analytical geometry: 2d and 3d

890

Upload: others

Post on 11-Sep-2021

29 views

Category:

Documents


17 download

TRANSCRIPT

Page 1: Analytical Geometry: 2D and 3D
Page 2: Analytical Geometry: 2D and 3D

ANALYTICALGEOMETRY

2Dand3D

P.R.VittalVisitingProfessor

DepartmentofStatisticsUniversityofMadras

Chennai

Chennai•Delhi

Page 3: Analytical Geometry: 2D and 3D

BriefContents

AbouttheAuthor

Preface

1CoordinateGeometry

2TheStraightLine

3PairofStraightLines

4Circle

5SystemofCircles

6Parabola

7Ellipse

8Hyperbola

9PolarCoordinates

10TracingofCurves

11ThreeDimension

12Plane

13StraightLine

14Sphere

15Cone

16Cylinder

Page 4: Analytical Geometry: 2D and 3D

Contents

AbouttheAuthor

Preface

1CoordinateGeometry

1.1Introduction

1.2SectionFormula

IllustrativeExamples

Exercises

2TheStraightLine

2.1Introduction

2.2SlopeofaStraightLine

2.3Slope-interceptFormofaStraightLine

2.4InterceptForm

2.5Slope-pointForm

2.6TwoPointsForm

2.7NormalForm

2.8ParametricFormandDistanceForm

2.9PerpendicularDistanceonaStraightLine

2.10IntersectionofTwoStraightLines

2.11ConcurrentStraightLines

2.12AnglebetweenTwoStraightLines

2.13EquationsofBisectorsoftheAnglebetweenTwoLines

Page 5: Analytical Geometry: 2D and 3D

IllustrativeExamples

Exercises

3PairofStraightLines

3.1Introduction

3.2HomogeneousEquationofSecondDegreeinxandy

3.3AnglebetweentheLinesRepresentedbyax2+2hxy+by2=0

3.4EquationfortheBisectoroftheAnglesbetweentheLinesGivenbyax2+2hxy+by2=0

3.5ConditionforGeneralEquationofaSecondDegreeEquationtoRepresentaPairofStraightLines

IllustrativeExamples

Exercises

4Circle

4.1Introduction

4.2EquationofaCirclewhoseCentreis(h,k)andRadiusr

4.3CentreandRadiusofaCircleRepresentedbytheEquationx2+y2+2gx+2fy+c=0

4.4LengthofTangentfromPointP(x1,y1)totheCirclex2+y2+2gx+2fy+c=0

4.5EquationofTangentat(x1,y1)totheCirclex2+y2+2gx+2fy+c=0

4.6EquationofCirclewiththeLineJoiningPointsA(x1,y1)andB(x2,y2)astheendsofDiameter

4.7ConditionfortheStraightLiney=mx+ctobeaTangenttotheCirclex2+y2=a2

4.8EquationoftheChordofContactofTangentsfrom(x1,y1)totheCirclex2+y2+2gx+2fy+c

=0

4.9TwoTangentscanAlwaysbeDrawnfromaGivenPointtoaCircleandtheLocusofthePointofIntersectionofPerpendicularTangentsisaCircle

4.10PoleandPolar

4.11ConjugateLines

4.12EquationofaChordofCirclex2+y2+2gx+2fy+c=0inTermsofitsMiddlePoint

Page 6: Analytical Geometry: 2D and 3D

4.13CombinedEquationofaPairofTangentsfrom(x1,y1)totheCirclex2+y2+2gx+2fy+c=

0

4.14ParametricFormofaCircle

IllustrativeExamples

Exercises

5SystemofCircles

5.1RadicalAxisofTwoCircles

5.2OrthogonalCircles

5.3CoaxalSystem

5.4LimitingPoints

5.5Examples(RadicalAxis)

5.6Examples(LimitingPoints)

Exercises

6Parabola

6.1Introduction

6.2GeneralEquationofaConic

6.3EquationofaParabola

6.4LengthofLatusRectum

6.5DifferentFormsofParabola

IllustrativeExamplesBasedonFocusDirectrixProperty

6.6ConditionforTangency

6.7NumberofTangents

6.8PerpendicularTangents

6.9EquationofTangent

6.10EquationofNormal

6.11EquationofChordofContact

6.12PolarofaPoint

Page 7: Analytical Geometry: 2D and 3D

6.13ConjugateLines

6.14PairofTangents

6.15ChordIntermsofMid-point

6.16ParametricRepresentation

6.17ChordJoiningTwoPoints

6.18EquationsofTangentandNormal

6.19PointofIntersectionofTangents

6.20PointofIntersectionofNormals

6.21NumberofNormalsfromaPoint

6.22IntersectionofaParabolaandaCircle

IllustrativeExamplesBasedonTangentsandNormals

IllustrativeExamplesBasedonParameters

Exercises

7Ellipse

7.1StandardEquation

7.2StandardEquationofanEllipse

7.3FocalDistance

7.4PositionofaPoint

7.5AuxiliaryCircle

IllustrativeExamplesBasedonFocus-directrixProperty

7.6ConditionforTangency

7.7DirectorCircleofanEllipse

7.8EquationoftheTangent

7.9EquationofTangentandNormal

7.10EquationtotheChordofContact

7.11EquationofthePolar

Page 8: Analytical Geometry: 2D and 3D

7.12ConditionforConjugateLines

IllustrativeExamplesBasedonTangents,Normals,Pole-polarandChord

7.13EccentricAngle

7.14EquationoftheChordJoiningthePoints

7.15EquationofTangentat‘θ’ontheEllipse

7.16ConormalPoints

7.17ConcyclicPoints

7.18EquationofaChordinTermsofitsMiddlePoint

7.19CombinedEquationofPairofTangents

7.20ConjugateDiameters

7.21Equi-conjugateDiameters

IllustrativeExamplesBasedonConjugateDiameters

Exercises

8Hyperbola

8.1Definition

8.2StandardEquation

8.3ImportantPropertyofHyperbola

8.4EquationofHyperbolainParametricForm

8.5RectangularHyperbola

8.6ConjugateHyperbola

8.7Asymptotes

8.8ConjugateDiameters

8.9RectangularHyperbola

Exercises

9PolarCoordinates

Page 9: Analytical Geometry: 2D and 3D

9.1Introduction

9.2DefinitionofPolarCoordinates

9.3RelationbetweenCartesianCoordinatesandPolarCoordinates

9.4PolarEquationofaStraightLine

9.5PolarEquationofaStraightLineinNormalForm

9.6Circle

9.7PolarEquationofaConic

Exercises

10TracingofCurves

10.1GeneralEquationoftheSecondDegreeandTracingofaConic

10.2ShiftofOriginwithoutChangingtheDirectionofAxes

10.3RotationofAxeswithoutChangingtheOrigin

10.4RemovalofXY-term

10.5Invariants

10.6ConditionsfortheGeneralEquationoftheSecondDegreetoRepresentaConic

10.7CentreoftheConicGivenbytheGeneralEquationoftheSecondDegree

10.8EquationoftheConicReferredtotheCentreasOrigin

10.9LengthandPositionoftheAxesoftheCentralConicwhoseEquationisax2+2hxy+by2=1

10.10AxisandVertexoftheParabolawhoseEquationisax2+2hxy+by2+2gx+2fy+c=0

Exercises

11ThreeDimension

11.1RectangularCoordinateAxes

11.2FormulaforDistancebetweenTwoPoints

11.3CentroidofTriangle

11.4CentroidofTetrahedron

11.5DirectionCosines

Page 10: Analytical Geometry: 2D and 3D

IllustrativeExamples

Exercises

12Plane

12.1Introduction

12.2GeneralEquationofaPlane

12.3GeneralEquationofaPlanePassingThroughaGivenPoint

12.4EquationofaPlaneinInterceptForm

12.5EquationofaPlaneinNormalForm

12.6AnglebetweenTwoPlanes

12.7PerpendicularDistancefromaPointonaPlane

12.8PlanePassingThroughThreeGivenPoints

12.9ToFindtheRatioinwhichthePlaneJoiningthePoints(x1,y1,z1)and(x2,y2,z2)isDividedbythePlaneax+by+cz+d=0.

12.10PlanePassingThroughtheIntersectionofTwoGivenPlanes

12.11EquationofthePlaneswhichBisecttheAnglebetweenTwoGivenPlanes

12.12ConditionfortheHomogenousEquationoftheSecondDegreetoRepresentaPairofPlanes

IllustrativeExamples

Exercises

13StraightLine

13.1Introduction

13.2EquationofaStraightLineinSymmetricalForm

13.3EquationsofaStraightLinePassingThroughtheTwoGivenPoints

13.4EquationsofaStraightLineDeterminedbyaPairofPlanesinSymmetricalForm

13.5AnglebetweenaPlaneandaLine

13.6ConditionforaLinetobeParalleltoaPlane

13.7ConditionsforaLinetoLieonaPlane

13.8ToFindtheLengthofthePerpendicularfromaGivenPointonaLine

Page 11: Analytical Geometry: 2D and 3D

13.9CoplanarLines

13.10SkewLines

13.11EquationsofTwoNon-intersectingLines

13.12IntersectionofThreePlanes

13.13ConditionsforThreeGivenPlanestoFormaTriangularPrism

IllustrativeExamples

IllustrativeExamples(CoplanarLinesandShortestDistance)

Exercises

14Sphere

14.1DefinitionofSphere

14.2Theequationofaspherewithcentreat(a,b,c)andradiusr

14.3EquationoftheSphereontheLineJoiningthePoints(x1,y1,z1)and(x2,y2,z2)asDiameter

14.4LengthoftheTangentfromP(x1,y1,z1)totheSpherex2+y2+z2+2ux+2vy+2wz+d=0

14.5EquationoftheTangentPlaneat(x1,y1,z1)totheSpherex2+y2+z2+2ux+2vy+2wz+d

=0

14.6SectionofaSpherebyaPlane

14.7EquationofaCircle

14.8IntersectionofTwoSpheres

14.9EquationofaSpherePassingThroughaGivenCircle

14.10ConditionforOrthogonalityofTwoSpheres

14.11RadicalPlane

14.12CoaxalSystem

IllustrativeExamples

Exercises

15Cone

15.1DefinitionofCone

Page 12: Analytical Geometry: 2D and 3D

15.2EquationofaConewithaGivenVertexandaGivenGuidingCurve

15.3EquationofaConewithitsVertexattheOrigin

15.4ConditionfortheGeneralEquationoftheSecondDegreetoRepresentaCone

15.5RightCircularCone

15.6TangentPlane

15.7ReciprocalCone

Exercises

16Cylinder

16.1Definition

16.2EquationofaCylinderwithaGivenGeneratorandaGivenGuidingCurve

16.3EnvelopingCylinder

16.4RightCircularCylinder

IllustrativeExamples

Exercises

Page 13: Analytical Geometry: 2D and 3D

AbouttheAuthor

P.R.VittalwasapostgraduateprofessorofMathematicsatRamakrishnaMissionVivekanandaCollege,Chennai,fromwhereheretiredasPrincipalin1996.HewasavisitingprofessoratWesternCarolinaUniversity,USA,andhasvisitedanumberofuniversitiesintheUSAandCanadainconnectionwithhisresearchwork.Heis,atpresent,avisitingprofessorattheDepartmentofStatistics,UniversityofMadras;InstituteofCharteredAccountantsofIndia,Chennai;TheInstituteofTechnologyandManagement,Chennai;andNationalManagementSchool,Chennai,besidesbeingaresearchguideinManagementScienceatBITS,Ranchi.ProfessorVittalhaspublished30researchpapersinjournalsofnationaland

internationalreputeandguidedanumberofstudentstotheirM.Phil.andPh.D.degrees.AfellowofTamilNaduAcademyofSciences,hisresearchtopicsareprobability,stochasticprocesses,operationsresearch,differentialequationsandsupplychainmanagement.Hehasauthoredabout30booksinmathematics,statisticsandoperationsresearch.

Page 14: Analytical Geometry: 2D and 3D

TomygrandchildrenAaravandAdvay

Page 15: Analytical Geometry: 2D and 3D

Preface

Asuccessfulcourseinanalyticalgeometrymustprovideafoundationforfutureworkinmathematics.Ourteachingresponsibilitiesaretoinstilcertaintechnicalcompetenceinourstudentsinthisdisciplineofmathematics.Agoodtextbook,aswithagoodteacher,shouldaccomplishtheseaims.Inthisbook,youwillfindacrisp,mathematicallyprecisepresentationthatwillallowyoutoeasilyunderstandandgraspthecontents.Thisbookcontainsbothtwo-dimensionalandthree-dimensionalanalytical

geometry.Insomeofthefundamentalresults,vectortreatmentisalsogivenandtherefromthescalarformoftheresultshasbeendeduced.Thefirst10chaptersdealwithtwo-dimensionalanalyticalgeometry.In

Chapter1,allbasicresultsareintroduced.Theconceptoflocusiswellexplained.Usingthisidea,inChapter2,differentformsfortheequationofastraightlineareobtained;allthecharacteristicsofastraightlinearealsodiscussed.Chapter3dealswiththeequationofapairofstraightlinesanditsproperties.InChapters4and5,circleandsystemofcircles,includingcoaxialsystemandlimitingpointsofacoaxialsystem,areanalysed.Chapters6,7and8dealwiththeconicsections—parabola,ellipseand

hyperbola.Apartfromtheirpropertiessuchasfocusanddirectrix,theirparametricequationsarealsoexplained.Specialpropertiessuchasconormalpointsofallconicsaredescribedindetails.Conjugatediametersinellipseandhyperbolaandasymptotesofahyperbolaandrectangularhyperbolaarealsoanalysedwithanumberofexamples.Ageneraltreatmentofconicsandtracingofconicsisalsoprovided.InChapter9,wedescribepolarcoordinates,whichareusedtomeasure

distancesforsomespecialpurposes.Chapter10examinestheconditionsforthegeneralequationoftheseconddegreetorepresentthedifferenttypesofconics.

Page 16: Analytical Geometry: 2D and 3D

InChapters11to16,westudythethree-dimensionalanalyticalgeometry.Thebasicconcepts,suchasdirectionalcosines,areintroducedinChapter11.InChapter12,allformsofplaneareanalysedwiththehelpofexamples.Chapter13introducesastraightlineasanintersectionofapairofplanes.Differentformsofastraightlinearestudied;especially,coplanarlinesandtheshortestdistancebetweentwoskewlines.Chapter14dealswithspheresandsystemofspheres.InChapters15and16,twospecialtypesofconicoids—coneandcylinder—arediscussed.Anumberofillustrativeexamplesandexercisesforpracticearegiveninall

these16chapters,tohelpthestudentsunderstandtheconceptsinabettermanner.Ihopethatthisbookwillbeveryusefulforundergraduatestudentsand

engineeringstudentswhoneedtostudyanalyticalgeometryaspartoftheircurriculum.

Page 17: Analytical Geometry: 2D and 3D

Chapter1

CoordinateGeometry

1.1INTRODUCTION

LetXOX′andYOY′betwofixedperpendicularlinesintheplaneofthepaper.ThelineOXiscalledtheaxisofXandOYtheaxisofY.OXandOYtogetherarecalledthecoordinateaxes.ThepointOiscalledtheoriginofthecoordinateaxes.LetPbeapointinthisplane.DrawPMperpendiculartoXOX′.ThedistanceOMiscalledthex-coordinateorabscissaandthedistanceMPiscalledthey-coordinateorordinateofthepointP.

IfOM=xandMP=ythen(x,y)arecalledthecoordinatesofthepointP.ThecoordinatesoftheoriginOare(0,0).ThelinesXOX′andYOY′dividetheplaneintofourquadrants.TheyareXOY,YOX′,X′OY′andY′OX′.ThelengthsmeasuredinthedirectionsOXandOYareconsideredpositiveandthelengthsmeasuredinthedirectionsOX′andOY′areconsiderednegative.Thenatureofthecoordinatesinthedifferentquadrantsisasfollows:

Quadrant x-coordinate y-coordinate

First+ +

Second− +

Page 18: Analytical Geometry: 2D and 3D

− +

Third− −

Fourth+ −

ThemethodofrepresentingapointbymeansofcoordinateswasfirstintroducedbyRenaDescartesandhencethisbranchofmathematicsiscalledtherectangularCartesiancoordinatesystem.Usingthiscoordinatesystem,onecaneasilyfindthedistancebetweentwo

pointsinaplane,thecoordinatesofthepointthatdividesalinesegmentinagivenratio,thecentroidofatriangle,theareaofatriangleandthelocusofapointthatmovesaccordingtoagivengeometricallaw.

1.1.1DistancebetweenTwoGivenPoints

LetPandQbetwopointswithcoordinates(x1,y1)and(x2,y2).

DrawPLandQMperpendicularstothex-axis,anddrawQNperpendiculartoPL.Then,

Page 19: Analytical Geometry: 2D and 3D

Note1.1.1:ThedistanceofPfromtheoriginOis

Example1.1.1

IfPisthepoint(4,7)andQis(2,3),then

Example1.1.2

ThedistancebetweenthepointsP(2,−5)andQ(−4,7)is

1.2SECTIONFORMULA

1.2.1CoordinatesofthePointthatDividestheLineJoiningTwoGivenPointsinaGivenRatio

LetthetwogivenpointsbeP(x1,y1)andQ(x2,y2).

LetthepointRdividePQinternallyintheratiol:m.DrawPL,QMandRNperpendicularstothex-axis.DrawPSperpendiculartoRNandRTperpendiculartoMQ.LetthecoordinatesofRbe(x,y).RdividesPQinternallyintheratiol:m.Then,

Page 20: Analytical Geometry: 2D and 3D

TrianglesPSRandRTQaresimilar.

Also

Hence,thecoordinatesofRare

1.2.2ExternalPointofDivision

IfthepointR′dividesPQexternallyintheratiol:m,then

Page 21: Analytical Geometry: 2D and 3D

Choosingmnegative,wegetthecoordinatesofR′.Therefore,thecoordinatesof

R′are

Note1.2.2.1:Ifwetakel=m=1intheinternalpointofdivision,wegetthecoordinatesofthemidpoint.Therefore,thecoordinatesofthemidpointofPQ

are

1.2.3CentroidofaTriangleGivenitsVertices

LetABCbeatrianglewithverticesA(x1,y1),B(x2,y2)andC(x3,y3).

LetAA′,BB′andCC′bethemediansofthetriangle.ThenA′,B′,C′arethemidpointsofthesidesBC,CAandAB,respectively.ThecoordinatesofA′are

Weknowthatthemediansofatriangleareconcurrentatthe

pointGcalledthecentroidandGdivideseachmedianintheratio2:1.ConsideringthemedianAA′,thecoordinatesofGare

1.2.4AreaofTriangleABCwithVerticesA(x1,y1),B(x2,y2)andC(x3,y3)

Page 22: Analytical Geometry: 2D and 3D

LettheverticesoftriangleABCbeA(x1,y1),B(x2,y2)andC(x3,y3).

DrawAL,BMandCNperpendicularstoOX.Then,areaΔoftriangleABCiscalculatedas

Note1.2.4.1:Theareaispositiveornegativedependingupontheorderinwhichwetakethepoints.Sincescalarareaisalwaystakentobeapositivequantity,wetake

Note1.2.4.2:Iftheverticesofthetriangleare(0,0),(x1,y1)and(x2,y2),then

Page 23: Analytical Geometry: 2D and 3D

Note1.2.4.3:Iftheareaofthetriangleiszero,i.e.Δ=0,thenwenotethatthepointsarecollinear.Hence,theconditionforthepoints(x1,y1),(x2,y2)and(x3,y3)tobecollinearis

x1(y2−y3)+x2(y3−y1)+x3(y1−y2)=0

1.2.5AreaoftheQuadrilateralGivenitsVertices

LetABCDbethequadrilateralwithverticesA(x1,y1),B(x2,y2),C(x3,y3)andD(x4,y4).DrawAP,BQ,CRandDSperpendicularstothex-axis.Then,

Note1.2.5.1:Thisresultcanbeextendedtoapolygonofnsideswithvertices(x1,y1),(x2,y2)……(xn,yn)as

Locus

Whenapointmovessoastosatisfysomegeometricalconditionorconditions,thepathtracedoutbythepointiscalledthelocusofthepoint.

Page 24: Analytical Geometry: 2D and 3D

thepathtracedoutbythepointiscalledthelocusofthepoint.Forexample,ifapointmoveskeepingaconstantdistancefromafixedpoint,

thelocusofthemovingpointiscalledcircleandthefixeddistanceiscalledtheradiusofthecircle.Moreover,ifapointmovessuchthatitsdistancefromtwofixedpointsareequal,thenthelocusofthepointistheperpendicularbisectorofthelinejoiningthetwofixedpoints.IfAandBaretwofixedpointsandpointP

movessuchthat thenthelocusofPisacirclewithABasthe

diameter.Itispossibletorepresentthelocusofapointbymeansofanequation.SupposeapointP(x,y)movessuchthatitsdistancefromtwofixedpoints

A(2,3)andB(5,−3)areequal.ThenthegeometricallawisPA=PB⇒PA2=PB2

Here,thelocusofPisastraightline.

ILLUSTRATIVEEXAMPLES

Example1.1

Findthedistancebetweenthepoints(4,7)and(−2,5).

Solution

LetPandQbethepoints(4,7)and(−2,5),respectively.

Example1.2

Provethatthepoints(4,3),(7,−1)and(9,3)aretheverticesofanisoscelestriangle.

Page 25: Analytical Geometry: 2D and 3D

Solution

LetA(4,3),B(7,−1),C(9,3)bethethreegivenpoints.Then

Sincethesumoftwosidesisgreaterthanthethird,thepointsformatriangle.Moreover,AB=AC=5.Therefore,thetriangleisanisoscelestriangle.

Example1.3

Showthatthepoints(6,6),(2,3)and(4,7)aretheverticesofarightangledtriangle.

Solution

LetA,B,Cbethepoints(6,6),(2,3)and(4,7),respectively.

Hence,thepointsaretheverticesofarightangledtriangle.

Example1.4

Showthatthepoints(7,9),(3,−7)and(−3,3)aretheverticesofarightangledisoscelestriangle.

Solution

Page 26: Analytical Geometry: 2D and 3D

LetA,B,Cbethepoints(7,9),(3,−7),(−3,3),respectively.

Hence,thepointsareverticesofarightangledtriangle.Also,BC=AC.Therefore,itisarightangledisoscelestriangle.

