTi H∗−1ai

Prof. S. Boyd, EE364b, Stanford University 10

Page 12: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

• ηi/m is normalized distance from hyperplane aTi x = bi to outer ellipsoid

• if ηi ≥ m, then constraint aTi x ≤ bi is redundant

common ACCPM constraint dropping schemes:

• drop all constraints with ηi ≥ m (guaranteed to not change P)

• drop constraints in order of irrelevance, keeping constant number,usually 3n – 5n

Prof. S. Boyd, EE364b, Stanford University 11

Page 13: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

PWL lower bound on convex function

• suppose f is convex, and g(i) ∈ ∂f(x(i)), i = 1, . . . , m

• then we have

f̂(z) = maxi=1,...,m

(

f(x(i)) + g(i)T (z − x(i)))

≤ f(z)

• f̂ is PWL lower bound on f

Prof. S. Boyd, EE364b, Stanford University 12

Page 14: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Lower bound in ACCPM

• in solving convex problem

minimize f0(x)subject to f1(x) ≤ 0,

Cx � d

(by taking max of constraint functions we can assume there is only one)

• we have evaluated f0 and subgradient g0 at x(1), . . . , x(q)

• we have evaluated f1 and subgradient g1 at x(q+1), . . . , x(k)

• form piecewise-linear approximations f̂0, f̂1

Prof. S. Boyd, EE364b, Stanford University 13

Page 15: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

• form PWL relaxed problem

minimize f̂0(x)

subject to f̂1(x) ≤ 0,Cx � d

(can be solved via LP)

• optimal value is a lower bound on p⋆

• can easily construct a lower bound on the PWL relaxed problem, as aby-product of the analytic centering computation

• this, in turn, gives a lower bound on the original problem

Prof. S. Boyd, EE364b, Stanford University 14

Page 16: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

• form dual of PWL relaxed problem

maximize∑q

i=1 λi(f0(x(i)) − g

(i)T0 x(i))

+∑k

i=q+1 λi(f1(x(i)) − g

(i)T1 x(i)) − dTµ

subject to∑q

i=1 λig(i)0 +

∑ki=q+1 λig

(i)1 + CTµ = 0

µ � 0, λ � 0,∑q

i=1 λi = 1,

• optimality condition for x(k+1)

q∑

i=1

g(i)0

f(i)best − f0(x(i)) − g

(i)T0 (x(k+1) − x(i))

+

k∑

i=q+1

g(i)1

−f1(x(i)) − g(i)T1 (x(k+1) − x(i))

+m

i=1

ci

di − cTi x(k+1)

= 0.

Prof. S. Boyd, EE364b, Stanford University 15

Page 17: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

• take τi = 1/(f(i)best − f0(x

(i)) − g(i)T0 (x(k+1) − x(i))) for i = 1, . . . , q.

• construct a dual feasible point by taking

λi =

{

τi/1T τ for i = 1, . . . , q

1/(−f1(x(i)) − g

(i)T1 (x(k+1) − x(i)))(1T τ) for i = q + 1, . . . , k,

µi = 1/(di − cTi x(k+1))(1T τ) i = 1, . . . ,m.

• using these values of λ and µ, we conclude that

p⋆ ≥ l(k+1),

where l(k+1) =∑q

i=1 λi(f0(x(i)) − g

(i)T0 x(i)) +

∑ki=q+1 λi(f1(x

(i)) − g(i)T1 x(i)) − dTµ.

Prof. S. Boyd, EE364b, Stanford University 16

Page 18: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Stopping criterion

since ACCPM isn’t a descent method, we keep track of best point found,and best lower bound

• best function value so far: f(k)best = min

i=1,...,kf0(x

(k))

• best lower bound so far: l(k)best = max

i=1,...,kl(x(k))

• can stop when f(k)best − l

(k)best ≤ ǫ

• guaranteed to be ǫ-suboptimal

Prof. S. Boyd, EE364b, Stanford University 17

Page 19: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Example: Piecewise linear minimization

problem instance with n = 20 variables, m = 100 terms, f⋆ ≈ 1.1

0 50 100 150 20010

−4

10−3

10−2

10−1

100

101

k

f(x

(k) )−

f⋆

Prof. S. Boyd, EE364b, Stanford University 18

Page 20: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

0 50 100 150 20010

−4

10−3

10−2

10−1

100

101

k

f(k

)best−

f⋆

Prof. S. Boyd, EE364b, Stanford University 19

Page 21: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

0 500 1000 1500 2000 250010

−4

10−3

10−2

10−1

100

101

Newton step

f best−

f⋆

Prof. S. Boyd, EE364b, Stanford University 20

Page 22: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

0 50 100 150 20010

−4

10−2

100

102

104

k

f(k)best − f⋆

f(k)best − l

(k)best

Prof. S. Boyd, EE364b, Stanford University 21

Page 23: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

ACCPM with constraint dropping

PWL objective, n = 20 variables, m = 100 terms

0 50 100 150 20010

−4

10−3

10−2

10−1

100

101

k

f(k

)best−

f⋆

no droppingkeeping 3n

Prof. S. Boyd, EE364b, Stanford University 22

Page 24: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

number of inequalities in P:

0 50 100 150 200 2500

50

100

150

200

250

k

no droppingkeeping 3n

Prof. S. Boyd, EE364b, Stanford University 23

Page 25: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

accuracy versus approximate cumulative flop count

0 50 100 150 20010

−4

10−3

10−2

10−1

100

101

Megaflops

f(k

)best−

f⋆

no droppingkeeping 3n

Prof. S. Boyd, EE364b, Stanford University 24

Page 26: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

Epigraph ACCPM

PWL objective, n = 20 variables, m = 100 terms

0 10 20 30 40 5010

−4

10−3

10−2

10−1

100

101

k

f(k

)−

f⋆

Prof. S. Boyd, EE364b, Stanford University 25

Page 27: Analytic Center Cutting-Plane MethodNewton step f best − f ⋆ Prof. S. Boyd, EE364b, Stanford University 20. 0 50 100 150 200 10−4 10−2 100 102 104 k f(k) best − f

0 200 400 600 800 1000 120010

−4

10−3

10−2

10−1

100

101

Newton iterations

f(k

)best−

f⋆

Prof. S. Boyd, EE364b, Stanford University 26