Example1.5

Showthatthepoints(4,−4),(−4,4)and aretheverticesofan

equilateraltriangle.

Solution

LetA,B,Cbethepoints(4,−4),(−4,4)and ,respectively.

Hence,thepointsA,BandCaretheverticesofanequilateraltriangle.

Example1.6

Showthatthesetofpoints(−2,−1),(1,0),(4,3)and(1,2)aretheverticesofaparallelogram.

Solution

Page 27: Analytical Geometry: 2D and 3D

LetA,B,C,Dbethepoints(−2,−1),(1,0),(4,3)and(1,2),respectively.Aquadrilateralisaparallelogramiftheoppositesidesareequal.

SincetheoppositesidesofthequadrilateralABCDareequal,thefourpointsformaparallelogram.

Example1.7

Showthatthepoints(2,−2),(8,4),(5,7)and(−1,1)aretheverticesofarectangletakeninorder.

Solution

Aquadrilateralinwhichtheoppositesidesareequalandthediagonalsareequalisarectangle.LetA(2,−2),B(8,4),C(5,7)andD(−1,1)bethefourgivenpoints.

Thus,theoppositesidesareequalandthediagonalsarealsoequal.Hence,thefourpointsformarectangle.

Example1.8

Provethatthepoints(3,2),(5,4),(3,6)and(1,4)takeninorderformasquare.

Page 28: Analytical Geometry: 2D and 3D

Solution

Aquadrilateralinwhichallsidesareequalanddiagonalsareequalisasquare.LetA,B,C,Dbethepoints(3,2),(5,4),(3,6),(1,4),respectively.

Thus,allsidesareequalandalsothediagonalsareequal.Hence,thefourpointsformasquare.

Example1.9

FindthecoordinatesofthecircumcentreofatrianglewhoseverticesareA(3,−2),B(4,3)andC(−6,5).Also,findthecircumradius.

Solution

LetA(3,−2),B(4,3),andC(−6,5)bethegivenpoints.LetS(x,y)bethecircumcentreofΔABC.ThenSA=SB=SC=circumradius.Now

Page 29: Analytical Geometry: 2D and 3D

Hence,thecircumcentreis

Now

Therefore,circumradius units.

Example1.10

Showthatthepoints(3,7),(6,5)and(15,−1)lieonastraightline.

Solution

LetA(3,7),B(6,5)andC(15,−1)bethethreepoints.Then

Page 30: Analytical Geometry: 2D and 3D

Hence,thethreegivenpointslieonastraightline.

Example1.11

Showthat(4,3)isthecentreofthecirclethatpassesthroughthepoints(9,3),(7,−1)and(1,−1).Finditsradius.

Solution

LetA(9,3),B(7,−1),C(1,−1)andP(4,3)bethegivenpoints.Then

Hence,PisthecentreofthecirclepassingthroughthepointsA,B,C;itsradiusis5.

Example1.12

Page 31: Analytical Geometry: 2D and 3D

IfOistheoriginandthecoordinatesofAandBare(x1,y1)and(x2,y2),

respectively,provethatOA·OBcosθ=x1x2+y1y2where

Solution

Bycosineformula

Hence,OA·OBcosθ=x1x2+y1y2

Example1.13

Iftanα,tanβandtanγbetherootsoftheequationx3−3ax2+3bx−c=0andtheverticesofthetriangleABCare(tanα,cotα),(tanβ,cotβ)and(tanγ,cotγ)showthatthecentroidofthetriangleis(a,b).

Solution

Giventaα,tanβandtanγaretherootsoftheequation

Page 32: Analytical Geometry: 2D and 3D

Thendividing(1.5)by(1.6),

ThecentroidofΔABCis

(i.e.)(a,b)from(1.4)and(1.7).

Example1.14

Iftheverticesofatrianglehaveintegralcoordinates,provethatitcannotbeanequilateraltriangle.

Solution

Theareaofthetrianglewithvertices(x1,y1),(x2,y2)and(x3,y3)is

Also,theareaofΔABCis

whereaisthesideoftheequilateraltriangle.Iftheverticesofthetrianglehaveintegralcoordinates,thenΔisarationalnumber.However,from(1.9)weinfer

Page 33: Analytical Geometry: 2D and 3D

thattheareais timesarationalnumber.Hence,iftheverticesofatriangle

haveintegralcoordinates,itcannotbeequilateral.

Example1.15

Ift1,t2andt3aredistinct,thenshowthatthepoints and

a≠0cannotbecollinear.

Solution

sincet1,t2andt3aredistinct.Hence,thethreegivenpointscannotbecollinear.

Example1.16

TheverticesofatriangleABCare(2,3),(4,7),(−5,2).FindthelengthofthealtitudethroughA.

Solution

TheareaofΔABCisgivenby

Page 34: Analytical Geometry: 2D and 3D

Weknowthat

Example1.17

TheverticesofatriangleABCareA(x1,x1tanα),B(x2,x2tanβ)andC(x3,x3

tanγ).If istheorthocentreandS(0,0)isthecircumcentre,thenshowthat

Page 35: Analytical Geometry: 2D and 3D

Solution

IfristhecircumradiusofΔABC,SA=SB=SC=r,SA2=r2

Then,thecoordinatesofA,BandCare(rcosα,rsinα),(rcosβ,rsinβ)and(rcosγ,rsinγ).Thecentroidofthetriangleis

Theorthocentreis andthecircumcentreisS(0,0).Geometricallywe

knowthatH,GandSarecollinear.Therefore,theslopeofSGandGHareequal.

Example1.18

AlinejoiningthetwopointsA(2,0)andB(3,1)isrotatedaboutAintheanticlockwisedirectionthroughanangleof15°.IfBgoestoCinthenewposition,findthecoordinateofC.

Solution

Page 36: Analytical Geometry: 2D and 3D

GiventhatCisthenewpositionofB.DrawCLperpendiculartoOXandlet(x1,y1)bethecoordinatesofC.Now

ABmakes45°withx-axisand Then

Hence,thecoordinatesofCare

Example1.19

ThecoordinatesofA,BandCare(6,3),(−3,5)and(4,−2),respectively,andP

isanypoint(x,y).ShowthattheratiooftheareaofΔPBCandΔABCis

Solution

ThepointsA,B,CandPare(6,3),(−3,5),(4,−2)and(x,y),respectively.

Page 37: Analytical Geometry: 2D and 3D

Example1.20

Findthecoordinatesofthepointthatdividesthelinejoiningthepoints(2,3)and(−4,7)(i)internally(ii)externallyintheratio3:2.

Solution

LetRandR′respectivelydividePQinternallyandexternallyintheratio3:2.

i. ThecoordinatesofRare

ii. ThecoordinatesofR′are

(i.e)(−16,15)

Page 38: Analytical Geometry: 2D and 3D

Example1.21

Findtheratioinwhichthelinejoiningthepoints(4,7)and(−3,2)isdividedbythey-axis.

Solution

Letthey-axismeetthelinejoiningthejointsP(4,7)andQ(−3,2)atR.LetthecoordinatesofRbe(0,y).LetRdividePQintheratiok:1.

ThecoordinatesofRisgivenby

Hence,theratioinwhichRdividesPQis4:3.

Example1.22

Showthatthepoints(−2,−1),(1,0),(4,3)and(1,2)formtheverticesofaparallelogram.

Solution

Aquadrilateralinwhichthediagonalsbisecteachotherisaparallelogram.

ThemidpointofACis (i.e.)(1,1).

ThemidpointofBDis (i.e.)(1,1).

Sincethediagonalsbisecteachother,ABCDisaparallelogram.

Page 39: Analytical Geometry: 2D and 3D

Example1.23

Find(x,y)if(3,2),(6,3),(x,y)and(6,5)aretheverticesofaparallelogramtakeninorder.

Solution

LetthefourpointsbeA,B,CandD,respectively.SinceABCDisaparallelogram,themidpointofACisthesameasthemidpointofBD.

ThemidpointofACis .ThemidpointofBDis (i.e)(6,4).

Hence(x,y)is(9,6).

Example1.24

Themidpointsofthesidesofatriangleare(6,−1),(−1,−2)and(1,4).Findthecoordinatesofthevertices.

Solution

LetD,EandFbethemidpointsofthesidesBC,CAandAB,respectively.Then,(6,−1),(−1,−2),(1,4)arethepointsD,EandF,respectively.LetA(x1,y1),B(x2,y2)andC(x3,y3)betheverticesofthetriangle.ThenBDEFisaparallelogram.

ThemidpointofDFis

Page 40: Analytical Geometry: 2D and 3D

ThemidpointofBEis

SinceFisthemidpointofAB,

SinceEisthemidpointofAC,

∴x3=4,y3=−7.∴Cisthepoint(4,−7)

Hence,theverticesofthetriangleare(−6,3),(8,5)and(4,−7).

Example1.25

Showthattheaxesofcoordinatestrisectthestraightlinejoiningthepoints(2,−2)and(−1,4).

Solution

Letthelinejoiningthepoints(2,−2)and(−1,4)meetx-axisandy-axisatAandB,respectively.LetthecoordinatesofAandBbe(x,0)and(0,y),respectively.LetAdividethelineintheratiok:1.Thenthex-coordinateofAisgivenby

Page 41: Analytical Geometry: 2D and 3D

∴−k+2=0⇒k=2Hence,Adividesthelineintheratio2:1.

LetBdividethelineintheratiol:1.Then,

Hence,

Bdividesthelineintheratio1:2.Hence,AandBtrisectthelinejoiningthepoints(2,−4)and(−1,4).

Example1.26

TheverticesofatriangleareA(3,5),B(−7,9)andC(1,−3).Findthelengthofthethreemediansofthetriangle.

Solution

LetD,EandFbethemidpointsofthesidesofBC,CAandAB,respectively.

ThecoordinatesofDare (i.e.)(−3,3).ThecoordinatesofEare

(i.e.)(2,1).ThecoordinatesofFare (i.e.)(−2,7).

Page 42: Analytical Geometry: 2D and 3D

Hence,thelengthsofthemediansare

units.

Example1.27

Twooftheverticesofatriangleare(4,7)and(−1,2)andthecentroidisattheorigin.Findthethirdvertex.

Solution

Letthethirdvertexofthetrianglebe(x,y).Then

Hence,thethirdvertexis(−3,−9).

Example1.28

Showthatthemidpointofthehypotenuseoftherightangledtrianglewhoseverticesare(8,−10),(7,−3)and(0,−4)isequidistantfromthevertices.

Solution

LetthethreegivenpointsbeA(8,−10),B(7,−3)andC(0,−4).

Page 43: Analytical Geometry: 2D and 3D

AB2+BC2=AC2

Hence,ABCisarightangledtrianglewithACashypotenuse.

ThemidpointofACis (i.e)(4,−7).

Hence,themidpointofthehypotenuseisequidistantfromthevertices.

Example1.29

Findtheratioinwhichthelinejoiningthepoints(1,−1)and(4,5)isdividedbythepoint(2,1).

Solution

LetthepointR(2,1)dividethelinejoiningthepointsP(1,−1)andQ(4,5)intheratiok:1.Then

Page 44: Analytical Geometry: 2D and 3D

Therefore,R(2,1)dividesPQintheratio1:2.

Example1.30

Findthelocusofthepointthatisequidistantfromtwogivenpoints(2,3)and(−4,1).

Solution

LetP(x,y)beapointsuchthatPA=PBwhereAandBarethepoints(2,3)and(−4,1),respectively.

Example1.31

Findthelocusofthepointthatmovesfromthepoint(4,3)keepingaconstantdistanceof5unitsfromit.

Solution

LetC(4,3)bethegivenpointandP(x,y)beanypointsuchthatCP=5.Then

Example1.32

Theendsofarodoflengthlmoveontwomutuallyperpendicularlines.Showthatthelocusofthepointontherodthatdividesitintheratio1:2is9x2+36y2=l2.

Page 45: Analytical Geometry: 2D and 3D

Solution

LetABbearodoflengthlwhoseendsAandBareonthecoordinateaxes.LetthecoordinatesofAandBbeA(a,0)andB(0,b).LetthepointP(x1,y1)divideABintheratio1:2.

ThenthecoordinatesofPare

Hence,thelocusof(x1,y1)is9x2+36y2=l2.

Example1.33

Apointmovessuchthatthesumofitsdistancesfromtwofixedpoints(al,0)

and(−al,0)isalways2a.Provethattheequationofthelocusis

Solution

LetthetwofixedpointsbeA(al,0)andB(0,−al).LetP(x1,y1)beamovingpointsuchthatPA+PB=2a.Giventhat

Page 46: Analytical Geometry: 2D and 3D

Then

Adding(1.10)and(1.11),

Squaringonbothsides,weget

Dividingbya2(1−l2),weget

Therefore,thelocusof(x1,y1)is

Example1.34

ArightangledtrianglehavingtherightangleatCwithCA=aandCB=bmovessuchthattheangularpointsAandBslidealongthex-axisandy-axis,respectively.FindthelocusofC.

Solution

LetthepointsAandBbeonthex-axisandy-axis,respectively.LetAandBhavecoordinates(α,0)and(0,β).LetCbethepointwithcoordinates(x1,y1).

Page 47: Analytical Geometry: 2D and 3D

Then

ThenAB2=a2+b2.AlsoAB2=α2+β2

Hence,α2+β2=a2+b2

Hence,thelocusofc(x1,y1)isa2x2−b2y2=0.

Example1.35

TwopointsPandQaregiven.RisavariablepointononesideofthelinePQ

suchthat isapositiveconstant2α.FindthelocusofthepointP.

Solution

Page 48: Analytical Geometry: 2D and 3D

LetPQbethex-axisandtheperpendicularthroughthemidpointofPQbethey-axis.LetPandQbethepoints(a,0)and(−a,0),respectively.LetRbethepoint

(x1,y1).Let Then

(i.e.)θ−ϕ=2α.Thentan(θ−ϕ)=tan2α

Hence,thelocusof(x1,y1)isx2−y2−2xycot2α=a2.

Exercises

1. Showthattheareaofthetrianglewithvertices(a,b),(x1,y1)and(x2,y2)wherea,x1andx2areingeometricprogressionwithcommonratiorandb,y1andy2areingeometricprogressionwith

commonratiosis

2. IfP(1,0),Q(−1,0)andR(2,0)arethreegivenpoints,thenshowthatthelocusofthepointS

satisfyingtherelationSQ2+SR2−2SP2isastraightlineparalleltothey-axis.

3. Showthatthepoints(p+1,1),(2p+1,3)and(2p+2,2)arecollinearifp=2or

4. Showthatthemidpointoftheverticesofaquadrilateralcoincideswiththemidpointoftheline

Page 49: Analytical Geometry: 2D and 3D

joiningthemidpointofthediagonals.

5. Showthatift1andt2aredistinctandnonzero,then and(0,0)arecollinear.

6. Ifthepoints arecollinearforthreedistinctvaluesa,

bandc,thenshowthatabc−(bc+ca+ab)+3(a+b+c)=0.7. PerpendicularstraightlinesaredrawnthroughthefixedpointC(a,a)tomeettheaxesofxandyatAandB.AnequilateraltriangleisdescribedwithABasthebaseofthetriangle.Provethatthe

equationofthelocusofCisthecurvey2=3(x2+a2).8. TheendsAandBofastraightlinesegmentofconstantlengthcslidesuponthefixedrectangular

axesOXandOY,respectively.IftherectangleOAPBiscompleted,thenshowthatthelocusofthe

footoftheperpendiculardrawnfromPtoABis .

9. ThepointAdividesthelinejoiningP(1,−5)andQ(3,5)intheratiok:1.FindthetwovaluesofkforwhichtheareaofthetriangleABCisequalto2unitsinmagnitudewhenthecoordinatesofBandCare(1,5)and(7,−2),respectively.

10. ThelinesegmentjoiningA(3,0)andB(0,2)isrotatedaboutapointAintheanticlockwisedirectionthroughanangleof45°andthusBmovestoC.IfpointDbethereflectionofCinthey-axis,findthecoordinatesofD.

Ans.:

11. If(a,b),(h,k)and(p,q)bethecoordinatesofthecircumcentre,thecentroidandtheorthocentreofatriangle,provethat3h=p+2α.

12. Provethatinarightangledtriangle,themidpointofthehypotenuseisequidistantfromitsvertices.

13. IfGisthecentroidofatriangleABC,thenprovethat3(GA2+GB2+GC2)=AB2+BC2+CA2.14. Showthatthelinejoiningthemidpointofanytwosidesofatriangleishalfofthethirdside.15. Provethatthelinejoiningthemidpointsoftheoppositesidesofaquadrilateralandthelinejoining

themidpointsofthediagonalsareconcurrent.

16. IfΔ1andΔ2denotetheareaofthetriangleswhoseverticesare(a,b),(b,c),(c,a)and(bc−a2,

ca−b2),(ca−b2,ab−c2)and(ab−c2,bc−a2),respectively,thenshowthatΔ2=(a+b+

c)2Δ1.17. Provethatiftwomediansofatriangleareequal,thetriangleisisosceles.

18. Ifa,bandcbethepth,qthandrthtermsofaHP,thenprovethatthepointshavingcoordinates(ab,r),(bc,p)and(ca,q)arecollinear.

19. Provethatapointcanbefoundthatisatthesamedistancefromeachofthefourpoints

Page 50: Analytical Geometry: 2D and 3D

20. If(x1,y1)(x2,y2)(x3,y3)and(x4,y4)betheverticesofaparallelogramandx1x3+y1y3=x2x1+y2y1thenprovethattheparallelogramisarectangle.

21. InanyΔABC,provethatAB2+AC2=2(AD2+DC2)whereDisthemidpointofBC.22. IfGisthecentroidofatriangleABCandObeanyotherpoint,thenprovethat

i. AB2+BC2+CA2=3(GA2+GB2+GC2)

ii. OA2+OB2+OC2=GA2+GB2+GC2+3GO2

23. Findtheincentreofthetrianglewhoseverticesare(20,7),(−36,7)and(0,−8).

Ans.:

24. IfA,BandCarethepoints(−1,5),(3,1)and(5,7),respectively,andD,EandFarethemidpointsofBC,CAandAB,respectively,provethatareaofΔABCisfourtimesthatofΔDEF.

25. IfD,EandFdividethesidesBC,CAandABofΔABCinthesameratio,provethatthecentroidofΔABCandΔDEFcoincide.

26. AandBarethefixedpoints(a,0)and(−a,0).FindthelocusofthepointPthatmovesinaplanesuchthat

i. PA2+PB2=2k2

ii. PA2−PB2=2PC2whereCisthepoint(c,0)

Ans.:(i)2ax+k2=0

(ii)2cx=c2−a2

27. If(xi,yi),i=1,2,3aretheverticesoftheΔABCanda,bandcarethelengthsofthesidesBC,CA

andAB,respectively,showthattheincentreofthetriangleABCis

28. Showthatthepoints(−a,−b),(0,0),(a,b)and(a2,b2)areeithercollinear,theverticesofaparallelogramortheverticesofarectangle.

29. ThecoordinatesofthreepointsO,AandBare(0,0),(0,4)and(6,0),respectively.ApointPmovessothattheareaofΔPOAisalwaystwicetheareaofΔPOB.FindtheequationofthelocusofP.

Ans.:x2−9y2=0

30. ThefourpointsA(x1,0),B(x2,0),C(x3,0)andD(x4,0)aresuchthatx1,x2aretherootsofthe

equationax2+2hx+b=0andx3,x4aretherootsoftheequationa1x2+2h1x+b1=0.Show

thatthesumoftheratiosinwhichCandDdivideABiszero,providedab1+a1b=2hh1.

Page 51: Analytical Geometry: 2D and 3D

31. If thenshowthatthetrianglewithvertices(xi,yi),i=1,2,3and(ai,bi),i=

1,2,3arecongruent.32. Thepoint(4,1)undergoesthefollowingthreetransformationssuccessively:

i. Reflectionabouttheliney=xii. Transformationthroughadistanceof2unitsalongthepositivedirectionofx-axis

iii. Rotationthroughanangleof abouttheoriginintheanticlockwisedirection.

Findthefinalpositionofthepoint.33. ShowthatthepointsP(2,−4),Q(4,−2)andR(1,1)lieonastraightline.Find(i)theratioPQ:QR

and(ii)thecoordinatesoftheharmonicconjugationofQwithrespecttoPandR.34. Ifapointmovessuchthattheareaofthetriangleformedbythatpointandthepoints(2,3)and

(−3,4)is8.5squareunits,showthatthelocusofthepointisx+5y−34=0.35. Showthattheareaofthetrianglewithvertices(p+5,p−4),(p−2,p+3)and(p,p)is

independentofp.

Page 52: Analytical Geometry: 2D and 3D

Chapter2

TheStraightLine

2.1INTRODUCTION

Inthepreviouschapter,wedefinedthatthelocusofapointisthepathtracedoutbyamovingpointaccordingtosomegeometricallaw.Weknowthatthelocusofapointwhichmovesinsuchawaythatitsdistancefromafixedpointisalwaysconstant.

2.1.1DeterminationoftheGeneralEquationofaStraightLine

SupposethepointP(x,y)movessuchthatP(x,y),A(4,−1),andB(2,3)forma

straightline.Then,

⇒x(−4)−y(2)+14=0

(i.e.)4x+2y−14=0or2x+y−7=0,whichisafirstdegreeequationinxandythatrepresentsastraightline.Thegeneralequationofastraightlineisax+by+c=0.Supposeax+by+c

=0isthelocusofapointP(x,y).IfthislocusisastraightlineandifP(x1,y1)andQ(x2,y2)beanytwopointsonthelocusthenthepointRwhichdividesPQwithratioλ:1isalsoapointontheline.SinceP(x1,y1)andQ(x2,y2)lieonthelocusax+by+c=0,

Page 53: Analytical Geometry: 2D and 3D

Onmultiplyingequation(2.2)byλandaddingwithequation(2.1),weget

λ(ax2+by2+c)+(ax1+by1+c)=0.(i.e.)a(λx2+x1)+b(λy2+y1)+c(λ+1)=0.

Ondividingbyλ+1,weget

Equation(2.3)showsthatthepoint liesonthelocusax+by

+c=0.ThisshowsthatthepointwhichdividesPQintheratioλ:1alsoliesonthelocuswhichisthedefinitionforastraightline.∴ax+by+c=0alwaysrepresentsastraightline.

Note2.1.1.1:Theaboveequationcanbewrittenintheform

whichisoftheformAx+By+1=0.Hence,therearetwoindependentconstantsinequationofastraightline.Now,welookintovariousspecialformsoftheequationofastraightline.

2.1.2EquationofaStraightLineParalleltoy-axisandataDistanceofhunitsfromx-axis

LetPQbethestraightlineparalleltoy-axisandataconstantdistancehunitsfromy-axis.TheneverypointonthelinePQhasthex-coordinateh.HencetheequationofthelinePQisx=h.

Page 54: Analytical Geometry: 2D and 3D

Note2.1.2.1:

1. Similarly,theequationofthelineparalleltox-axisandatadistancekfromitisy=k.2. Theequationofx-axisisy=0.3. Theequationofy-axisisx=0.

2.2SLOPEOFASTRAIGHTLINE

Ifastraightlinemakesanangleθwiththepositivedirectionofx-axisthentanθiscalledtheslopeofthestraightlineandisdenotedbym.

∴m=tanθ.

Wecannowdeterminetheslopeofastraightlineintermsofcoordinatesoftwopointsontheline.LetP(x1,y1)andQ(x2,y2)bethetwogivenpointsonaline.DrawPLandQMperpendicularstox-axis.LetPQmakeanangleθwithOX.

Page 55: Analytical Geometry: 2D and 3D

DrawQRperpendiculartoLP.Then .

2.3SLOPE-INTERCEPTFORMOFASTRAIGHTLINE

Findtheequationofthestraightline,whichmakesanangleθwithOXandcutsoffaninterceptconthey-axis.

LetP(x,y)beanypointonthestraightlinewhichmakesanangleθwithx-axis.

,OB=c=y-intercept.DrawPLperpendiculartox-axisandBN

perpendiculartoLP.Then, .BN=OL=x.

Page 56: Analytical Geometry: 2D and 3D

∴NP=LP−LN=LP−OB=y−c.

InΔNBP,

ThisequationistrueforallpositionsofPonthestraightline.Hence,thisistheequationoftherequiredline.

2.4INTERCEPTFORM

Findtheequationofthestraightline,whichcutsoffinterceptsaandb,respectivelyonxandyaxes.

LetP(x,y)beanypointonthestraightlinewhichmeetsxandyaxesatAandB,respectively.LetOA=a,OB=b,ON=x,andNP=y;NA=OA−ON=a−x.TrianglesPNAandBOAaresimilar.Therefore,

.ThisresultistrueforallpositionsofP

onthestraightlineandhencethisistheequationoftherequiredline.

2.5SLOPE-POINTFORM

Findtheequationofthestraightlinewithslopemandpassingthroughthegivenpoint(x1,y1).Theequationofthestraightlinewithagivenslopemis

Page 57: Analytical Geometry: 2D and 3D

Here,cisunknown.Thisstraightlinepassesthroughthepoint(x1,y1).Thepointhastosatisfytheequationy=mx+c.∴y1=mx1+c.Substitutingthevalueofcinequation(2.4),wegetthe

equationofthelineas

y=mx+y1−mx1⇒y−y1=m(x−x1).

2.6TWOPOINTSFORM

Findtheequationofthestraightlinepassingthroughtwogivenpoints(x1,y1)and(x2,y2).

where,misunknown.Theslopeofthestraightlinepassingthroughthepoints

Bysubstitutingequation(2.6)inequation(2.5),wegettherequiredstraightline

2.7NORMALFORM

Findtheequationofastraightlineintermsoftheperpendicularpfromtheorigintothelineandtheanglethattheperpendicularlinemakeswithaxis.

Page 58: Analytical Geometry: 2D and 3D

DrawOL⊥AB.LetOL=p.

Let

Therefore,theequationofthestraightlineABis

(i.e.)xcosα+ysinα=p

2.8PARAMETRICFORMANDDISTANCEFORM

Letastraightlinemakeanangleθwithx-axisandA(x1,y1)beapointontheline.DrawAL,PMperpendiculartox-axisandAQperpendiculartoPM.Then,

InΔPAQ,x−x1=rcosθ;y−y1=rsinθ.

Page 59: Analytical Geometry: 2D and 3D

Thesearetheparametricequationsofthegivenline.

Note2.8.1:Anypointonthelineisx=x1+rcosθ,y=y1+rsinθ.

Note2.8.2:risthedistanceofanypointonthelinefromthegivenpointA(x1,y1).

2.9PERPENDICULARDISTANCEONASTRAIGHTLINE

Findtheperpendiculardistancefromagivenpointtothelineax+by+c=0.

LetR(x1,y1)beagivenpointandax+by+c=0bethegivenline.ThroughRdrawthelinePQparalleltoAB.DrawOSperpendiculartoABmeetingPQatT.

LetOS=pandPT=p1.Let .ThentheequationofABis

whichisthesameas

Equations(2.7)and(2.8)representthesamelineand,therefore,identifying

weget

Page 60: Analytical Geometry: 2D and 3D

TheequationofthelinePQisxcosα+ysinα=p.SincethepointR(x1,y1)liesonthelinex1cosα+ysinα−p1=0.

∴p1=x1cosα+y1sinα.Then,thelengthoftheperpendicularlinefromRtoAB

Note2.9.1:Theperpendiculardistancefromtheoriginonthelineax+by+

2.10INTERSECTIONOFTWOSTRAIGHTLINES

Letthetwointersectingstraightlinesbea1x+b1y+c1=0anda2x+b2y+c2=0.Letthestraightlinesintersectatthepoint(x1,y1).Then(x1,y1)liesonboththelinesandhencesatisfytheseequations.Then

Solvingtheequations,weget

Page 61: Analytical Geometry: 2D and 3D

Therefore,thepointofintersectionis

Findtheratioatwhichthelineax+by+c=0dividesthelinejoiningthepoints(x1,y1)and(x2,y2).

Letthelineax+by=c=0dividethelinejoiningthepointsP(x1,y1)andQ(x2,y2)intheratioλ:1.Then,thecoordinatesofthepointofdivisionRare

Thispointliesonthelineax+by+c=0

Note2.10.1:

1. Ifλispositivethenthepoints(x1,y1)and(x2,y2)lieontheoppositesidesofthelineax+by+c=0.

2. Ifλisnegativethenthepoints(x1,y1)and(x2,y2)lieonthesamesideofthelineax+by+c=0.3. Inotherwords,iftheexpressionsax1+by1+candax2+by2+c2areofoppositesignsthenthe

point(x1,y1)and(x2,y2)lieontheoppositesidesofthelineax+by+c=0.Iftheyareofthesamesignthenthepoints(x1,y1)and(x2,y2)lieonthesamesideofthelineax+by+c=0.

Findtheequationofastraightlinepassingthroughintersectionofthelinesa1x+b1y+c=0anda2x+b2y+c=0.Considertheequation

Page 62: Analytical Geometry: 2D and 3D

Considertheequation

Thisisalinearequationinxandyandhencethisequationrepresentsastraightline.Let(x1,y1)bethepointofintersectionofthelinesa1x+b1y+c1=0anda2x+b2y+c2=0.Then(x1,y1)hastosatisfythetwoequations:

Onmultiplyingequation(2.11)byλandaddingwithequation(2.10)weget,

Thisequationshowsthatthepointx=x1andy=y1satisfiesequation(2.9).Hencethepoint(x1,y1)liesonthestraightlinegivenbytheequation(2.9),whichisalinepassingthroughtheintersectionofthelinesa1x+b1y+c1=0anda2x+b2y+c2=0.

2.11CONCURRENTSTRAIGHTLINES

Considerthreestraightlinesgivenbyequations:

Thepointofintersectionoflinesgivenbyequations(2.12)and(2.13)is

Ifthethreegivenlinesareconcurrent,theabovepointshouldlieonthestraightlinegivenbyequation(2.14).

Page 63: Analytical Geometry: 2D and 3D

Thisistherequiredconditionforthethreegivenlinestobeconcurrent.The

aboveconditioncanbeexpressedindeterminantform

Ifl,m,andnareconstantssuchthatl(a1x+b1y+c1)+m(a2x+b2y+c2)+n(a3x+b3y+c3)vanishesidenticallythenprovethatthelinesa1x+b1y+c1=0,a2x+b2y+c2=0,anda3x+b3y+c3=0areconcurrent.Letthelinesa1x+b1y+c1=0anda2x+b2y+c2=0meetatthepoint(x1,

y1).

Forallvaluesofxandygiventhat,

Thenitwillbetrueforx=x1andy=y1.∴l(a1x1+b1y1+c1)+m(a2x1+b2y1+c2)+n(a3x1+b3y1+c3)=0.

Usingequations(2.15)and(2.16),wegeta3x1+b3y1+c3=0.Thatis,thepoint(x1,y1)liesonthelinea3x+b3y+c3=0.Therefore,thelinesa1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0

areconcurrentat(x1,y1).

2.12ANGLEBETWEENTWOSTRAIGHTLINES

Page 64: Analytical Geometry: 2D and 3D

Letθbetheanglebetweentwostraightlines,whoseslopesarem1andm2.Letthetwolineswithslopesm1andm2makeanglesθ1andθ2withx-axis.Then,m1=tanθ1,m2=tanθ2.Also,θ=θ1−θ2

IftheRHSispositive,thenθistheacuteanglebetweenthelines.IfRHSisnegative,thenθistheobtuseanglebetweenthelines.

Note2.12.1:Ifthelinesareparallelthenθ=0andtanθ=tan0=0.

Note2.12.2:Ifthelinesareperpendicularthen,

Therefore,

1. Iftwolinesareparallelthentheirslopesareequal.2. Ifthetwolinesareperpendicularthentheproductoftheirslopesis−1.

2.13EQUATIONSOFBISECTORSOFTHEANGLEBETWEENTWOLINES

Page 65: Analytical Geometry: 2D and 3D

LetABandCDbethetwointersectingstraightlinesintersectingatP.Lettheselinesberepresentedbytheequationsa1x+b1y+c1=0anda2x+b2y+c2=0.

LetPRandPR′bethebisectorsofangles and ,respectively.Thenthe

perpendiculardistancesfromR(orR′)AB,andCDareequal.

Ifc1andc2arepositive,thentheequationsofthebisectorcontainingtheoriginisgivenby

Theequationofthebisectornotcontainingtheoriginis

Ifc1andc2arenotpositivethentheequationsoflinesshouldbewritteninsuchawaythatc1andc2arepositive.

Note2.13.1:Wecaneasilyobservethatthetwobisectorsareatrightangles.

ILLUSTRATIVEEXAMPLES

Example2.1

Findtheequationofthestraightlinewhichisatadistanceof10unitsfromx-axis.

Page 66: Analytical Geometry: 2D and 3D

Solution

Theequationoftherequiredstraightlineisx=10orx−10=0.

Example2.2

Findtheequationofthestraightlinewhichisatadistanceof−15unitsfromy-axis.

Solution

Theequationoftherequiredlineisy=−15ory+15=0.

Example2.3

Findtheslopeofthelinejoiningthepoints(2,3)and(4,−5).

Solution

Theslopeofthelinejoiningthetwogivenpoints(x1,y1)and(x2,y2)is

Therefore,theslopeofthelinejoiningthetwogivenpointsis

Page 67: Analytical Geometry: 2D and 3D

Example2.4

Findtheslopeoftheline2x−3y+7=0.

Solution

Theequationofthelineis2x−3y+7=0(i.e.)3y=2x+7.

Therefore,slopeoftheline= .

Example2.5

Findtheequationofthestraightlinemakinganangle135°withthepositivedirectionofx-axisandcuttingofanintercept5onthey-axis.

Solution

Theslopeofthestraightlineis

yintercept=c=5.Therefore,theequationofthestraightlineis

Example2.6

Findtheequationofthestraightlinecuttingofftheintercepts2and−5ontheaxes.

Page 68: Analytical Geometry: 2D and 3D

Solution

Theequationofthestraightlineis .Here,a=2andb=−5.

Therefore,theequationofthestraightlineis or5x−2y=10.

Example2.7

Findtheequationofthestraightlinepassingthroughthepoints(7,−3)andcuttingoffequalinterceptsontheaxes.

Solution

Lettheequationofthestraightlinebe

(i.e.)x+y=a.

Thisstraightlinepassesthroughthepoint(7,−3).Therefore,7−3=a(i.e.)a=4.∴Theequationofthestraightlineisx+y=4.

Example2.8

Findtheequationofthestraightline,theportionofwhichbetweentheaxesisbisectedatthepoint(2,−5).

Solution

Lettheequationofthestraightlinebe

Page 69: Analytical Geometry: 2D and 3D

LetthelinemeetthexandyaxesatAandB,respectively.Thenthecoordinates

ofAandBare(a,0)and(0,b).ThemidpointofABis .However,the

midpointisgivenas(2,−5).

Therefore,

∴a=4andb=−10.

Hence,theequationofthestraightlineis

(i.e.)5x−2y=20.

Example2.9

Findtheequationofthestraightlineoftheportionofwhichbetweentheaxesisdividedbythepoint(4,3)intheratio2:3.

Solution

Lettheequationofthestraightlinebe

Page 70: Analytical Geometry: 2D and 3D

LetthislinemeetthexandyaxesatAandB,respectively.ThecoordinatesofAandBare(a,0)and(0,b),respectively.ThecoordinatesofthepointthatdividesABintheratio2:3are

Thispointisgivenas(4,3).

Therefore,

∴Theequationofthestraightlineis (i.e.)9x+8y=60.

Example2.10

Findtheequationstothestraightlineseachofwhichpassesthroughthepoint(3,2)andintersectthexandyaxesatAandBsuchthatOA−OB=2.

Solution

Page 71: Analytical Geometry: 2D and 3D

Lettheequationofthestraightlinebe .Thisstraightlinepassesthrough

thepoint(3,2).

Also,giventhatOA−OB=2

Therefore,b=a−2.Substitutingthisinequation(2.20)weget3(a−2)+2a=a(a−2).

∴Thetwostraightlinesare and

(i.e.)x−y=1and2x+3y=12.

Example2.11

ShowthatthepointsA(l,1),B(5,−9),andC(−l,6)arecollinear.

Page 72: Analytical Geometry: 2D and 3D

Solution

TheslopeofABis

SincetheslopesofABandBCareequalandBisthecommonpoint,thepointsarecollinear.

Example2.12

Provethatthetrianglewhoseverticesare(−2,5),(3,−4),and(7,10)isarightangledisoscelestriangle.Findtheequationofthehypotenuse.

SolutionLetthepointsbeA(−2,5),B(3,−4),andC(7,10).AB2=(−2−3)2+(5+4)2=25+81=106,BC2=(3−7)2+(−4−10)2=16+196=212.AC2=(−2−7)2+(5−10)2=81+25=106.Therefore,AB2+AC2=BC2

andAB=AC.Hence,the∆ABCisarightangledisoscelestriangle.TheequationofthehypotenuseBCis

Example2.13

Findtheequationofthestraightlinewhichcutsoffinterceptsontheaxesequalinmagnitudebutoppositeinsignandpassingthroughthepoint(4,7).

Solution

Page 73: Analytical Geometry: 2D and 3D

Lettheequationofthestraightlinecuttingoffinterceptsequalinmagnitudebut

oppositeinsignbe (i.e.)x−y=a.

Thispassesthroughthepoint(4,7).Therefore,4−7=a(i.e.)a=−3.Hence,theequationofthestraightlineisx−y+3=0.

Example2.14

Findtheratioinwhichtheline3x−2y+5=0dividesthelinejoiningthepoints(6,−7)and(−2,3).

Solution

Lettheline3x−2y+5=0dividethelinejoiningthepointsA(6,−7)andB(−2,

3)intheratiok:1.Thenthecoordinatesofthepointofdivisionare

.Sincethispointliesonthestraightline3x−2y+5=0,weget

∴Therequiredratiois37:7.

Example2.15

Provethatthelines3x−4y+5=0,7x-8y+5=0,and4x+5y=45areconcurrent.

Page 74: Analytical Geometry: 2D and 3D

Solution

Given

Solvingequations(2.22)and(2.23),wegetthepointofintersectionofthetwolines.

∴Fromequation(2.22),15−4y=−5.∴y=5.Hence,thepointofintersectionofthelinesis(5,5).Substitutingx=5andy=

5,inequation(2.24),weget20+25=45whichistrue.∴Thethirdlinealsopassesthroughthepoints(5,5).Henceitisprovedthat

thethreelinesareconcurrent.

Example2.16

Findthevalueofasothatthelinesx−6y+a=0,2x+3y+4=0,andx+4y+1=0areconcurrent.

Solution

Given

Solvingtheequations(2.26)and(2.27)weget,

Page 75: Analytical Geometry: 2D and 3D

Onsubtracting,weget5y=2

∴Fromequation(2.27)

Hence,thepointofintersectionofthelinesis .Sincethelinesare

concurrentthispointshouldlieonx−6y+a=0.

Example2.17

Provethatforallvaluesofλthestraightlinex(2+3λ)+y(3−λ)−5−2λ=0passesthroughafixedpoint.Findthecoordinatesofthefixedpoint.

Solution

x(2+3λ)+y(3−λ)−5−2λ=0.Thisequationcanbewrittenintheform

Thisequationrepresentsastraightlinepassingthroughtheintersectionoflines

forallvaluesofλ.

Page 76: Analytical Geometry: 2D and 3D

Onadding,weget11x=11⇒x=1andhencefromequation(2.29)wegety=1.Therefore,thepointofintersectionofstraightlines(2.29)and(2.30)is(1,1).

Thestraightline(2.28)passesthroughthepoint(1,1)forallvaluesofλ.Hence(2.28)passesthroughthefixedpoint(1,1).

Example2.18

Findtheequationofthestraightlinepassingthroughtheintersectionofthelines3x−y=5and2x+3y=7andmakinganangleof45°withthepositivedirectionofx-axis.

SolutionSolvingtheequations,

Weget,

Onadding,weget11x=22.

∴x=2.Fromequation(2.31),6−y=5.

∴y=1.Hence(2,1)isthepointofintersectionofthelines(2.31)and(2.32).

Page 77: Analytical Geometry: 2D and 3D

Theslopeoftherequiredlineism=tanθ,m=tan45°=1.Therefore,theequationoftherequiredlineisy−y=m(x−x1)(i.e.)y−1=1(x−2)⇒x−y=1.

Example2.19

Findtheequationofthestraightlinepassingthroughtheintersectionofthelines7x+3y=7and2x+y=2andcuttingoffequalinterceptsontheaxes.

Solution

Thepointofintersectionofthelinesisobtainedbysolvingthefollowingtwoequations:

Onsubtracting,wegetx=1andhencey=0.Therefore,thepointofintersection

is(1,0).Theequationofthestraightlinecuttingoffequalinterceptsis

(i.e)x+y=a.Thisstraightlinepassesthrough(1,0).Therefore,1+0=a(i.e.)a=1.

Hence,theequationoftherequiredstraightlineisx+y=1.

Example2.20

Findtheequationofthestraightlineconcurrentwiththelines2x+3y=3andx+2y=2andalsoconcurrentwiththelines3x−y=1andx+5y=11.

Solution

Thepointofintersectionofthelines2x+3y=3andx+2y=2isobtainedbysolvingthefollowingtwoequations:

Page 78: Analytical Geometry: 2D and 3D

Onsubtracting,wegety=1andhencex=0.Therefore,thepointofintersectionis(0,1).

Onadding,weget16x=16whichgivesx=1andhencey=2.Thepointofintersectionofthesecondpairoflinesis(1,2).Theequationofthelinejoiningthetwopoints(0,1)and(1,2)is

Example2.21

Findtheanglebetweenthelines

Solution

Theslopeoftheline .Therefore, (i.e.)θ1=

60°.Theslopetheline Therefore,

.Theanglebetweenthelinesisθ1−θ2=30°.

Page 79: Analytical Geometry: 2D and 3D

Example2.22

Findtheequationoftheperpendicularbisectorofthelinejoiningthepoints(−2,6)and(4,−6).

Solution

Theslopeofthelinejoiningthepoints(−2,6)and(4,−6)is .

Therefore,theslopeoftheperpendicularlineis .Themidpointoftheline

joiningthepoints(−2,6)and(4,−6)is (i.e.)(1,0).

Therefore,theequationoftheperpendicularbisectorisy−y1=m(x−x1)

(i.e.)y−0= (x−1)⇒2y=x−1orx−2y−1=0.

Example2.23

A(4,1),B(7,4),andC(5,−2)aretheverticesofatriangle.FindtheequationoftheperpendicularlinefromAtoBC.

Solution

TheslopeofthelineBCis

Page 80: Analytical Geometry: 2D and 3D

Therefore,theslopeoftheperpendicularADtoBCis− .Hence,theequationof

theperpendicularfromA(4,1)onBCisy−y1=m(x−x1)

Example2.24

Thefootoftheperpendicularfromthepoint(1,2)onalineis(3,–4).Findtheequationoftheline.

Solution

LetABbethelineandD(3,−4)bethefootoftheperpendicularfromC(1,2)

TheslopeofthelineCDis

Therefore,theslopeofthelineABis .

TheequationofthelineABisy−y1=m(x−x1)

Page 81: Analytical Geometry: 2D and 3D

Example2.25

Findtheequationoftherightbisectorofthelinejoiningthepoints(2,3)and(4,5).

Solution

Therightbisectoristheperpendicularbisectorofthelinejoiningthepoints(2,

3)and(4,5).Themidpointofthelineis

Therefore,theslopeofthegivenlineis

∴Theslopeoftherightbisectoris−1.Theequationoftherightbisectorisy−y1=m(x−x1)⇒y−4=−1(x−3)ory−4=−x+3orx+y=7.

Example2.26

Findthepointontheline3y−4x+11=0whichisequidistantfromthepoints(3,2)and(−2,3).

Solution

LetP(x1,y1)bethepointontheline3y−4x+11=0whichisequidistantfromthepointsA(3,2)andB(−2,3).

Since,

Page 82: Analytical Geometry: 2D and 3D

Sincethe(x1,y1)liesontheline,

Substitutingy1=5x1in(2.40),weget15x1−4x1+11=0.∴x1=−1andhencey1=−5.Therefore,therequiredpointis(−1,−5).

Example2.27

Findtheequationofthelinepassingthroughthepoint(2,3)andparallelto3x−4y+5=0.

Solution

Theslopeoftheline3x−4y+5=0is .

Therefore,theslopeoftheparallellineisalso .

Hencetheequationoftheparallellinethrough(2,3)isy−y1=m(x−x1)

Example2.28

Findtheequationofthelinepassingthroughthepoint(4,−5)andisperpendiculartotheline7x+2y=15.

Solution

Page 83: Analytical Geometry: 2D and 3D

Theslopeoftheline

Therefore,theslopeoftheperpendicularlineis .Theequationofthe

perpendicularlinethrough(4,−5)isy−y1=m(x−x1)

Example2.29

Findtheequationofthelinethroughtheintersectionof2x+y=8and3x+7=2yandparallelto4x+y=11.

Solution

Thepointofintersectionofthelines2x+y=8and3x+7=2yisobtainedbysolvingthefollowingtwoequations:

Onadding,weget

Therefore,thepointofintersectionis

Page 84: Analytical Geometry: 2D and 3D

Theslopeoftheline4x+y=11is−4.Theslopeoftheparallellineisalso−4.Theequationoftheparallellineis

(i.e.)28x+7y=74.

Example2.30

Findtheimageoftheoriginontheline3x−2y=13.

Solution

LetO′(x1,y1)betheimageofOonthelineAB.ThenCisthemidpointofOO′.

TheslopeofthelineOO′is

TheequationofthelineOO′is

Solvingtheequations

TogetthecoordinatesofC:

Page 85: Analytical Geometry: 2D and 3D

Therefore,Cis(3,−2).CbeingthemidpointofOO′.

Therefore,theimageis(6,−4).

Example2.31

Findtheequationofthestraightlinepassingthroughtheintersectionofthelines3x+4y=17and4x−2y=8andperpendicularto7x+5y=12.

Solution

(2.45)×1+(2.46)×2gives

From(2.45),9+4y=17.Therefore,y=2.Hence(3,2)isthepointof

intersectionofthelines(2.45)and(2.46).Theslopeoftheline

Therefore,theslopeoftheperpendicularlineis

7y−14=5x−15or5x−7y=1.

Example2.32

Findtheorthocentreofthetrianglewhoseverticesare(5,−2),(−1,2),and(1,4).

Page 86: Analytical Geometry: 2D and 3D

Solution

Slopeof Therefore,slopeoftheperpendicularADis−1.

TheequationofthelineADisy+2=−1(x−5).

Slopeof Therefore,slopeofBEis

TheequationofBEis

Solvingtheequations(2.47)and(2.48),wegetthecoordinatesoftheorthocentre:

Onadding5x=1orx= .

From(2.47),

Page 87: Analytical Geometry: 2D and 3D

∴Theorthocentreis

Example2.33

Thepoints(1,3)and(5,1)aretwooppositeverticesofarectangle.Theothertwoverticeslieontheliney=2x+c.Findcandtheremainingtwovertices.

Solution

LetABCDbetherectanglewithAandCasthepointswithcoordinates(1,3)and(5,1),respectively.Inarectanglethediagonalsbisecteachother.

ThemidpointACis

AsthispointliesonBDwhoseequationisy=2x+c.Weget2=6+corc=−4.Therefore,theequationofthelineBDisy=2x−4.Therefore,thecoordinatesofanypointonthislineis(x,2x−4).IfthisisthepointBthenAB2+BC2=AC2.

Asy=2x−4,thecorrespondingvaluesofy=0,4.Therefore,thecoordinatesofBandDare(2,0)and(4,4).

Example2.34

Page 88: Analytical Geometry: 2D and 3D

Ifa,b,andcaredistinctnumbersdifferentfrom1thenshowthatthepoints

arecollinearifab+bc+ca−abc=

3(a+b+c).

Solution

LetA,B,andClieonthestraightlinepx+qy+r=0.

Thentheequationofthelinesatisfiesthecondition

wheret=a,b,andc(i.e.)pt3+qt2+rt−3q−r=0.Here,a,b,andcaretherootsofthisequation.

Example2.35

Avertexofanequilateraltriangleisat(2,3)andtheequationoftheoppositesideisx+y=2.Findtheequationsoftheothersides.

Solution

Page 89: Analytical Geometry: 2D and 3D

TheslopeofBCis−1.LetmbeslopeofABorAc.Then

Therefore,theequationofothertwosidesare and

.

Example2.36

Onediagonalofasquareistheportionoftheline interceptedbetween

theaxes.Findtheequationoftheotherdiagonal.

Solution

TheslopeofABis LetmbeslopeofAC.

Page 90: Analytical Geometry: 2D and 3D

TheequationofthesideOCis

TheequationofthesideBDis

Theequationoftheotherdiagonalis

Example2.37

IftheverticesofΔABCare(xi,yi)i=1,2,3.Showthattheequationofthe

medianthroughAisgivenby

Solution

Page 91: Analytical Geometry: 2D and 3D

ThecoordinatesofthemidpointofBCare

TheequationofthemedianADisgivenby Sincetheareaof

alineiszero.

Example2.38

If(x,y)isanarbitrarypointontheinternalbisectorofverticalangleAofΔABC,where(xi,yi),i=1,2,3aretheverticesofA,B,andC,respectively,anda,b,andcarethelengthofthesidesBC,CA,andAB,respectively,provethat

Solution

Page 92: Analytical Geometry: 2D and 3D

InΔABC,ADistheinternalbisectorof .Weknowthat

ThecoordinatesofDare

TheequationofADisgivenby

Example2.39

Findtheorthocentreofthetrianglewhoseverticesare(a,0),(0,b),and(0,0).

Page 93: Analytical Geometry: 2D and 3D

Solution

Theorthocentreisthepointofconcurrenceofaltitudes.SinceOAandOBareperpendiculartoeachother,OAandOBarethealtitudesthroughAandBofΔABC.Therefore,0istheorthocentre.Hence,thecoordinatesoftheorthocentreis(0,0).

Example2.40

Provethattheorthocentreofthetriangleformedbythethreelines

liesonthelinex+a=0.

Solution

Theequationofthelinepassingthroughtheintersectionofthelines

Page 94: Analytical Geometry: 2D and 3D

TheslopeofthelineADis TheslopeofthelineBCist1.SinceADis

perpendiculartoBC,

TheequationofthelineADis

SimilarlytheequationofthelineBEis

Subtractingequations(2.52)from(2.53),t3(t1−t2)x+at3(t1−t2)=0.Sincet1≠t2,x+a=0theorthocentreliesonthelinex+a=0.

Example2.41

Showthatthereflectionofthelinepx+qy+r=0,onthelinelx+my+n=0is(px+qy+r)(l2+m2)−2(lp+mq)(lx+my+n)=0.

Solution

Page 95: Analytical Geometry: 2D and 3D

LetADbethereflectionofthelinepx+qy+r=0inthelinelx+my+n=0.ThentheequationoflineADispx+qy+r+k(lx+my+n)=0.ThentheperpendicularfromanypointonACtoABandADareequal.

SincethepointPliesonAC,lx+my+n=0,lx1+my1+n=0

HencetheequationofthelineADis(l2+m2)(px+qy+r)−2(pl+qm)(lx+my+n)=0.

Example2.42

Thediagonalsoftheparallelogramaregivenbythesidesu=p,u=q,v=r,v=swhereu=ax+by+candv=a1x+b1y+c1.Showthattheequationofthediagonalwhichpassesthroughthepointsofintersectionofu=p,v=randu=

qandr=sisgivenby

Solution

Consider

Page 96: Analytical Geometry: 2D and 3D

Thisisalinearequationinxandyand,therefore,itrepresentsastraightline.ThecoordinatesofBaregivenbytheintersectionofthelinesu=pandv=s.However,u=pandv=rsatisfiestheequation(2.54).Inaddition,u=q,andv=ssatisfytheequation(2.54)andhencetheequation(2.54)isthelinepassingthroughBandDandrepresentstheequationofthediagonalBD.

Example2.43

AlinethroughthepointA(−5,−4)meetsthelinesx+3y+2=0,2x+y+4=0,

andx−y−5=0atthepointsB,C,andD,respectively.If

findtheequation.

Solution

Theequationofthelinepassingthroughthepoint(−5,−4)is

Anypointonthelineis(rcosθ−5,rsinθ−4).Thepointmeetsthelinex+3y+2=0atBthenAB=r·(rcosθ−5)+3(rsinθ−4)+2=0.

Page 97: Analytical Geometry: 2D and 3D

Iftheline(2.55)meetstheline2x+y+4=0atCthen2(rcosθ−5)+(rsinθ−4)+4=0.Now,r=ACand

Iftheline(2.55)meetsthelinex−y−5=0then(rcosθ−5)−(rsinθ−4)−5=0andhereAD=r.

Giventhat

Hence,theequationofthelineis

Example2.44

AvariablestraightlineisdrawnthroughOtocuttwofixedlinesL1andL2atA1

andA2.ApointAistakenonthevariablelinesuchthat Showthat

thelocusofPisastraightlinepassingthroughthepointofintersectionofL1andL2.

Solution

Page 98: Analytical Geometry: 2D and 3D

LettheequationofthelineOXbe whereOA=r.Anypointonthis

lineis(rcosθ,rsinθ).LetOA1=r1andOA2=r2.A1is(r1cosθ,r1sinθ)andA2is(r2cosθ,r2sinθ).LetthetwofixedstraightlinesbeL1:l1x+m1y−1=0andL2:l2x+m2y−1=0.SincethepointsA1andA2lieonthetwolines,respectively,

(i.e.)p(l1x+m1y−1)+q(l2x+m2y−1)=0whichisastraightlinepassingthroughthepointofintersectionofthetwofixedstraightlinesL1=0andL2=0.

Example2.45

Iftheimageofthepoint(x1,y1)withrespecttothelinemy+lx+n=0isthe

point(x2,y2)showthat

Page 99: Analytical Geometry: 2D and 3D

Solution

Q(x2,y2)isthereflectionofP(x1,y1)onthelinelx+my+n=0.Themidpoint

ofPQliesonthelinelx+my+n=0.TheslopeofPQis Theslopeofthe

lineislx+my+n=0is Sincethesetwolinesareperpendicular,

Example2.46

ProvethattheareaofthetrianglewhoserootsareLr=arx+bry+cr(r=1,2,3)

is whereCiisthecofactorofci(i=1,2,3)inAgivenby

Page 100: Analytical Geometry: 2D and 3D

Solution

LetAr,Br,andCrbethecofactorsofar,br,andcrinD.Thepointofintersection

ofthelinesa1x+b1y+c1=0,a2x+b2y+c2=0is

∴Theverticesofthetriangleare Thentheareaof

thetriangleisgivenby,

whereDisthedeterminantformedbythecofactors.

Page 101: Analytical Geometry: 2D and 3D

Example2.47

AstraightlineLintersectsthesidesBC,CA,andABofatriangleABCinD,E,

andF,respectively.Showthat

Solution

LetDEFbethestraightlinemeetingBC,CA,andABatD,E,andF,respectively.LettheequationsofthelineDEFbelx+my+n=0.

LetDdivideBCintheratioλ:1.ThenthecoordinatesofDare

Asthispointliesonthelinelx+my+n=0.

Page 102: Analytical Geometry: 2D and 3D

Similarly

Multiplyingthesethreeweget

Example2.48

Astraightlineissuchthatthealgebraicsumofperpendicularsdrawnuponitfromanynumberoffixedpointsiszero.Showthatthestraightlinepassesthroughafixedpoint.

Solution

Let(x1,y1),(x2,y2),…,(xn,yn),benfixedpointsandax+by+c=0beagivenline.Thealgebraicsumoftheperpendicularsfrom(xi,yi),i=1,2,...,ntothislineiszero.

Thisequationshowsthatthepoint liesonthelineax

+by+c=0.Therefore,thelinepassesthroughafixedpoint.

Example2.49

Determineallthevaluesofαforwhichthepoint(α,α2)liesinsidethetriangleformedbythelines2x+3y−1=0,x+2y−3=0,and5x−6y−1=0.

Solution

Page 103: Analytical Geometry: 2D and 3D

∴L1(α,α2)=2a+3α2−1>0ifpointsAand(a,α2)liesonthesamesideoftheline.3α2+2a−1>0⇒(3α−1)(α+1)>0.

Page 104: Analytical Geometry: 2D and 3D

FromtheconditionsI,II,andIII,wehave

Example2.50

Findthedirectioninwhichastraightlinemustbedrawnthroughthepoint(1,4)sothatitspointofintersectionwiththelinex+y+5=0maybeatadistance

units.

Solution

Lettheequationofthelinethroughthepoint(1,4)be

Anypointonthislineis(rcosθ+1,rsinθ+4).Ifthispointliesonthelinex+y+5=0thenrcosθ+1+rsinθ+4+5=0.

Page 105: Analytical Geometry: 2D and 3D

∴Therequiredstraightlinemakesanangleof withthepositivedirectionsof

x-axisandpassesthroughthepoint(1,4).

Exercises

1. Findtheareaoftriangleformedbytheaxes,thestraightlineLpassingthroughthepoints(1,1)

and(2,0)andthelineperpendiculartotheLandpassingthrough

Ans.:

2. Theline3x+2y=24meetsy-axisatAandx-axisatB.TheperpendicularbisectorofABmeetsthelinethrough(0,−1)paralleltox-axisatC.FindtheareaΔABC.

Ans.:91sq.units

3. If(x,y)beanarbitrarypointonthealtitudethroughAofΔABCwithvertices(xi,yi),i=1,2,3

thentheequationofthealtitudethroughAis

4. Arayoflightissentalongthelinex−2y−3=0.Uponreachingtheline3x−2y−5=0therayisreflectedfromit.Findtheequationofthelinecontainingthereflectedray.

Ans.:29x−2y−31=0

Page 106: Analytical Geometry: 2D and 3D

5. Theextremitiesofthediagonalsofasquareare(1,1)and(−2,−1).Obtaintheequationoftheotherdiagonal.

Ans.:6x+4y+3=0

6. Thestraightline3x+4y=5and4x−3y=15intersectatthepointA.Onthisline,thepointsBandCarechosensothatAO=AC.FindthepossibleequationsofthelineBCpassingthroughthepoint(1,2).

Ans.:x−7y+13=0and7x+y−9=0

7. Theconsecutivesidesofaparallelogramare4x+5y=0and7x+2y=0.Iftheequationofonediagonalis11x+7y=9,findtheequationoftheotherdiagonal.

Ans.:x−y=0

8. Showthatthelinesax±by±c=0enclosearhombusofarea

9. IftheverticesofaΔOBCareO(0,0),B(−3,−1),andC(−1,−3),findtheequationoftheline

paralleltoBCandintersectingsidesOBandOCwhoseperpendiculardistancefrom(0,0)is .

Ans.:2x+2y+ =0

10. Findthelocusofthefootoftheperpendicularfromtheoriginuponthelinejoiningthepoints(acosθ,bsinθ)and(−asinθ,bcosθ)whereaisavariable.

Ans.:a2x2+b2y2=2(x2+y2)2

11. Showthatthelocusgivenbyx+y=0,(a-b)x+(a+b)y=2aband(a+b)x+(a−b)y=2ab

formanisoscelestrianglewhoseverticalangleis Determinethecentroidofatriangle.

Ans.:

12. Thesidesofaquadrilateralhavetheequations,x+2y=3,x=1,x−3y=4,and5x+y+12=0.Showthatthediagonalsofthequadrilateralareatrightangles.

13. GivennstraightlinesandafixedpointO.ThroughOastraightlineisdrawnmeetingtheselines

Page 107: Analytical Geometry: 2D and 3D

inthepointA1,A2,…,AnandapointAsuchthat Provethatthelocus

ofthepointAisastraightline.14. Findtheequationofthelinejoiningthepoint(3,5)tothepointofintersectionofthelines4x+y−

1=0and7x−3y−35=0andprovethatthelineisequidistantfromtheoriginandthepointsA,B,C,andD.

15. Findtheequationofthelinepassingthroughthepoint(2,3)andmakinginterceptsoflength2unitsandbetweenthelines.

Ans.:3x+4y−8=0andx−2=0

16. Ifxcosα+ysinα=pwhere beastraightline,provethattheperpendicularsp1,p2,and

p3onthelinefromthepoint(m2,2m),(mm′,m+m′),and(m′2,2m′),respectively,areinG.P.

17. Provethatthepoints(a,b),(c,d),and(a−c,b−d)arecollinearif(ad=bc).Also,showthatthestraightlinepassingthroughthesepointspassesthroughtheorigin.

18. Onediagonalofasquareisalongtheline8x−15y=0andoneofitsverticesis(1,2).Findtheequationsofthesidesofthesquarethroughthisvertex.

Ans.:2x+y=4andx−2y+3=0

19. Findtheorthocentreofatriangleformedbylineswhoseequationsarex+y=1,2x+8y=6,and4x−y+4=0.

Ans.:

20. Thesidesofatriangleareur=xcosαr+ysinαr−pr=0,r=1,2,3.Showthatitsorthocentreisgivenbyu1cos(α2−α3)=u2cos(α3−α1)=u3cos(α1−α2).

21. Findtheequationofstraightlinespassingthroughthepoint(2,3)andhavinganinterceptoflength2unitsbetweenthestraightlines2x+3y=3and2x+y=5.

Ans.:x=2,3x+4y=18

22. LetalineLhasinterceptsaandbonthecoordinateaxes.Whentheaxesarerotatedthroughanangle,keepingtheoriginfixed,thesamelineLhasinterceptspandq.Obtaintherelationbetweena,b,p,andq.

Ans.:

23. AlinethroughthevariablepointA(k+1,2k)meetstheline7x+y−16=0,5x−y+8=0,x−5y+8=0atB,C,andD,respectively.ProvethatAC,AB,andADareinG.P.

Page 108: Analytical Geometry: 2D and 3D

24. Findtheequationofthestraightlinespassingthrough(−2,−7)andhavinganinterceptoflength3betweenthestraightlines4x+3y=12and4x+3y=3.

Ans.:x+2=0,7x−24y+182=0

25. Alineissuchthatitssegmentbetweenthestraightlines5x−y−4=0and3x+4y−4=0isbisectedatthepoint(1,5).Obtainitsequation.

Ans.:83x−35y+92=0.

26. Provethatthe(a−b)x+(b−c)y+(c−a)=0,(a−c)x+(c−a)y+(a−b)=0,and(c−a)x+(a−b)y+(b−c)=0areconcurrent.

27. Twoverticesofatriangleare(5,−1)and(−2,3).Iftheorthocentreofthetriangleisattheorigin,findthecoordinatesofthethirdvertex.

Ans.:(−4,−7)

28. Alineintersectsx-axisatA(7,0)andy-axisatB(0,−5).AvariablelinePQwhichisperpendiculartoABintersectsx-axisatPandy-axisatQ.IfAQandBPintersectatR,thenfindthelocusofR.

Ans.:x2+y2−7x+5y=0

29. ArectanglePQRShasitssidePQparalleltotheliney=mxandverticesP,Q,andSonthelinesy=a,x=b,andx=−b,respectively.FindthelocusofthevertexR.

Ans.:(m2−1)x−my+b(m2+1)+am=0

30. Determinetheconditiontobeimposedonβsothat(O,β)shouldbeonorinsidethetrianglehavingsidesy+3x+2=0,3y−2x−5=0,and4y+x−14=0.

Ans.:

31. Showthatthestraightlines7x−2y+10=0,7x+2y−10=0,andy=2formanisoscelestriangleandfinditsarea.

Ans.:14sq.units

32. TheequationsofthesidesBC,CA,andABofatriangleABCareKr=arx+bry+cr=0,r=1,2,3.ProvethattheequationofalinedrawnthroughAparalleltoBCisK3(a2b1−a1b2)=K2(a3b1−a1b3).

33. ThesidesofatriangleABCaredeterminedbytheequationur=arx+bry+cr=0,r=1,2,3.ShowthatthecoordinatesoftheorthocentreofthetriangleABCsatisfytheequationλ1u1=λ2u2+λ3u3whereλ1=a2a3+b2b3,λ2=a3a1+b3b1,andλ3=a1a2+b1b2.

34. ProvethatthetwolinescanbedrawnthroughthepointP(P,Q)sothattheirperpendiculardistancesfromthepointQ(2a,2a)willbeequaltoaandfindtheirequations.

Ans.:y=a,4x−3y+3a=0.

Page 109: Analytical Geometry: 2D and 3D

35. Findthelocusofapointwhichmovessuchthatthesquareofitsdistancefromthebaseofanisoscelestriangleisequaltotherectangleunderitsdistancesfromtheothersides.

Ans.:

36. Provethatthelinesgivenby(b+c)x−bcy=a(b2+bc+c2),(c+a)x−cay=b(c2+ca+a2),

and(a+b)x−aby=c(a2+ab+b2)areconcurrent.37. Showthattheareaofthetriangleformedbythelinesy=m1x+c1,y=m2x+c2,andy=m3x+

c3is

38. Findthebisectoroftheacuteanglebetweenthelines3x+4y=1whichisthebisectorcontainingtheorigin.

Ans.:11x+3y−17=0(originliesintheobtuseanglebetweenthelines.)

39. Ifa1a2+b1b2>0provethattheoriginliesattheobtuseanglebetweenthelinesa1x+b1y+c1=0anda2x+b2y+c2=0,wherec1andc2bothbeingofthesamesign.

40. Findtheequationtothediagonalsoftheparallelogramformedbythelinesax+by+c=0,ax+by

+d=0,a′x+b′y+c′=0,a′x+b′y−d′=0.Showthattheparallelogramwillbearhombusif(a2

+b2)(c′−d′)2=(a′2+b′2)(c−d)2.41. AvariablelineisataconstantdistancepfromtheoriginandmeetscoordinateaxesinAandB.

ShowthatthelocusofthecentroidoftheΔOABisx−2+y−2=p−2.42. Amovinglineislx+my+n=0wherel,m,andnareconnectedbytherelational+bm+cn=0,

anda,b,andcareconstants.Showthatthelinepassesthroughafixedpoint.43. Findtheequationofbisectorofacuteanglebetweenthelines3x−4y+7=0and12x+5y−2=0.44. Qisanypointonthelinex−a=0andOistheorigin.IfAisthepoint(a,0)andQR,thebisector

meetsx-axisonR.ShowthatthelocusofthefootoftheperpendicularfromRtoOQisthe

(x−2a)(x2+y2+a2x)=0.45. Thelinesax+by+c=0,bx+cy+a=0,andcx+ay+b=0areconcurrentwherea,b,andcare

thesidesoftheΔABCinusualnotationandprovethatsin3A+sin3B+sin3C=3sinAsinBsinC.

46. AvariablestraightlineOPQpassesthroughthefixedpointO,meetingthetwofixedlinesinpointsPandQ.InthestraightlineOPQ,apointRistakensuchthatOP,OR,andOQareinharmonicprogression.ShowthatthelocusofpointQisastraightline.

47. Arayoflightissetalongthelinex−2y−3=0.Onreachingtheline3x−2y−5=0,therayisreflectedfromit.Findtheequationofthelinecontainingthereflectedray2qx−2y−31=0.

Ans.:2qx−2y−31=0.

Page 110: Analytical Geometry: 2D and 3D

48. LetΔABCbeatrianglewithAB=AC.IfDisthemidpointofBC,andEisthefootoftheperpendiculardrawnfromDtoACandFisthemidpointofBE.ProvethatAFisperpendiculartoBE.

Ans.:14x+23y−40=0.

49. TheperpendicularbisectorsofthesidesABandACofatriangleABCarex−y+5=0andx+2y=0,respectively.IfthepointAis(1,−2),findtheequationoftheline14x+23y−40=0.

50. Atriangleisformedbythelinesax+by+c=0,lx+my+n=0,andpx+qy+r=0.Showthat

thestraightline passesthroughtheorthocentreofthetriangle.

51. Provethatthediagonalsoftheparallelogramformedbythelinesax+by+c=0,ax+by+c′=

0,a′x+b′y+c=0,anda′x+b′y+c′=0willbeatrightanglesifa2+b2=a′2+b′2.

52. Onediagonalofasquareistheportionoftheline interceptedbetweentheaxes.Show

thattheextremitiesoftheotherdiagonalare

53. Showthattheoriginliesinsideatrianglewhoseverticesaregivenbytheequations7x−5y−11=0,8x+3y+31=0,andx+3y−19=0.

54. ArayoflighttravellingalongthelineOA,Obeingtheorigin,isreflectedbythelinemirrorx−y+1=0,thepointofincidenceAis(1,2).Thereflectedrayisagainreflectedbythemirrorx−y=1,thepointofincidencebeingB.IfthereflectedraymovesalongBC,findtheequationofBC.

Ans.:2x−y−6=0

55. Ifthelinesp1x+q1y=1,p2x+q2y=1,andp3x+q3y=1areconcurrent,provethatthepoints(p1,q1),(p2,q2),and(p3,q3)arecollinear.

56. Ifp,q,andrbethelengthoftheperpendicularsfromtheverticesA,B,andCofatriangleonany

straightline,provethata2(p–q)(p–r)+b2(q–r)(q–p)+c2(r–p)(r–q)=4Δ2.57. Provethattheareaoftheparallelogramformedbythestraightlinea1x+b1y+c1=0,a1x+b1y

+d1=0,a2x+b2y+c2=0,anda2x+b2y+d2=0is

58. Arayoflightissentalongtheline2x−3y=5.Afterrefractingacrossthelinex+y=1,itenterstheoppositesidesafterturningby15°awayfromthelinex+y=1.Findtheequationofthelinealongwhichtherefractedraytravels

Ans.:(15 −20)x−(30−10 )y+(11−18 )=0.

59. Twosidesofanisoscelestrianglearegivenbytheequations7x−y+3=0andx+y−7=0anditsthirdsidepassesthroughthepoint(1,−10).Determinetheequationofthethirdside.

Page 111: Analytical Geometry: 2D and 3D

Ans.:x−3y−31=0,3x+y+7=0.

60. Findallthosepointsonthelinex+y=4whichareatcunitdistancefromtheline4x+3y=10.61. Arethepoints(3,4)and(2,−6)onthesameoroppositesidesoftheline3x−4y=8?

Ans.:oppositesides

62. Howmanycirclescanbedrawneachtouchingallthethreelinesx+y=1,y=x,and7x−y=6?Findthecentreandradiusofoneofthecircles.

Ans.:Focus:(0,7)Incentre

63. Showthat beanypointonalinethentherangeofvaluesoftforwhichthe

pointpliesbetweentheparallellinesx+2y=1and2x+

64. Showthata,b,andcareanythreetermsofAPthenthelineax+by+c=0alwayspassesthroughafixedpoint.

65. Showthatifa,b,andcareinG.P.,thenthelineax+by+c=0formsatrianglewiththeaxes,whoseareaisaconstant.

Page 112: Analytical Geometry: 2D and 3D

Chapter3

PairofStraightLines

3.1INTRODUCTION

Weknowthateverylinearequationinxandyrepresentsastraightline.ThatisAx+By+C=0,whereA,BandCareconstants,representsastraightline.Considertwostraightlinesrepresentedbythefollowingequations:

Alsoconsidertheequation

If(x1,y1)isapointonthestraightlinegivenby(3.1)then

l1x1+m1y+n1=0Thisshowsthat(x1,y1)isalsoapointonthelocusof(3.3).Therefore,every

pointonthelinegivenby(3.1)isalsoapointonthelocusof(3.3).Similarly,everypointonthelinegivenby(3.2)isalsoapointonthelocusof(3.3).Therefore,(3.3)satisfiesallpointsonthestraightlinesgivenby(3.1)and(3.2).Hence,wesay(3.3)representsthecombinedequationofthestraightlinesgivenby(3.1)and(3.2).Itispossibletorewrite(3.3)as

Page 113: Analytical Geometry: 2D and 3D

Thepairofstraightlinesgivenby(3.1)and(3.2)isingeneralrepresentedintheform(3.4).However,wecannotsaythateveryequationofthisformwillrepresentapairofstraightlines.Wewillfindtheconditionthatisnecessaryandsufficientfortheequationoftheform(3.4)torepresentapairofstraightlines.Beforethatwewillseethateveryseconddegreehomogeneousequationinxandywillrepresentapairofstraightlines.

3.2HOMOGENEOUSEQUATIONOFSECONDDEGREEINxANDy

Everyhomogeneousequationofseconddegreeinxandyrepresentsapairofstraightlinespassingthroughtheorigin.Considertheequationax2+2hxy+by2=0,a≠0.

Dividingbyx2,weget Thisisaquadraticequationin

andhencetherearetwovaluesfor saym1andm2.Then

(i.e.)b(y−m1x)(y−m2x)=0.

Buty−m1x=0andy−m2x=0arestraightlinespassingthroughtheorigin.Therefore,ax2+2hxy+by2=0representsapairofstraightlinespassing

throughtheorigin.

Note3.2.1:ax2+2hxy+by2=b(y−m1x)(y−m2x)Equatingthecoefficientsofx2andxy,weget

Page 114: Analytical Geometry: 2D and 3D

3.3ANGLEBETWEENTHELINESREPRESENTEDBYax2+2hxy+by2=0

Lety–m1x=0andy−m2x=0bethetwolinesrepresentedbyax2+2hxy+by2

=0.

Letθbetheanglebetweenthelinesgivenbyax2+2hxy+by2=0.Thentheanglebetweenthelinesisgivenby

Thepositivesigngivestheacuteanglebetweenthelinesandthenegativesigngivestheobtuseanglebetweenthem.

Note3.3.1:Ifthelinesareparallelorcoincident,thenθ=0.Thentanθ=0.Therefore,from(3.7),wegeth2=ab.

Page 115: Analytical Geometry: 2D and 3D

Note3.1.3:Ifthelinesareperpendicularthen andsowegetfrom(3.7)

Thismeansa+b=0.Hence,theconditionforthelinestobe

parallelorcoincidentish2=abandtheconditionforthelinestobeperpendicularisa+b=0(i.e.)Coefficientofx2+Coefficientofy2=0.

3.4EQUATIONFORTHEBISECTOROFTHEANGLESBETWEENTHELINESGIVENBYax2+

2hxy+by2=0

Wewillnowderivetheequationforthebisectoroftheanglesbetweenthelinesgivenbyax2+2hxy+by2=0.Thecombinedequationofthebisectorsofthe

anglesbetweenthelinesgivenbyax2+2hxy+by2=0is

LetOAandOBbethetwolinesy−m1x=0andy−m2x=0representedbyax2

+2hxy+by2=0.LetthelinesOAandOBmakeanglesθ1andθ2withthex-axis.Then,weknowthat

LetθbetheanglemadebytheinternalbisectorOPwithOX.

Then istheanglemadebytheexternalbisectorOQwithOX.The

combinedequationofthebisectorsis

Page 116: Analytical Geometry: 2D and 3D

From(3.8)and(3.9),weget

Hence,thecombinedequationofthepairofbisectorsis

Aliter:Let(x1,y1)beapointonthebisectorOP.Then

Also,2θ=θ1+θ2.Accordingto(3.9)

From(3.9)and(3.10),

Page 117: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1)is

Thisisthecombinedequationofthebisectors.

3.5CONDITIONFORGENERALEQUATIONOFASECONDDEGREEEQUATIONTOREPRESENTAPAIROFSTRAIGHTLINES

Wewillnowderivetheconditionforthegeneralequationofaseconddegreeequationtorepresentapairofstraightlines.Theconditionforthegeneralequationoftheseconddegreeax2+2hxy+by2+2gx+2fy+c=0torepresentapairofstraightlinesisabc+2fgh−af2−bg2−ch2=0.

Method1:Considerthegeneralequationoftheseconddegree

Letlx+my+n=0andl1x+m1y+n1=0betheequationsoftwolinesrepresentedby(3.11).Then

Comparingthecoefficients,weget

Weknowthat

Bymultiplyingthetwodeterminants,weget

Page 118: Analytical Geometry: 2D and 3D

Bymultiplyingthetwodeterminants,weget

Substitutingthevaluesfrom(3.12)in(3.13),weget

Expandingthedeterminant,weget

Thisistherequiredcondition.

Method2:

ax2+2hxy+by2+2gx+2fy+c=0Writingthisequationintheformby2+2hxy+2fy+(ax2+2gx+c)=0andsolvingforyweget

Thisequationwillrepresenttwostraightlinesifthequadraticexpressionundertheradicalsignisaperfectsquare.Theconditionforthisis4(hf−bg)2−4(h2−ab)(f2−bc)=0

Page 119: Analytical Geometry: 2D and 3D

Sinceb≠0,

abc+2fgh−af2−bg2−ch2=0Thisistherequiredcondition.

Method3:Lettheequationax2+2hxy+by2+2gx+2fy+c=0representapairofstraightlinesandlet(x1,y1)betheirpointofintersection.Shiftingtheorigintothepoint(x1,y1),weget

wherethenewaxesOXandOYareparallelto(Ox,Oy).

As(3.16)representsapairofstraightlinespassingthroughtheneworigin,ithastobeahomogeneousequationinXandY.Hence,

Substituting(3.17)and(3.18)in(3.20),weget

gx1+fy1+c=0(3.21)Eliminatingx1andy1from(3.17),(3.18)and(3.21),weget

Page 120: Analytical Geometry: 2D and 3D

Expanding,wegetabc+2fgh−af2−bg2−ch2=0.

Note3.5.1:Solving(3.17)and(3.18),weget

Hence,thepointofintersectionofthelinesrepresentedby(3.11)is

Note3.5.2:Iflx+my+n=0andl1x+m1y+n1=0arethetwostraightlinesrepresentedby(3.11),thenlx+my=0andl1x+m1y=0willrepresenttwostraightlinesparalleltothelinesrepresentedby(3.11)andpassingthroughtheorigin.Theircombinedequationis

Therefore,ifax2+2hxy+by2+2gx+2fy+c=0representsapairofstraightlines,thentheequationax2+2hxy+by2=0willrepresentapairoflinesparalleltothelinesgivenby(3.11).Weknowthateveryhomogeneousequationofseconddegreeinxandy

representsapairofstraightlinespassingthroughtheorigin.Wenowusethisideatogetthecombinedequationofthepairoflinesjoiningtheorigintothepointofintersectionofthecurveax2+2hxy+by2+2gx+2fy+c=0andthelinelx+my=1.

Page 121: Analytical Geometry: 2D and 3D

Theequationofthecurve

andtheline

lx+my=1.(3.23)willmeetattwopointssayPandQ.Let(x1,y1)beoneofthepointsofintersection,sayP.Then

andlx1+my1=1Letushomogenise(3.22)withthehelpof(3.23).Then,wewrite

Ifwesubstitutex=x1andy=y1in(3.25),weget

becauseof(3.23)and(3.24).ThereforeP(x1,y1)liesonthelocusof(3.25).SimilarlywecanshowthatthepointQ(x2,y2)alsoliesonthelocusof(3.25).However,aseconddegreehomogeneousequationrepresentsapairofstraightlinespassingthroughorigin.Hence,(3.25)isthecombinedequationofthepairoflinesOPandOQ.Hence,homogensingtheseconddegreeequation(3.22)withthehelpof

(3.23),wegetapairofstraightlinespassingthroughtheorigin.

ILLUSTRATIVEEXAMPLES

Example3.1

Thegradientofoneofthelinesax2+2hxy+by2=0istwicethatoftheother.Showthat8h2=9ab.

Solution

Page 122: Analytical Geometry: 2D and 3D

Theequationax2+2hxy+by2=0representsapairofstraightlinespassingthroughtheorigin.Letthelinesbey−m1x=0andy−m2x=0.Then

ax2+2hxy+by2=b(y–m1x)(y=m2x)Equatingthecoefficientsofxyandx2onbothsides,weget

Here,ithasbeengiventhatm2=2m1.

From(3.26)and(3.27),weget

Example3.2

Provethatoneofthelinesax2+2hxy+by2=0willbisectananglebetweenthecoordinateaxesif(a+b)2=4h2.

Solution

Lety–m1x=0andy–m2x=0bethetwolinesrepresentedbya2+2hxy+by2

=0.

Page 123: Analytical Geometry: 2D and 3D

Then

Sinceoneofthelinesbisectstheanglebetweentheaxes,wetakem1=±1.Then

Example3.3

Findthecentroidofthetriangleformedbythelinesgivenbytheequations12x2

–20xy+7y2=0and2x–3y+4=0.

Solution

Therefore,thesidesofthetrianglearerepresentedby

Thepointofintersectionofthelines(3.28)and(3.29)is(0,0).Letussolve(3.29)and(3.30).

Page 124: Analytical Geometry: 2D and 3D

Thus,thepointofintersectionofthesetwolinesis(7,6).Now,letussolve(3.28)and(3.30).

Thus,thepointofintersectionofthesetwolinesis(1,2).Then,thecentroidof

thetrianglewithvertices(0,0),(7,6)and(1,2)is (i.e)

Example3.4

Findtheproductofperpendicularsdrawnfromthepoint(x1,y1)onthelinesax2

+2hxy+by2=0.

Solution

Letthelinesbey–m1x=0andy−m2x=0.Then

Page 125: Analytical Geometry: 2D and 3D

Letp1andp2betheperpendiculardistancesfrom(x1,y1)onthetwolinesy–m1x=0andy–m2x=0,respectively.

Example3.5

Ifthelinesax2+2hxy+by2=0bethetwosidesofaparallelogramandthelinelx+my=1beoneofthediagonals,showthattheequationoftheotherdiagonalisy(bl–hm)y=(am–h)lx.Showthattheparallelogramisarhombusifh(a2–b2)=(a–h)lm.

Solution

ThediagonalACnotpassingthroughtheoriginislx+my=1.

Page 126: Analytical Geometry: 2D and 3D

TheequationofthelinesOAandOCbey−m1x=0andy−m2x=0.ThenthecorrespondingcoordinatesofAaregotbysolvingy–m1x=0andlx

+my=1.

Sincediagonalsbisecteachotherinaparallelogram,theequationofthediagonal

OBis

IfOABCisarhombus,thenthediagonalsareatrightanglesHence,theproductoftheirslopesis–1.

Example3.6

Page 127: Analytical Geometry: 2D and 3D

Provethattheareaofthetriangleformedbythelinesy=x+candthestraight

lines

Solution

Letthetwolinesrepresentedbyax2+2hxy+by2=0bey–m1x=0andy–m2x=0.Solvingtheequationsy–m1x=0andy=x+c,wegetthecoordinatesofAtobe

Example3.7

LandMarethefeetoftheperpendicularsfrom(c,0)onthelinesax2+2hxy+by2=0.ShowthattheequationofthelineLMis(a–b)x+2hy+bc=0.

Solution

Page 128: Analytical Geometry: 2D and 3D

LettheequationofLMbelx+my=1.SinceLandMarethefeetoftheperpendicularsfromA(c,0)onthetwolines

y−m1x=0andy–m2x=0,thepointsO,A,LandMareconcyclic.TheequationofthecirclewithOAasdiameterisx(x–c)+y2=0orx2+y2–cx=0.ThecombinedequationofthelinesOLandOMisgotbyhomogenisingthe

equationofthecirclewiththehelpoflinelx+my=1.Hence,thecombinedequationofthelinesOLandLMis

ButthecombinedequationofthelinesOLandOMis

ax2+2hxy+by2=0Boththeseequationsrepresentthesamelines.Thereforeidentifyingtheseequations,weget

Therefore,thelinelx+my–1=0is

(i.e.)(a–b)x+2hy+bc=0

Example3.8

Page 129: Analytical Geometry: 2D and 3D

Showthatfordifferentvaluesofpthecentroidofthetriangleformedbythestraightlinesax2+2hxy+by2=0arexcosα+ysinα=pliesonthelinex(atanα–h)+y(htanα–b)=0.

Solution

LetOAandOBbethelinesrepresentedbyax2+2hxy+by2=0andtheirequationsbey–m1x=0andy–m2x=0.TheequationofthelineABisxcosα+ysinα=p.ThecoordinatesofAare

ThecoordinatesofBare

Themidpoint(x1,y1)ofABis

Page 130: Analytical Geometry: 2D and 3D

Example3.9

Findtheconditionthatoneofthelinesgivenbyax2+2hxy+by2=0maybeperpendiculartooneofthelinesgivenbya1x2+2h1xy+by2=0.

Solution

Lety=mxbealineofax2+2hxy+by2=0.Then

Then

Hence,

From(3.31)and(3.32),weget

Hence,therequiredconditionis(aa1–bb1)2+4(ha1+h1b)(bh1+a1h)=0.

Page 131: Analytical Geometry: 2D and 3D

Example3.10

Twosidesofatriangleliealongy2–m2x2=0anditsorthocentreis(c,d).Showthattheequationofitsthirdsideis(1–m2)(cx+dy)=c2–m2d2.

Solution

LetOA,OBandABbethelines

EquationofODisbx–ay=0.ThispassesthroughH(c,d).∴bc=ad.(1)EquationofAHis

ThecoordinatesofAare

Thatpointliesx–my=c–md

From(3.33),

Page 132: Analytical Geometry: 2D and 3D

Hence,theequationofthelineAB(ax+by=1)becomes(1–m2)(cx+dy)=c2

–m2d2.

Example3.11

Showthattheequationm(x3−3xy2)+y3–3x2y=0representsthreestraightlinesequallyinclinedtooneanother.

Solution

y3–3x2y=m(3xy2–x3)Dividingbyx3,weget

Thesevaluesofθshowthatthelinesareequallyinclinedtooneanother.

Example3.12

Page 133: Analytical Geometry: 2D and 3D

Showthatthestraightlines(A2–3B2)x2+8ABx+(B2–3A2)=0formwiththe

lineAx+By+C=0anequilateraltriangleofarea

Solution

Thesidesofthetrianglearegivenby

Theanglebetweenthelines(3.34)and(3.36)is

Similarlytheanglebetweenthelines(3.35)and(3.36)is

Sincethethreesidesformatriangle, istheonlypossibility.

Hence,thetriangleisequilateral.

Page 134: Analytical Geometry: 2D and 3D

Example3.13

Showthattwoofthestraightlinesax3+bx2y+cxy2+dy3=0willbeperpendiculartoeachotherifa2+d2+bd+ac=0.

Solution

ax3+bx2y+cxy2+dy3=0Thisbeingathirddegreehomogeneousequation,itrepresentsthreestraightlinespassingthroughorigin.Letthethreelinesbey–m1x=0,y–m2x=0andy–m3x=0.Ifmistheslopeofanylinethen

From(3.38)and(3.39),weget

Sincem3isarootof(3.37)

Page 135: Analytical Geometry: 2D and 3D

Exercises

1. Showthattheequationofpairoflinesthroughtheoriginandperpendiculartothepairoflinesax2

+2hxy+by2=0isbx2–2hxy+ay2=0.2. ThroughapointAonthex-axis,astraightlineisdrawnparalleltothey-axissoastomeetthepair

ofstraightlinesax2+2hxy+by2=0inBandC.IfAB=BC,provethat8h2=9ab.3. FromapointA(1,1),straightlinesALandAMaredrawnatrightanglestothepairofstraightlines

3x2+7xy–2y2=0.FindtheequationofthepairoflinesALandAM.AlsofindtheareaofthequadrilateralALOMwhereOistheoriginofthecoordinate.

4. Showthattheareaofthetriangleformedbythelinesax2+2hxy+by2=0andlx+my=1is

5. Showthattheorthocentreofthetriangleformedbythelinesax2+2hxy+by2=0andlx+my=1

isgivenby

6. Showthatthecentroid(x1,y1)ofthetriangleformedbythelinesax2+2hxy+by2=0andlx+

my=1is

7. Atrianglehasthelinesax2+2hxy+by2=0fortwoofitssidesandthepoint(c,d)forits

orthocentre.Provethattheequationofthethirdsideis(a+b)(cx+dy)=ad2–2hbd+bc2.

8. Iftheslopeofoneofthelinesgivenbyax2+2hxy+by2=0isktimestheother,provethat4kh2

=abc(1+k)2.9. Ifthedistanceofthepoint(x1,y1)fromeachoftwostraightlinesthroughtheoriginisd,prove

thattheequationofthestraightlinesis(x1y–xy1)2=d2(x2+y2).

10. Astraightlineofconstantlength2lhasitsextremitiesoneoneachofthestraightlinesax2+2hxy

+by2=0.Showthatthelineofmidpointis(ax+by)2(hx+by)+(ab–h2)2l2a.

11. Provethatthetriangleformedbythelinesax2+2hxy+by2=0andlx+my=1isrightangledif

(a+b)/al2+2hlm+bm2)=0.

Page 136: Analytical Geometry: 2D and 3D

12. Showthatiftwoofthelinesax3+bx2y+cxy2+dy3=0makecomplementaryangleswithx-axisinanticlockwisedirection,thena(a–c)+d(b–d)=0.

13. Iftheslopeofthelinesgivenbyax2+2hxy+by2=0isthesquareoftheother,showthatab(a+

h)–6ahb+8h3=0.

14. Showthatthelineax+by+c=0andthetwolinesgivenby(ax+by)2=3(bx–ay)2forman

equilateraltriangleofarea

15. Ifoneofthelinegivenbyax2+2hxy+by2=0iscommonwithoneofthelinesofa1x2+2h1xy

+b1y2=0.showthat(ab1–a1b)

2+4(ah1–a1h).(bh1–b1h)=0.

16. Apointmovessothatitsdistancebetweenthefeetoftheperpendicularsfromitonthelinesax2+

2hxy+by2=0isaconstant2k.Showthatthelocusofthepointis(x2+y2)(h2–ab)=k2[(a–b)2

+4h2].17. Showthatthedistancefromtheorigintotheorthocentreofthetriangleformedbythelines

andax2+2hxy+by2=0is

18. Aparallelogramisformedbythelinesax2+2hxy+by2=0andthelinesthrough(p,q)paralleltothem.Showthattheequationofthediagonalnotpassingthroughtheoriginis(2x–p)(ap+hq)+(2y–q)(hp+bq)=0.

19. Ifthelinesgivenbylx+my=1andax2+2hxy+by2=0formanisoscelestriangle,showthat

h(l2–m2)=lm(a–b).

Example3.14

Findλsothattheequationx2+5xy+4y2+3x+2y+λ=0representsapairoflines.Findalsotheirpointofintersectionandtheanglebetweenthem.

Solution

Considertheseconddegreetermsx2+5xy+4y2.

x2+5xy+4y2=(x+y)(x+4y)Letthetwostraightlinesbex+y+l=0andx+4y+m=0.Then

Page 137: Analytical Geometry: 2D and 3D

Equatingthecoefficientsofx,yandconstantterms,weget

Solving(3.40)and(3.41),weget

From(3.42),

Thenthetwolinesare and3x+12y+

10=0.

Theanglebetweenthelinesisgivenby

Example3.15

Findthevalueofλsothattheequationλx2–10xy+12y2+5x–16y–3=0representsapairofstraightlines.Findalsotheirpointofintersection.

Solution

λx2–10xy+12y2+5x–16y–3=0Comparingwiththeequationax2+2hxy+by2+2gx+2fy+c=0wegeta=λ,2h=−10,b=12,2g=5,2f=–16,c=–3

Page 138: Analytical Geometry: 2D and 3D

Theconditionforthegivenequationtorepresentapairofstraightlinesisabc+2fgh–af2–bg2–ch2=0

–36λ+200–64λ–75+75=0⇒λ=2Then2x2–10xy+12y2+5x–16y–3=(2x–4y+l)(x−3y+m)Equatingthecoefficientsofx,yandconstantterms,

Therefore,thetwolinesarex–2y+3=0and2x−6y−1=0.Solvingthesetwo

equations,wegetthepointofintersectionas

Example3.16

Findthevalueofλsothattheequationx2−λxy+2y2+3x−5y+2=0representsapairofstraightlines.

Solution

Page 139: Analytical Geometry: 2D and 3D

Example3.17

Provethatthegeneralequationoftheseconddegreeax2+2hxy+by2+2gx+2fy+c=0representsparallelstraightlinesifh2=abandbg2=af2.Provethat

thedistancebetweenthetwostraightlinesis

Solution

Lettheparallellinesbelx+my+n=0andlx+my+n1=0.Thenax2+2hxy+by2+2gx+2fy+c=(lx+my+n)(lx+my+n1)

Equatingtheliketerms,weget

Also,thedistancebetweenthelineslx+my+n=0andlx+my+n1=0is

Example3.18

Ifax2+2hxy+by2+2gx+2fy+c=0representstwostraightlinesequidistantfromtheorigin,showthatf4−g4=c(bf2−ag2).

Page 140: Analytical Geometry: 2D and 3D

Solution

Letthetwolinesrepresentedbythegivenequationbelx+my+n=0andl1x+m1y+n1=0.Then

Perpendiculardistancesfromtheorigintothetwolinesareequal.Therefore,

Squaring

Example3.19

Iftheequationax2+2hxy+by2+2gx+by2+2gx+2fy+c=0representstwostraightlines,provethattheproductofthelengthsoftheperpendicularsfromthe

originonthestraightlinesis

Solution

Letthetwolinesbelx+my+n=0andl1x+my+n=0.Therefore

Page 141: Analytical Geometry: 2D and 3D

Theproductoftheperpendicularsfromtheoriginontheselines

Example3.20

Ifax2+2hxy+by2+2gx+by2+2gx+2fy+c=0representstwostraightlines,provethatthesquareofthedistanceoftheirpointofintersectionfromtheorigin

is Further,ifthetwogivenlinesareperpendicular,thenprove

thatthedistanceoftheirpointofintersectionfromtheoriginis

Solution

Letthetwostraightlinesbelx+my+n=0andl1x+m1y+n1=0.

Theirpointofintersectionis

Hence,thedistanceofthispointfromtheoriginisgivenby

Page 142: Analytical Geometry: 2D and 3D

Ifthelinesareperpendicularthen(a+b)=0.Then

Example3.21

Showthatthelinesgivenby12x2+7xy−12y2=0and12x2+7xy−12y2−x+7y−1=0arealongthesidesofasquare.

Solution

Theseconddegreetermsin(3.42)and(3.43)arethesame.Thisimpliesthatthetwolinesrepresentedby(3.42)areparalleltothetwolinesrepresentedby(3.43).Hence,thesefourlinesfromaparallelogram.Also,ineachoftheequationscoefficientofx2+coefficientofy2=0.Hence,eachequationformsapairofperpendicularlines.Thus,thefourlines

formarectangle.Thetwolinesrepresentedby(3.42)are3x+4y=0and4x−3y=0.Thetwolinesrepresentedby(3.43)are3x+4y−1=0and4x−3y+1=0.

Theperpendiculardistancebetween2x+4y=0and3x+4y−1=0is .

Theperpendiculardistancebetween4x−3y=0and4x−3y+1=0is .

Hence,thefourlinesformasquare.

Page 143: Analytical Geometry: 2D and 3D

Exercises

1. Showthattheequation6x2+17xy+12y2+22x+31y+20=0representsapairofstraightlinesandfindtheirequations.

Ans.:2x+3y+4=03x+4y+5=0

2. Provethattheequations8x2+8xy+2y2+26x+13y+15=0representstwoparallelstraightlinesandfindthedistancebetweenthem.

Ans.:

3. Provethattheequation3x2+8xy−7y2+21x−3y+18=0representstwolines.Findtheirpointofintersectionandtheanglebetweenthem.

Ans.:

4. Ifax2+2hxy+by2+2gx+2fy+c=0andax2+2hxy+by2−2gx−2fy+c=0eachrepresentsa

pairoflines,provethattheareaoftheparallelogramenclosedis

5. Showthattheequation3x2+10xy+8y2+14x−22y+15=0representstwostraightlines

intersectingatanangle

6. Theequationax2−2xy−2y2−5x+5y+c=0representstwostraightlinesperpendiculartoeachother.Findaandc.

Ans.:a=2,c=−3

7. Findthedistancebetweentheparallellinesgivenby4x2+12xy+9y2−6x−9y+1=0.

Ans.:

8. Showthatthefourlines2x2+3xy−2y2=0and2x2+3xy−2y2−3x+y+1=0formasquare.

Page 144: Analytical Geometry: 2D and 3D

9. Showthatthestraightlinesrepresentedbyax2+2hxy+by2=0andthoserepresentedbyax2+

2hxy+by2+2gx+2fy+c=0formarhombus,if(c−h)fg+h(f2−g2)=0.

10. Iftheequationax2+2hxy+by2+2gx+2fy+c=0representstwostraightlinesandparallellinestothesetwolinesaredrawnthroughtheoriginthenshowthattheareaoftheparallelogramso

formedis

11. Ifthestraightlinesgivenbyax2+2hxy+by2+2gx+2fy+c=0intersectsonthey-axisthen

showthat2fgh−hg2−ch2=0.

12. Aparallelogramissuchthattwoofitsadjacentsidesarealongthelinesax2+2hxy+by2=0anditscentreis(a,b).Findtheequationoftheothertwosides.

Ans.:a(x−2a)+2h(x−2a)(y−2b)+b(y−2b)2=0

Example3.22

Showthatthepairoflinesgivenby(a−b)(x2−y2)+4hxy=0andthepairoflinesgivenbyh(x2−y2)=(a−b)xyaresuchthateachpairbisectstheanglebetweentheotherpairs.

Solution

Thecombinedequationofthebisectorsofthepairoflinesgivenby(3.44)is

(i.e.)h(x2−y2)=xy(a−b)

whichis(3.45).Thecombinedequationofthebisectorsoftheanglebetweenlinesgivenby

(3.45)is

Page 145: Analytical Geometry: 2D and 3D

whichis(3.44).Hence,eachpairbisectstheanglebetweentheother.

Example3.23

Ifthebisectorsofthelinex2−2pxy−y2=0arex2−2qxy−y2=0showthatpq+1=0.

Solution

Thecombinedequationofthebisectorsof(3.46)is

Butequationofthebisectorisgivenby

x2−2qxy−y2=0(3.47)

Comparing(3.46)and(3.47),weget

∴pq+1=0

Example3.24

Provethatifoneofthelinesgivenbytheequationax2+2hxy+by2=0bisectstheanglebetweenthecoordinateaxesthen(a+b)2=4h2.

Solution

Page 146: Analytical Geometry: 2D and 3D

Thebisectorsofthecoordinateaxesaregivenbyy=xandy=−x.Ify=xisoneofthelinesofax2+2hxy+by2=0thenax2+2hx2+bx2=0.

(i.e.)a+b=–2hIfy=–xisoneofthelinesofax2+2hxy+by2=0,thena+b=2h.Fromthesetwoequations,weget(a+b)2=4h2.

Example3.25

Showthattheliney=mxbisectstheanglebetweenthelinesax2+2hxy+by2=0ifh(1−m2)+m(a−b)=0.

Solution

Thecombinedequationofthebisectorsoftheanglesbetweenthelinesax2−2hxy+by2=0is

Ify=mxisoneofthebisectors,thenithastosatisfytheaboveequation.

Example3.26

Showthatthepairofthelinesgivenbya2x2+2h(a+b)xy+b2y2=0isequallyinclinedtothepairgivenbyax2+2hxy+by2=0.

Solution

Inordertoshowthatthepairoflinesgivenbya2x2+2h(a+b)xy+b2y2=0isequallyinclinedtothepairoflinesgivenbyax2+2hxy+by2=0,wehavetoshowthatboththepairshavethesamebisectors.Thecombinedequationsofthe

Page 147: Analytical Geometry: 2D and 3D

bisectorsofthefirstpairoflinesis whichisthe

combinedequationofthesecondpairoflines.

Exercises

1. Ifthepairoflinesx2−2axy−y2=0bisectstheanglesbetweenthelinesx2−2pxy−y2=0thenshowthatthelatterpairalsobisectstheanglebetweentheformerpair.

2. Ifoneofthebisectorsofax2+2hxy+by2=0passesthroughthepointofintersectionofthelines

ax2+2hxy+by2+2gx+2fy+c=0thenshowthath(f2−g2)+(a−b)fg=0.

3. Ifthepairofstraightlinesax2+2hxy+by2=0andbx2+2gxy+by2=0besuchthateachbisectstheanglebetweentheotherthenprovethathg−b=0.

4. Provethattheequations6x2+xy−12y2−14x+47y−40=0and14x2+xy−4y2−30x+15y=0representtwopairsoflinessuchthatthelinesofthefirstpairareequallyinclinedtothoseofthesecondpair.

5. Provethattwoofthelinesrepresentedbytheequationax4+bx2y+cx2y2+dxy3+ay4=0willbisecttheanglebetweentheothertwoifc+ba=0andb+d=0.

Example3.27

Ifthestraightlinesjoiningtheorigintothepointofintersectionof3x2−xy+3y2

+2x−3y+4=0and2x+3y=kareatrightangles,provethat6k2−5k+52=0.

Solution

Let

Thecombinedequationofthelinesjoiningtheorigintothepointofintersectionofthelinesgiven(3.48)and(3.49)isgotbyhomogenising(3.48)withthehelpof(3.49).Hence,thecombinedequationofthelinesjoiningtheorigintothepointsofintersectionof(3.48)and(3.49)is

Page 148: Analytical Geometry: 2D and 3D

Sincethetwostraightlinesareatrightangles,coefficientofx2+coefficientofy2=0

Example3.28

Showthatthepairofstraightlinesjoiningtheorigintothepointofintersectionofthestraightlinesy=mx+candthecirclex2+y2=a2areatrightangles2c2

=a2(1+m2).

Solution

Itisgiventhatx2+y2=a2andy=mx+c.

ThecombinedequationofthelinesOPandOQisgivenby

SinceOPandOQareatrightangles,coefficientofx2+coefficientofy2=0

Page 149: Analytical Geometry: 2D and 3D

c2−m2a2+c2−a2=0⇒2c2=a2(1+m2)

Example3.29

Showthatthejoinoforigintotheintersectionofthelines2x2−7xy+3y2+5x+10y−25=0andthepointsatwhichtheselinesarecutbythelinex+2y−5=0aretheverticesofaparallelogram.

Solution

Letequation(3.50)representsthelinesCAandCBand(3.51)representsthelineAB.ThecombinedequationofthelinesOAandOBisgotbyhomogeniousing

(3.50)withthehelpof(3.51).

Sincetheseconddegreetermsin(3.50)and(3.52)arethesamethetwolinesrepresentedby(3.50)areparalleltothetwolinesrepresentedby(3.52).Therefore,thefourlinesformaparallelogram.

Example3.30

Page 150: Analytical Geometry: 2D and 3D

Ifthechordofthecirclex2+y2=a2whoseequationislx+my=1subtendsanangleof45°attheoriginthenshowthat4[a2(l2+m2)−1]=[a2(l2+m2)−2]2.

Solution

Itisgiventhat,

ThecombinedequationofthelinesOPandOQis

Then

Example3.31

Findtheequationtothestraightlinesjoiningtheorigintothepointof

intersectionofthestraightline andthecircle5(x2+y2+ax+by)=9ab

andfindtheconditionsthatthestraightlinesmaybeatrightangles.

Page 151: Analytical Geometry: 2D and 3D

Solution

Itisgiventhat,

Thecombinedequationofthelinesjoiningtheorigintothepointsofintersectionof(3.53)and(3.54)is

Sincethelinesareatrightangles,coefficientofx2+coefficientofy2=0

Example3.32

Thelinelx+my=1meetsthecirclex2+y2=a2inPandQ.IfOistheorigin

thenshowthat .

Solution

Theperpendicularfromtheorigintotheline OP=a

Page 152: Analytical Geometry: 2D and 3D

Example3.33

Thestraightliney−k=m(x+2a)intersectsthecurvey2=4a(x+a)inAandC.

Showthatthebisectorsofangle ,‘O’beingtheorigin,arethesameforall

valuesofm.

Solution

Let

ThecombinedequationofthelinesOAandOBis

Page 153: Analytical Geometry: 2D and 3D

Thecombinedequationofthebisectorsis

Example3.34

Provethatifallchordsofax2+2hxy+by2+2gx+2fy+c=0subtendarightangleattheorigin,thentheequationmustrepresenttwostraightlinesatrightanglesthroughtheorigin.

Solution

Lettheequationofthechordbe

lx+my=1(3.56)Letthelines(3.55)and(3.56)intersectatPandQ.ThecombinedequationofOPandOQisax2+2hxy+by2+(2gx+2fy)(lx+my)+c(lx+my)2=0.

Since ,coefficientofx2+coefficientofy2=0.

(a+2gl+cl2)+(b+2fm+cm2)=0

Page 154: Analytical Geometry: 2D and 3D

Sincelandmarearbitrary,coefficientsofl1,l2,m1,m2andtheconstanttermvanishseparately.Sinceg=0,f=0,c=0anda+b=0.Hence,equation(3.55)becomesax2+2hxy+by2=0whichisapairof

perpendicularlinesthroughtheorigin.

Exercises

1. Showthatthelinejoiningtheorigintothepointscommonto3x2+5xy+3y2+2x+3y=0and3x−2y=1areatrightangles.

2. Ifthestraightlinesjoiningtheorigintothepointofintersection3x2−xy+3y2+2x−3y+4=0

and2x+3y=kareatrightanglesthenshowthat6k2−5k+52=0.

3. Showthatallthechordsofthecurve3x2−y2−2x+y=0whichsubtendarightangleattheoriginpassthroughafixedpoint.

4. Ifthecurvex2+y2+2gx+2fy+c=0interceptsonthelinelx+my=1,whichsubtendsaright

angleattheoriginthenshowthata(l2+m2)+2(gl+fm+1)=0.5. Ifthestraightlinesjoiningtheorigintothepointofintersectionofthelinekx+hy=2hkwiththe

curve(x−h)2+(y−k)2=a2areatrightanglesattheoriginshowthath2+k2=a2.

6. Provethatthetriangleformedbythelinesax2+2hxy+by2=0andlx+my=1isisoscelesif(l2

−m2)h=(a−b)lm.

7. Provethatthepairoflinesjoiningtheorigintotheintersectionofthecurves bythe

linelx+my+n=0arecoincidentifa2l2+b2m2=n2.

8. Showthatthestraightlinesjoiningtheorigintothepointofintersectionofthecurvesax2+2hxy

+by2+2gx=0anda1x2+2h1xy+b1y

2+2g1x=0willbeatrightanglesifg1(a1+b1)=g(h1+b1).

9. Showthattheanglebetweenthelinesdrawnfromtheorigintothepointofintersectionofx2+2xy

+y2+2x+2y−5=0and3x−y+1=0is

Page 155: Analytical Geometry: 2D and 3D

Chapter4

Circle

4.1INTRODUCTION

Definition4.1.1:Acircleisthelocusofapointinaplanesuchthatitsdistancefromafixedpointintheplaneisaconstant.Thefixedpointiscalledthecentreofthecircleandtheconstantdistanceiscalledtheradiusofthecircle.

4.2EQUATIONOFACIRCLEWHOSECENTREIS(h,k)ANDRADIUSr

LetC(h,k)bethecentreofthecircleandP(x,y)beanypointonthecircle.CP=ristheradiusofthecircle.CP2=r2(i.e.)(x−h)2+(y−k)2=r2.Thisistheequationoftherequiredcircle.

Note4.2.1:Ifthecentreofthecircleisattheorigin,thentheequationofthecircleisx2+y2=r2.

4.3CENTREANDRADIUSOFACIRCLEREPRESENTEDBYTHEEQUATIONx2+y2+2gx+2fy+c=0

Addingg2+f2tobothsides,weget

Page 156: Analytical Geometry: 2D and 3D

Thisequationisoftheform(x−h)2+(y−k)2=r2,whichisacirclewithcentre(h,k)andradiusr.Thus,equation(4.1)representsacirclewhosecentreis(−g,

−f)andradius

Note4.3.1:Aseconddegreeequationinxandywillrepresentacircleifthecoefficientsofx2andy2areequalandthexytermisabsent.

Note4.3.2:

1. Ifg2+f2−cispositive,thentheequationrepresentsarealcircle.

2. Ifg2+f2−ciszero,thentheequationrepresentsapoint.

3. Ifg2+f2−cisnegative,thentheequationrepresentsanimaginarycircle.

4.4LENGTHOFTANGENTFROMPOINTP(x1,y1)TOTHECIRCLEx2+y2+2gx+2fy+c=0

ThecentreofthecircleisC(−g,−f)andradius .LetPTbethe

tangentfromPtothecircle.

Page 157: Analytical Geometry: 2D and 3D

Note4.4.1:

1. IfPT2>0thenpointP(x1,y1)liesoutsidethecircle.

2. IfPT2=0thenthepointP(x1,y1)liesonthecircle.

3. IfPT2<0thenpointP(x1,y1)liesinsidethecircle.

4.5EQUATIONOFTANGENTAT(x1,y1)TOTHECIRCLEx2+y2+2gx+2fy+c=0

Thecentreofthecircleis(−g,−f).Theslopeoftheradius

Hence,theequationoftangentat(x1,y1)is(y−y1)=m(x−x1)

Addinggx1+fy1+ctobothsides,

Page 158: Analytical Geometry: 2D and 3D

sincethepoint(x1,y1)liesonthecircle.Hence,theequationofthetangentat(x1,y1)isxx1+yy1+g(x+x1)+f(y+y1)

+c=0.

4.6EQUATIONOFCIRCLEWITHTHELINEJOININGPOINTSA(x1,y1)ANDB(x2,y2)ASTHEENDSOFDIAMETER

A(x1,y1)andB(x2,y2)aretheendsofadiameter.LetP(x,y)beanypointonthe

circumferenceofthecircle.Then (i.e.)AP⊥PB.

TheslopeofAPis theslopeofBPis

SinceAPisperpendiculartoPB,m1m2=−1

Thisistherequiredequationofthecircle.

4.7CONDITIONFORTHESTRAIGHTLINEy=mx+cTOBEATANGENTTOTHECIRCLEx2+

y2=a2

Method1:Thecentreofthecircleis(0,0).Theradiusofthecircleisa.Ify=mx+cisatangenttothecircle,theperpendiculardistancefromthecentreonthestraightliney=mx+cistheradiusofthecircle.

Page 159: Analytical Geometry: 2D and 3D

Thisistherequiredcondition.

Method2:Theequationofthecircleis

x2+y2=a2(4.2)Theequationofthelineis

y=mx+c(4.3)Thex-coordinatesofthepointofintersectionofcircle(4.2)andline(4.3)aregivenby

Ify=mx+cisatangenttothecircle,thenthetwovaluesofxgivenbyequation(4.4)areequal.Theconditionforthisisthediscriminantofquadraticequation(4.4)iszero.

Thisistherequiredcondition.

Page 160: Analytical Geometry: 2D and 3D

Note4.7.1:Anytangenttothecirclex2+y2=a2isoftheform

4.8EQUATIONOFTHECHORDOFCONTACTOFTANGENTSFROM(x1,y1)TOTHECIRCLE

x2+y2+2gx+2fy+c=0

LetQRbethechordofcontactoftangentsfromP(x1,y1).LetQandRbethepoints(x2,y2)and(x3,y3),respectively.TheequationsoftangentsatQandRare

xx2+yy2+g(x+x2)+f(y+y2)+c=0xx3+yy3+g(x+x3)+f(y+y3)+c=0

ThesetwotangentspassthroughthepointP(x1,y1).Therefore,x1x2+y1y2+g(x1+x2)+f(y1+y2)+c=0and

x1x3+y1y3+g(x+x3)+f(y+y3)+c=0

Thesetwoequationsshowthatthepoints(x2,y2)and(x3,y3)lieonthestraightline

xx1+yy1+g(x+x1)+f(y+y1)+c=0

Hence,theequationofthechordofcontactfrom(x1,y1)is

xx1+yy1+g(x+x1)+f(y+y1)+c=0

4.9TWOTANGENTSCANALWAYSBEDRAWNFROMAGIVENPOINTTOACIRCLEAND

Page 161: Analytical Geometry: 2D and 3D

THELOCUSOFTHEPOINTOFINTERSECTIONOFPERPENDICULARTANGENTSISACIRCLE

Lettheequationofthecirclebe

x2+y2=a2(4.6)Let(x1,y1)beagivenpoint.Anytangenttothecirclex2+y2=a2is

Ifthistangentpointsthrough(x1,y1),then

Thisisaquadraticequationinm.Hence,therearetwovaluesform,andforeachvalueofmthereisatangent.Thus,therearetwotangentsfromagivenpointtoacircle.Let(x1,y1)bethepointofintersectionofthetwotangentsfrom(x1,y1).Ifm1andm2aretheslopesofthetwotangents,then

Ifthetwotangentsareperpendicular,thenm1m2=−1.

Thelocusof(x1,y1)isx2+y2=a2+b2,whichisacircle.

4.10POLEANDPOLAR

Definition4.10.1:Thepolarofapointwithrespecttoacircleisdefinedtobethelocusofthepointofintersectionoftangentsattheextremitiesofavariablechordthroughthatpoint.Thepointiscalledthepole.

4.10.1PolarofthePointP(x1,y1)withRespecttotheCirclex2+y2+2gx+2fy

Page 162: Analytical Geometry: 2D and 3D

+c=0

Lettheequationofcirclebe

LetQRbeavariablechordthroughthepointP(x1,y1).LetthetangentsatQandRtothecircleintersectatT(h,k).Then,QRisthechordofcontactofthetangentsfromT(h,k).Itsequationis

xh+yk+g(x+h)+f(y+k)+c=0

ThischordpassesthroughP(x1,y1).Therefore,

Thelocusof(h,k)is

Hence,thepolarof(x1,y1)isxx1+yy1+g(x+x1)+f(y+y1)+c=0.

Note4.10.1.1:

1. Ifthepoint(x1,y1)liesoutsidethecircle,thepolarof(x1,y1)isthesameasthechordofcontactfrom(x1,y1).Ifthepointliesonthecircle,thenthetangentat(x1,y1)isthepolarofthepointP(x1,y1).

2. Thepoint(x1,y1)iscalledthepoleofthelinexx1+yy1+g(x+x1)+f(y+y1)+c=0.Line(4.12)iscalledthepolarofthepoint(x1,y1).

3. Thepolarof(x1,y1)withrespecttothecirclex2+y2=a2isxx1+yy1=a

2.

Page 163: Analytical Geometry: 2D and 3D

4.10.2PoleoftheLinelx+my+n=0withRespecttotheCirclex2+y2=a2

Let(x1,y1)bethepoleoftheline

lx+my+n=0(4.13)withrespecttothecirclex2+y2=a2.Then,thepolarof(x,y)is

xx1+yy1=a2(4.14)Equations(4.13)and(4.14)representthesameline.Therefore,identifyingthesetwoequations,weget

Hence,thepoleofthelinelx+my+n=0is

4.11CONJUGATELINES

Definition4.11.1:Twolinesaresaidtobeconjugatewithrespecttothecirclex2

+y2=a2ifthepoleofeitherlineliesontheotherline.

4.11.1ConditionfortheLineslx+my+n=0andl1x+m1y+n1=0tobeConjugateLineswithRespecttotheCirclex2+y2=a2

Thepoleofthelinelx+my+n=0is Sincethetwogivenlinesare

conjugatetoeachother,thispointliesonthelinel1x+m1y+n1=0.

Page 164: Analytical Geometry: 2D and 3D

4.12EQUATIONOFACHORDOFCIRCLEx2+y2+2gx+2fy+c=0INTERMSOFITSMIDDLEPOINT

LetPQbeachordofthecirclex2+y2+2gx+2fy+c=0andR(x1,y1)beitsmiddlepoint.Theequationofanychordthrough(x1,y1)is

Anypointonthislineisx=x1+rcosθ,y=y1+rsinθ.WhenthechordPQmeetsthecirclethispointliesonthecircle.Therefore,

ThevaluesofrofthisequationarethedistancesRPandRQ,whichareequalinmagnitudebutoppositeinsign.Theconditionforthisisthecoefficientofr=0.

Eliminatingcosθandsinθ,from(4.15)and(4.16),weget

Page 165: Analytical Geometry: 2D and 3D

Addinggx1+fy1+ctobothsides,weget

ThisistherequiredequationofthechordPQintermsofitsmiddlepoint(x1,y1).ThisequationcanbeexpressedintheformT=S1whereT=xx1+yy1+g(x

+x1)+f(y+y1)+cand

Note4.12.1:Tistheexpressionwehaveintheequationsofthetangent(x1,y1)tothecircleS:x2+y2+2gx+2fy+c=0andS1istheexpressionwegetbysubstitutingx=x1andy=y1intheleft-handsideofS=0.

4.13COMBINEDEQUATIONOFAPAIROFTANGENTSFROM(x1,y1)TOTHECIRCLEx2+y2+

2gx+2fy+c=0

Lettheequationofachordthrough(x1,y1)be

Anypointonthislineis(x1+rcosθ,y1+rsinθ).Ifthispointliesonthecirclex2+y2+2gx+2fy+c=0,then

Ifchord(4.17)isatangenttocircle(4.18),thenthetwovaluesofrofthisequationareequal.Theconditionforthisis

Page 166: Analytical Geometry: 2D and 3D

Butfrom(4.17)

Substitutingthisin(4.19),weget

Thisequationisthecombinedequationofthepairoftangentsfrom(x1,y1).

4.14PARAMETRICFORMOFACIRCLE

x=acosθ,y=asinθsatisfytheequationx2+y2=a2.Thispointisdenotedby‘θ’,whichiscalledaparameterforthecirclex2+y2=a2.

4.14.1EquationoftheChordJoiningthePoints‘θ’and‘ϕ’ontheCircleandtheEquationoftheTangentatθ

Thetwogivenpointsare(acosθ,asinθ)and(acosϕ,asinϕ).Theequationofthechordjoiningthesetwopointsis

Page 167: Analytical Geometry: 2D and 3D

Thischordbecomesthetangentat‘θ’ifϕ=0.Therefore,theequationofthetangentat‘θ’isxcosθ+ysinθ=a.

ILLUSTRATIVEEXAMPLES

Example4.1

Findtheequationofthecirclewhosecentreis(3,−2)andradius3units.

Solution

Theequationofthecircleis

Example4.2

Findtheequationofthecirclewhosecentreis(a,−a)andradius‘a’.

Solution

Page 168: Analytical Geometry: 2D and 3D

Thecentreofthecircleis(a,−a).Theradiusofthecircleisa.Theequationofthecircleis(x−a)2+(y+a)2=a2(i.e.)x2−2ax+a2+y2+2ay+a2=a2(i.e.)x2+y2−2ax+2ay+a2=0.

Example4.3

Findthecentreandradiusofthefollowingcircles:

i. x2+y2−14x+6y+9=0

ii. 5x2+5y2+4x−8y−16=0

Solution

i.

ii.

Example4.4

Findtheequationofthecirclewhosecentreis(2,−2)andwhichpassesthroughthecentreofthecirclex2+y2−6x−8y−5=0

Page 169: Analytical Geometry: 2D and 3D

Solution

Thecentreoftherequiredcircleis(2,−2).Thecentreofthecirclex2+y2−6x−8y−5=0is(3,4).Theradiusoftherequiredcircleisgivenbyr2=(2−3)2+(−2−4)2=1+36=37.

Therefore,theequationoftherequiredcircleis(x−2)2+(y+2)2=37(i.e.)x2+y2−4x+4y−29=0

Example4.5

Showthattheline4x−y=17isadiameterofthecirclex2+y2−8x+2y=0.

Solution

Thecentreofthecirclex2+y2−8x+2y=0is(4,−1).Substitutingx=4andy=−1intheequation4x−y=17,weget16+1=17,whichistrue.Therefore,theline4x−y=17passesthroughthecentreofthegivencircle.Hence,thegivenlineisadiameterofthecircle.

Example4.6

Provethatthecentresofthecirclesx2+y2+4y+3=0,x2+y2+6x+8y−17=0andx2+y2−30x−16y−42=0arecollinear.

Solution

ThecentresofthethreegivencirclesareA(0,−2),B(−3,−4)andC(15,8).

Page 170: Analytical Geometry: 2D and 3D

TheslopeofABis

TheslopeofBCis

SincetheslopesABandBCareequalandBisacommonpoint,thepointsA,BandCarecollinear.

Example4.7

Showthatthepoint(8,9)liesonthecirclex2+y2−10x−12y+43=0andfindtheotherendofthediameterthrough(8,9).

Solution

Substitutingx=8andy=9inx2+y2−10x−12y+43=0,weget64+81−80−108+43=0(i.e.)188−188=0,whichistrue.Therefore,thepoint(8,9)liesonthegivencircle.Thecentreofthiscircleis(5,6).Let(x,y)betheotherendofthediameter.

Hence,theotherendofthediameteris(2,3).

Example4.8

Findtheequationofthecirclepassingthroughthepoints(1,1),(2,−1)and(3,2).

Page 171: Analytical Geometry: 2D and 3D

2).

Solution

Lettheequationofthecirclebex2+y2+2gx+2fy+c=0.Thecirclepassesthroughthepoints(1,1),(2,−1)and(3,2).

Fromequation(4.20),

Fromequation(4.20),−5−1+c=−2⇒c=4

Therefore,theequationofthecircleisx2+y2−5x−y+4=0.

Example4.9

Showthatthepoints(3,4),(0,5)(−3,−4)and(−5,0)areconcyclicandfindtheradiusofthecircle.

Solution

Lettheequationofthecirclebex2+y2+2gx+2fy+c=0.Thispassesthroughthepoints(3,4),(0,5)and(−3,−4).Therefore,

Page 172: Analytical Geometry: 2D and 3D

Fromequation(4.28),f=0Fromequation(4.25),c=25Hence,theequationofthecircleisx2+y2−25=0(4.30)Substitutingx=−5andy=0inequation(4.30),weget0+25−25=0,whichistrue.Therefore,(−5,0)alsoliesonthecircle.Hence,thefourgivenpointsareconcyclic.Thecentreofthecircleis(0,0)andtheradiusis5units.

Example4.10

Findtheequationofthecirclewhosecentreliesonthelinex=2yandwhichpassesthroughthepoints(−1,2)and(3,−2).

Solution

Lettheequationofthecirclebex2+y2+2gx+2fy+c=0.Thispassesthroughthepoints(−1,2)and(3,−2).Therefore,

Subtracting,weget

Page 173: Analytical Geometry: 2D and 3D

Substitutingthisinequation(4.33),weget

−2f+f=1⇒f=−1∴g=−2

From(4.31),4−4+c=−5⇒c=⇒−5Hence,theequationofthecircleisx2+y2−4x−2y−2y−5=0.

Example4.11

Findtheequationofthecirclecuttingoffintercepts4and6onthecoordinateaxesandpassingthroughtheorigin.

Solution

Lettheequationofthecirclebex2+y2+2gx+2fy+c=0.Thispassesthroughthepoints(0,0),(4,0)and(0,6).

Page 174: Analytical Geometry: 2D and 3D

Thus,theequationofthecircleisx2+y2−4x−6y=0.

Example4.12

Findtheequationofthecircleconcentricwithx2+y2−8x−4y−10=0andpassingthroughthepoint(2,3).

Solution

Twocirclesaresaidtobeconcentriciftheyhavethesamecentre.Therefore,theequationoftheconcentriccircleisx2+y2−8x−4y+k=0.Thiscirclepassesthrough(2,3).

∴4+9−16−12+k=0∴k=15Hence,theequationoftheconcentriccircleisx2+y2−8x−4y+15=0.

Example4.13

Findtheequationofthecircleonthejoiningthepoints(4,7)and(−2,5)astheextremitiesofadiameter.

Solution

Theequationoftherequiredcircleis(x−x1)(x−x2)+(y−y1)(y−y2)=0

Example4.14

Theequationoftwodiametersofacircleare2x+y−3=0andx−3y+2=0.Ifthecirclepassesthroughthepoint(−2,5),finditsequation.

Solution

Thecentreofthecircleisthepointofintersectionofthediameter.

Page 175: Analytical Geometry: 2D and 3D

Thecentreofthecircleisthepointofintersectionofthediameter.

Addingthesetwoequations,weget7x=7.∴x=1From(4.38),y=1.Hence,thecentreofthecircleis(1,1)andradiusis

Therefore,theequationofthecircleis

Example4.15

Findthelengthofthetangentfromthepoint(2,3)tothecirclex2+y2+8x+4y+8=0.

Solution

ThelengthofthetangentfromP(x1,y1)tothecirclex2+y2+2gx+2fy+c=0

isgivenby Here,thelengthofthetangentfrom

P(2,3)tothegivencircleis

Example4.16

Determinewhetherthefollowingpointslieoutside,onorinsidethecirclex2+y2

−4x+4y−8=0:A(0,1),B(5,9),C(−2,3).

Solution

Page 176: Analytical Geometry: 2D and 3D

Theequationofthecircleisx2+y2−4x+4y−8=0.

Therefore,pointAliesinsidethecircle.PointsBandClieoutsidethecircle.

Example4.17

Findtheequationofthetangentatthepoint(2,−5)onthecirclex2+y2−5x+y−14=0.

Solution

Givenx2+y2−5x+y−14=0

Therefore,theequationofthetangentis

Page 177: Analytical Geometry: 2D and 3D

Example4.18

Findthelengthofthechordofthecirclex2+y2−4x−6y−3=0giventhat(1,1)isthemidpointofachordofthecircle.

Solution

Centreofthecircleis(2,3)andradius PointM(1,1)isthe

midpointofthechordAB.

Therefore,thelengthofthechord units.

Example4.19

Showthatthecirclesx2+y2−2x+6y+6=0andx2+y2−5x+6y+15=0toucheachotherinternally.

Solution

Forthecirclex2+y2−2x+6y+6=0,

Page 178: Analytical Geometry: 2D and 3D

centreisA(1,−3)andradius units

Forthecirclex2+y2−5x+6y+15=0,

centreis andradius

Distancebetweenthecentresis

Thus,thedistancebetweenthecentresisequaltothedifferenceinradii.Hence,thetwocirclestoucheachotherinternally.

Example4.20

TheabscissaofthetwopointsAandBaretherootsoftheequationx2+2x−a2

=0andtheordinatesaretherootsoftheequationy2+4y−b2=0.FindtheequationofthecirclewithABasitsdiameter.Alsofindthecoordinatesofthecentreandthelengthoftheradiusofthecircle.

Solution

Lettherootsoftheequationx2+2x−a2=0beαandβ.Then

Letγ,δbetherootsoftheequationx2+4y−b2=0.Then

Page 179: Analytical Geometry: 2D and 3D

ThecoordinatesofAandBare(α,γ)and(β,δ).TheequationofthecircleonthelinejoiningthepointsAandBastheendsofadiameteris(x−α)(x−β)+(y−γ)(y−δ)=0.

Thecentreofthecirclein(−1,−2)andtheradius

Example4.21

Findtheequationofacirclethatpassesthroughthepoint(2,0)andwhosecentreisthelimitpointoftheintersectionofthelines3x+5y=1and(2+c)x+5c2y=1asc→1.

Solution

Thecentreofthecircleisthepointofintersectionofthelines

Asc→1,thex-coordinateofthecentreis .

Page 180: Analytical Geometry: 2D and 3D

From(4.42),

Hence,thecentreofthecircleis

Radiusisthelengthofthelinejoiningthepoints(2,0)and

Therefore,theequationofthecirclesis

Example4.22

Findthelengthinterceptedonthey-axisbythechordofthecirclejoiningthepoints(−4,3)and(12,−1)asdiameter.

Solution

Theequationofthecircleis

Ify1andy2arethey-coordinatesofthepointofintersectionofthecircleandy-axis,then

Page 181: Analytical Geometry: 2D and 3D

Example4.23

Therodswhoselengthsareaandbslidealongthecoordinateaxesinsuchawaythattheirextremitiesareconcyclic.Findthelocusofthecentreofthecircle.

Solution

LetABandCBbetheportionofx-axisandy-axis,respectively,interceptedbythecircle.LetP(x1,y1)bethecentreofthecircle.DrawPLandPMperpendiculartox-axisandy-axis,respectively.Then,bysecondproperty

ThelocusofP(x1,y1)is4(x2−y2)=a2−b2.

Page 182: Analytical Geometry: 2D and 3D

Example4.24

Showthatthecirclesx2+y2−2x−4y=0andx2+y2−8y−4=0toucheachother.Findthecoordinatesofthepointofcontactandtheequationofthecommontangents.

Solution

ThecentresofthesetwocirclesareC1(1,2)andC2(0,4).Theradiiofthetwocirclesare

Thedistancebetweenthecentresis

∴r1−r2=C1C2.Hence,thecirclestoucheachotherinternally.ThepointofcontactCdividesC1C2internallyintheratio1:1.

IfCisthepoint(x1,y1)then

∴C(2,0)isthepointofcontact.Theslopeof

Hence,theslopeofthecommontangentis1/2.Theequationofthecommon

tangentis

Page 183: Analytical Geometry: 2D and 3D

Example4.25

ShowthatthegeneralequationofthecirclethatpassesthroughthepointA(x1,

y1)andB(x2,y2)maybewrittenas

Solution

LetA(x1,y1)andB(x2,y2)bethetwopointsonthecircumferenceofthecircleandA(x1,y1)beanypointonthecircumference.

Let .TheslopeofAPandBPare and

Page 184: Analytical Geometry: 2D and 3D

Example4.26

Showthatifthecirclex2+y2=a2cutsoffachordoflength2bontheliney=mx+c,thenc2=(1+m)2(a2−b2).

Solution

Givenx2+y2=a2.Thecentreofthecircleis(0,0).Radius=r=a.DrawOLperpendiculartoAB.Then,ListhemidpointofAB.

Page 185: Analytical Geometry: 2D and 3D

Example4.27

Apointmovessuchthatthesumofthesquaresofthedistancesfromthesidesofasquareofsideunityisequaltoa.Showthatthelocusisacirclewhosecentrecoincideswiththecentreofthesquare.

Solution

Letthecentreofthesquarebetheorigin.LetP(x,y)beanypoint.Then,the

equationofthesidesare

SumoftheperpendiculardistancesfromPonthesidesisequaltoa

Page 186: Analytical Geometry: 2D and 3D

Hence,thelocusofPisthecirclex2+y2−1=0.Thecentreofthecircleis(0,0),whichisthecentreofthesquare.

Example4.28

Ifthelinesl1x+m1y+n1=0andl2x+m2y+n2=0cutthecoordinateaxesatconcyclicpoints,provethatl1l2=m1m2.

Solution

Givenl1x+m1y+n1=0.Theinterceptsofthelineontheaxisare

IfthelinemeetstheaxesatL1andM1,then Ifthesecond

linemeetstheaxesatL2andM2,then

Example4.29

Page 187: Analytical Geometry: 2D and 3D

Showthatthelocusofapointwhoseratioofdistancesfromtwogivenpointsisconstantisacircle.Hence,showthatthecirclecannotpassthroughthegivenpoints.

Solution

LetthetwopointsAandBbechoseninthex-axisandthemidpointofABbe(0,0).ThenletA(a,0)andB(−a,0).GiventhatPA=K·PB⇒PA2=K2PB2wherekisaconstant.

(x−a)2+(y−0)2=K2[(x+a)2+y2]

Inthisequation,thecoefficientsofx2andy2arethesameandthereisnoxyterm.Therefore,thelocusofPisacircle.IfA(a,0)liesonthiscircle,thenO=K2[4a2]⇒a=0ork=0,whicharenotpossible.Therefore,thepointAdoesnotlieonthecircle.Similarly,thepointB(−a,0)alsodoesnotlieonthecircle.

Example4.30

Findtheequationofthecirclewhoseradiusis5andwhichtouchesthecirclex2

+y2−2x−4y−20=0atthepoint(5,5).

Solution

Givenx2+y2−2x−4y−20=0.

Centreis(1,2)andradius=

Letthecentreoftherequiredcirclebe(x1,y1).ThepointofcontactisthemidpointofAB.

Page 188: Analytical Geometry: 2D and 3D

∴x=9andy=8Thus,Bis(9,8).Hencetheequationoftherequiredcircleis

Example4.31

OneofthediametersofthecirclecircumscribingtherectangleABCDis4y=x+7.IfAandBarethepoints(−3,4)and(5,4),respectively,findtheareaoftherectangleABCD.

Solution

LetP(x1,y1)bethecentreofthecircleand4y=x+7betheequationofthediameterofBD.

ThemidpointofACis(1,1).TheslopeofABis0.Therefore,theslopeofPLis∞.

Page 189: Analytical Geometry: 2D and 3D

Hence,theareaoftherectangleABCD=8×4=32sq.cm.

Example4.32

Findtheequationofthecircletouchingthey-axisat(0,3)andmakinganinterceptof8cmonthex-axis.

Solution

Lettheequationofthecirclebex2+y2+2gx+2fy+c=0.Centreis(−g,−f),Thus,−f=3orf=−3.Whenthecirclemeetsthex-axis,y=0.

Page 190: Analytical Geometry: 2D and 3D

Hence,theequationofthecircleisx2+y2±10x−6y+9=0.

Example4.33

Findtheequationofthecirclepassingthroughthepoint(−4,3)andtouchingthelinesx+y=2andx−y=2.

Solution

x+y=2andx−y=2intersectatthepoint(2,0).

Moreover,theselinesareperpendicularandtheirslopesare1and−1.So,theymake45°and135°withthex-axis.Henceoneofthebisectorsisthex-axisandcentreliesononeofthebisectors.Ifx2+y2+2gx+2fy+c=0istheequationofthecircle,thenf=0.Alsotheperpendiculardistancefrom(−g,0)tothetangentsisequaltotheradius.

Page 191: Analytical Geometry: 2D and 3D

Since(−4,3)liesonthecircle16+9−8g+c=0

Hence,equation(4.46)becomesg2−4g−4−16g+50=0org2−20g+46=0.

Thus,therearetwocircleswhoseequationsaregivenby

Example4.34

Aisthecentreofthecirclex2+y2−2x−4y−20=0.IfthetangentsdrawnatthepointsB(1,7)andD(4,−2)onthecirclemeetatthepointC,thenfindtheareaofthequadrilateralABCD.

Solution

x2+y2−2x−4y−20=0

Centreofthiscircleis(1,2)

Page 192: Analytical Geometry: 2D and 3D

Theequationsoftangentsat(1,7)and(4,−2)tothecirclearex+7y−(x+1)−2(y+7)−20=0(i.e.)5y−35=0⇒y=7and

4x−2y−(x+4)−2(y−2)−20=0(i.e.)3x−4y−20=0

Sincey=7,x=16.Hence,thepointCis(16,7).AreaofthequadrilateralABCD=2×areaofΔABC

Example4.35

FromthepointA(0,3)onthecirclex2+4x+(y−3)2=0,achordABisdrawnandextendedtoapointMsuchthatAM=AB.FindtheequationofthelocusofM.

Solution

Page 193: Analytical Geometry: 2D and 3D

AM=2.AB

Hence,BisthemidpointofAM.ThenthecoordinatesofBare

ThispointBliesonthecirclex2+4x+(y−3)2=0.

Therefore,thelocusof(x1,y1)isx2+y2+8x−6y+9=0.

Example4.36

ABisadiameterofacircle,CDisachordparalleltoABand2CD=AB.ThetangentatBmeetsthelineACproducedatE.ProvethatAE=2.AB.

Solution

Lettheequationofthecirclebex2+y2=a2andPQbethediameteralongthex-axis.CDisparalleltoAB.LetAB=2aandpointsAandBbe(a,0)and(−a,0),respectively.Also

Page 194: Analytical Geometry: 2D and 3D

Example4.37

Findtheareaofthetriangleformedbythetangentsfromthepoint(h,k)tothecirclex2+y2=a2andtheirchordofcontact.

Solution

Theequationofthecircleisx2+y2=a2.LetABbethechordofcontactoftangentsfromC(x1,y1).ThentheequationofABisxx1+yy1=a2.

Page 195: Analytical Geometry: 2D and 3D

WeknowthatOCisperpendiculartoAB.LetABandOCmeetatL.

TheperpendiculardistancefromConAB

Example4.38

Letacirclebegivenby2x(x−a)+y(2y−b)=0,(a,b≠0).Findtheconditiononaandbiftwochordseachintersectedbythex-axiscanbedrawntothecircle

Page 196: Analytical Geometry: 2D and 3D

from

Solution

Thechordisbisectedbythex-axis.Letthemidpointofthechordbe(h,0).Theequationofthechordis

Thischordpassesthrough .

Sincethechordmeetsthex-axisattworeals,Discriminant>0

Example4.39

Findtheconditionthatthechordofcontactfromapointtothecirclex2+y2=a2

subtendsarightangleatthecentreofthecircle.

Solution

Page 197: Analytical Geometry: 2D and 3D

Theequationtothechordofcontactfrom(x1,y1)tothecircle

ThenthecombinedequationtoOAandOBisgotbyhomogenizingequation(4.48)withthehelpofequation(4.49).

ThecombinedequationofOAandOBis

Since ,coefficientofx2+coefficientofy2=0.

Example4.40

Ify=mxbetheequationofachordofthecirclewhoseradiusisa,theoriginbeingoneoftheextremitiesofthechordandtheaxisbeingadiameterofthecircle,provethattheequationofacircleofwhichthischordisadiameteris(1+m2)(x2+y2)−2a(x+my)=0.

Solution

Page 198: Analytical Geometry: 2D and 3D

Letabetheradiusofthecircle.Thus(a,0)isthecentreofthecircle.Theequationofthecircleis

(x−a)2+y2=a2⇒x2+y2−2ax=0

Wheny=mxmeetsthecirclex2+m2x2−2ax=0.

Therefore,theextremitiesofthischordare(0,0)and Then,the

equationofthecirclewiththechordasadiameteris

Example4.41

Findtheequationtothecirclethatpassesthroughtheoriginandcutsoffequalchordsoflengthafromthestraightlinesy=xandy=−x.

Solution

Letthelinesy=xandy=−xmeetthecircleatP,P′andQ,Q′,respectively.

Page 199: Analytical Geometry: 2D and 3D

ThenOP=OQ=a=OP′=OQ′.ThecoordinatesofPandP′are

SimilarlythecoordinatesofQandQ′are

Therearefourcirclespossiblehavingcentresat

Hence,theequationsofthefourcirclesaregivenby

Example4.42

Findthelocusofthemidpointofchordsofthecirclex2+y2=a2,whichsubtendsarightangleatthepoint(c,0).

Solution

SinceABsubtends90°atC(c,0),PA=PB=PC.LetPbethepoint(x1,y1).

Page 200: Analytical Geometry: 2D and 3D

SincePisthemidpointofthechordAB,CP⊥AP

Since ,PC=AP.

Thelocusof(x1,y1)is2(x2+y2)−2cx1+(c2−a2)=0.

Example4.43

Findtheequationsofthecirclesthattouchthecoordinateaxesandthelinex=a.

Solution

y=0,x=0andx=aarethetangentstothecircle.Therearetwocirclesasshowninthefigure.

Page 201: Analytical Geometry: 2D and 3D

Thecentresare andradius .Theequationsofthecirclesare

Example4.44

Findtheshortestdistancefromthepoint(2,−7)tothecirclex2+y2−14x−10y−151=0.

Solution

x2+y2−14x−10y−151=0

Centeris(7,5)

Page 202: Analytical Geometry: 2D and 3D

Centeris(7,5)

Radius=

TheshortestdistanceofthepointPfromthecircle=∣CP−r∣

Example4.45

Letα,βandγbetheparametricanglesofthreepointsP,QandR,respectively,onthecirclex2+y2=a2andAbethepoint(−a,0).Ifthelengthofthechords

AP,AQandARareinAPthenshowthat arealsoinAP.

Solution

LetP(acosα,asinα),Q(acosβ,asinβ),R(acosr,asinr)Ais(a,0)

ThelengthsofchordsAP,AQ,ARareinAP.

Page 203: Analytical Geometry: 2D and 3D

Example4.46

LetS=x2+y2+2gx+2fy+c=0.Findthelocusofthefootoftheperpendicularfromtheoriginonanychordofthecirclethatsubtendsarightangleattheorigin.

Solution

LettheequationofthelineABbe

lx+my=1(4.50)

Let(x1,y1)bethemidpointofAB.

LetP(x1,y1)bethefootoftheperpendicularfromtheoriginonAB.Then,sinceOPisperpendiculartoAP.

Since(x1,y1)liesonthelinelx+my=1wehave

lx1+my1=1(4.52)

ThecombinedequationoflinesOAandOBisgotbyhomogenizingtheequationofthecirclex2+y2+2gx+2fy+c=0withthelinelx+my=1.

Page 204: Analytical Geometry: 2D and 3D

Since ,theconditioniscoefficientofx2+coefficientofy2=0.Hence,

Thelocusof(x1,y1)is2(x2+y2)+2gx+2fy+c=0.

Example4.47

Pisthepoint(a,b)andQisthepoint(b,a).FindtheequationofthecircletouchingOPandOQatPandQwhereOistheorigin.

Solution

Lettheequationofthecirclebe

LetC(−g,−f)bethecentreofthecircle.

Page 205: Analytical Geometry: 2D and 3D

WeknowthatPQisthechordofthecontactfromOandOCisperpendiculartoPQ.∴SlopeofPQ×slopeofOC=−1

TheequationofOPis

SinceCPisperpendiculartoOP,ristheperpendiculardistancefromConOP.

Thepoint(a,b)liesonthecircle(4.53).

Page 206: Analytical Geometry: 2D and 3D

Hencetheequationofthecircleis

Example4.48

Acircleofcircumradius3kpassesthroughtheoriginandmeetstheaxesatAandB.ShowthatthelocusofthecentroidofΔOABisthecirclex2+y2=4K2.

Solution

LetAandBbethepoints(a,0)and(0,b),respectively.Let(x1,y1)bethe

centroidofΔOAB.Thensince ,ABisadiameterofthecircle.

Page 207: Analytical Geometry: 2D and 3D

LetthecentroidofΔOABbe(x1,y1).Then ora=3x1andb=

3y1.Substitutingthisin(4.55),weget .Thelocusof(x1,

y1)isx2+y2=4k2.

Example4.49

Avariablelinepassesthroughafixedpoint(a,b)andcutsthecoordinateaxesat

thepointsAandB.ShowthatthelocusofthecentreofthecircleABis

Solution

LetABbeavariablelinewhoseequationbe

Thispassesthroughthepoint(a,b).

Since ABisadiameterofthecircumcircleofΔOAB.Itscentreis

If(x1,y1)bethecircumcentre,then

Page 208: Analytical Geometry: 2D and 3D

∴α=2x1andβ=2y1

Hence,from(4.55),weget

Thelocusof(x1,y1)is

Example4.50

If4l2−5m2+6l+1=0thenshowthatthelinelx+my+1=0touchesafixedcircle.Findthecentreandradiusofthecircle.

Solution

Lettheline

touchthecircle

Thentheperpendiculardistancefrom(h,k)toline(4.56)isequaltotheradius.

Buttheconditionisgivenby

Identifying(4.58)and(4.59),weget

Page 209: Analytical Geometry: 2D and 3D

Hence,thelinetouchesthefixedcircle(x−3)2+y2=5orx2+y2−6x+4=0

whosecentreis(3,0)andradiusis

Exercises

1. Findtheequationofthefollowingcircles:

i. centre(2,−5)andradius5unitsii. centre(−2,−4)andradius10unitsiii. centre(a,b)andradius(a+b)

Ans.:(i)x2+y2−4x+10y+4=0

Ans.:(ii)x2+y2+4x+8y−80=0

Ans.:(iii)x2+y2−2ax−2by=0

2. Findthecentreandradiusofthefollowingcircles:

i. x2+y2−22x−4y+25=0

ii. 4(x2+y2)−8(x−2y)+19=0

iii. 2x2+2y2+3x+y+1=0

Ans.:(i)(11,2),10

Ans.:(ii)(1,−2),

Page 210: Analytical Geometry: 2D and 3D

Ans.:

3. Findtheequationofthecirclepassingthroughthepoint(2,4)andhavingitscentreonthelinesx−y=4and2x+3y=8.

Ans.:x2+y2−8x−4=0

4. Findtheequationofthecirclewhosecentreis(−2,3)andwhichpassesthroughthepoint(2,−2).

Ans.:x2+y2+4x−6y−28=0

5. Showthattheline4x−y=17isadiameterofthecirclex2+y2−8x+2y=0.

6. Theequationofthecircleisx2+y2−8x+6y−3=0.Findtheequationofitsdiameterparallelto2x−7y=0.Alsofindtheequationofthediameterperpendicularto3x−4y+1=0.

Ans.:2x−7y−29=04x+3y−7=0

7. Findtheequationofthecirclepassingthroughthefollowingpoints:i. (2,1),(1,2),(8,9)ii. (0,1),(2,3),(−2,5)iii. (5,2),(2,1),(1,4)

Ans.:x2+y2−10x−10y−25=0

Ans.:3x2+3y2+2x−20y+17=0

Ans.:x2+y2−6x−6y+13=0

8. Findtheequationofthecirclethroughthepoints(1,0)and(0,1)andhavingitscentreonthelinex+y=1.

Ans.:x2+y2−x−y=0

9. Findtheequationofthecirclepassingthroughthepoints(0,1)and(4,3)andhavingitscentreontheline4x−5y−5=0.

Ans.:x2+y2−5x−2y+1=0

10. Twodiametersofacircleare5x−y=3and2x+3y=8.Thecirclepassesthroughthepoint(−1,7).Finditsequation.

Ans.:x2+y2−2x−4y=164

Page 211: Analytical Geometry: 2D and 3D

11. Findtheequationofthecirclecircumscribingthetriangleformedbytheaxesandthestraightline3x+4y+12=0.

Ans.:x2+y2+4x+3y=0

12. Showthatthepoints(−1,2),(−2,4),(−1,3)and(2,0)areonacircleandfinditsequation.13. Ifthecoordinatesoftheextremitiesofthediameterofacircleare(3,5)and(−7,−5),findthe

equationofthecircle.

Ans.:x2+y2+4x−3y=0

14. Findtheequationofthecirclewhenthecoordinatesoftheextremitiesofoneofitsdiametersare(4,1)and(−2,–7).

Ans.:x2+y2−2x+6y−15=0

15. Ifoneendofthediameterofthecirclex2+y2−2x+6y−15=0is(4,1),findthecoordinatesoftheotherend.

Ans.:(−2,−7)

16. Provethatthetangentsfrom(0,5)tothecirclesx2+y2+2x−4=0andx2+y2−y+1=0areequal.

17. Findtheequationofthecirclepassingthroughtheoriginandhavingitscentreat(3,4).Alsofindtheequationofthetangenttothecircleattheorigin.

Ans.:x2+y2−6x−8y=0,3x+4y=0

18. Findtheslopeoftheradiusofthecirclex2+y2=25throughthepoint(3,−4)andhencewritedowntheequationofthetangenttothecircleatthepoint.Whataretheinterceptsmadebythistangentonthex-axisandy-axis?

Ans.:

19. Onevertexofasquareistheoriginandtwoothersare(4,0)and(0,4).Findtheequationofthecirclecircumscribingthesquare.Alsofindtheequationofthetangenttothiscircleattheorigin.

Ans.:x2+y2−4x−4=0,x+y=0

20. Acirclepassesthroughtheoriginandthepoints(6,0)and(0,8).Finditsequationandalsotheequationofthetangenttothecircleattheorigin.

Ans.:x2+y2−6x−8y=0,3x+4y=0

Page 212: Analytical Geometry: 2D and 3D

21. AandBaretwofixedpointsonaplaneandthepointPmovesontheplaneinsuchawaythatPA=2PBalways.ProveanalyticallythatthelocusofPisacircle.

22. Doesthepoint(2,1)lie(i)on,(ii)insideor(iii)outsidethecirclex2+y2−4x−6y+9=0?

23. Showthatthecirclesx2+y2−2x+2y+1=0andx2+y2+6x−4y−3=0toucheachotherexternally.

24. Provethatthecentresofthethreecirclesx2+y2−2x+6y+1=0,x2+y2+4x−12y−9=0and

x2+y2=25lieonthesamestraightline.Whatistheequationofthisline?Ans.:3x+4y=0

25. Provethatthetwocirclesx2+y2+2ax+c2=0andx2+y2+2by+c2=0toucheachotherif

26. Showthatthecirclesx2+y2−4x+2y+1=0andx2+y2−12x+8y+43=0toucheachotherexternally.

27. Showthatthecirclesx2+y2=400andx2+y2−10x−24y+120=0touchoneanother.Findthecoordinatesofthepointofcontact.

Ans.:

28. Findthelengthofthetangentfromtheorigintothecircle4x2+4y2+6x+7y+1=0.

29. Showthatthecirclesx2+y2−26x−19=0andx2+y2+3x−8y−43=0touchexternally.Findthepointofcontactandthecommontangent.

30. Apointmovessothatthesquareofitsdistancefromthebaseofanisoscelestriangleisequaltotherectanglecontainedbyitsdistancesfromtheequalsides.Provethatthelocusisacircle.

31. Provethatthecentresofthecirclesx2+y2=1,x2+y2+4x+8y−1=0andx2+y2−6x−12y+1=0arecollinear.

32. Provethattheconstantintheequationofthecirclex2+y2+2gx+2fy+c=0isequaltotherectangleunderthesegmentsofthechordsthroughtheorigin.

33. Findtheequationofthelocusofapointthatmovesinaplanesothatthesumofthesquaresfromtheline7x−4y−10=0and4x+7y+5=0isalwaysequalto3.

Ans.:13x2+13y2−20x+30y−14=0

34. Showthatthecirclesx2+y2−10x+4y−20=0andx2+y2+14x−6y+22=0toucheachother.Findtheequationoftheircommontangentatthepointofcontactandalsothepointofcontact.

Ans.:

Page 213: Analytical Geometry: 2D and 3D

35. LandMarethefeetoftheperpendicularfrom(c,0)onthelinesax2+2hxy+by2=0.ShowthattheequationofLMis(a+b)x+2hy+bc=0.

36. Acirclehasradius3unitsanditscentreliesontheliney=x−1.Findtheequationofthecircleifitpassesthrough(−1,3).

37. Findtheequationofthecircleonthelinejoiningthepoints(−4,3)and(12,−1).Findalsotheinterceptsmadebyitonthey-axis.

Ans.:

38. Showthatthepoints liesoutsidethecircle3x2+3y2−5x−6y+4=0.

39. Findtheconditionthatthelinelx+my+n=0touchesthecirclex2+y2=a2.Findalsothepointofcontact.

Ans.:

40. Findtheequationofthecirclepassingthroughthepoint(3,5)and(5,3)andhavingitscentreontheline2x+3y−1=0.

Ans.:5x2+3y2−14x−14y−50=0

41. ABCDisasquarewhosesideisa.TakinglineAOastheaxisofcoordinates,provethatthe

equationofthecircumcircleofthesquareisx2+y2−ax−ay=0.42. Findtheequationofthecirclewithitscentreontheline2x+y=0andtouchingthelines4x−3y

+10=0and4x−3y−3=0.

Ans.:x2+y2−2x+4y−11=0

43. Findtheequationofthecirclethatpassesthroughthepoint(1,1)andtouchesthecirclex2+y2+4x−6y−3=0atthepoint(2,3)onit.

Ans.:x2+y2+x−6y+3=0

44. Provethatthetangenttothecirclex2+y2=5atthepoint(1,−2)alsotouchesthecirclex2+y2−8x+6y+20=0andfinditspointofcontact.

Ans.:(3,−1)

45. AvariablecirclepassesthroughthepointA(a,b)andtouchesthex-axis.Showthatthelocusofthe

otherendofthediameterthroughAis(x−c)2=4by.46. FindtheequationofthecirclepassingthroughthepointsA(−5,0),B(1,0),andC(2,1)andshow

Page 214: Analytical Geometry: 2D and 3D

thattheline4x−3y−5=0isatangenttotheline.47. Findtheequationofthecirclethroughtheoriginandthroughthepointofcontactofthetangents

fromtheorigintothecircle.

Ans.:2x2+2y2−11x−13y=0

48. Thecirclex2+y2−4x−4y+4=0isinscribedinatrianglethathastwoofitssidesalongthe

coordinateaxes.Thelocusofthecircumferenceofthetriangleis Findk.

Ans.:k=1

49. Acircleofdiameter13mwithcentreOcoincidingwiththeoriginofcoordinateaxeshasdiameterABonthex-axis.IfthelengthofthechordACbe5m,findtheareaofthesmallerportionboundedbetweenthecirclesandthechordAC.

Ans.:1.9m2.

50. Findtheradiusofthesmallestcirclethattouchesthestraightline3x−y=6at(1,−3)andalsotouchestheliney=x.

Ans.:

51. If formdistinctpointsonacircleshowthatm1,m2,m3,m4=1.

52. Ifthelinexcosα+ysinα=ρcutsthecirclex2+y2=a2inMandN,thenshowthatthecircle

whosediameterisMNisx2+y2−a2−2ρ(xcosα+ysinα−ρ)=0.

53. Showthatthetangentsdrawnfromthepoint(8,1)tothecirclex2+y2−2x−4y−20=0areperpendiculartoeachother.

54. Howmanycirclescanbedrawneachtouchingallthethreelinesx+y=1,y=x+1and7x−y=6?Findthecentreandradiusofallthecircles.

Ans.:

55. Findthepointsonthelinex−y+1=0,thetangentsfromwhichtothecirclex2+y2−3x=0areoflength2units.

Ans.:

Page 215: Analytical Geometry: 2D and 3D

56. Onthecircle16x2+16y2+48x−3y−43=0,findthepointnearesttotheline8x−4y+73=0andcalculatethedistancebetweenthispointandtheline.

Ans.:

57. Findtheequationsofthelinestouchingthecirclex2+y2+10x−2y+6=0andparalleltotheline2x+y−7=0.

Ans.:2x+y−1=0,2x+y+19=0

58. Findtheequationofthecirclewhosediameteristhechordofintersectionofthelinex+3y=6

andthecurve4x2+9y2=36.

Ans.:5(x2+y2)−12x−16y+12=0

59. Findtheequationforthecircleconcentricwiththecirclex2+y2−8x+6y−5=0andpassesthroughthepoint(−2,7).

Ans.:x2+y2−8x+6y−27=0

60. Findtheequationofthecirclethatcutsoffintercepts−1and−3onthex-axisandtouchesthey-

axisatthepoint

Ans.:

61. Findthecoordinatesofthepointofintersectionoftheline5x−y+7=0andthecirclex2+y2+3x−4y−9=0.Alsofindthelengthofthecommonsegment.

Ans.:

62. Theline4x+3y+k=0isatangenttothecirclex2+y2=4.Findthevalueofk.Ans.:k=±10

63. Findtheequationsoftangentstothecirclex2+y2−6x+4y−17=0thatareperpendicularto3x−4y+5=0.

Ans.:4x+3y+19=0,4x+3y−31=0

Page 216: Analytical Geometry: 2D and 3D

64. Findtheequationoftangentstothecirclex2+y2−14x+y−5=0atthepointswhoseabscissais10.

Ans.:3x+7y−93=0,3x−7y−64=0

65. Showthatthecirclesx2+y2−4x+6y+8=0andx2+y2−10x−6y+14=0toucheachother.Findthepointofcontact.

Ans.:(3,−1)

66. Showthatthetangenttothecentrex2+y2=0atthepoint(1,−2)alsotouchesthecirclex2+y2−8x+6y+20=0.Findthepointofcontact.

Ans.:(3,−1)

67. AstraightlineABisdividedatCsothatAB=3CB.CirclesaredescribedonACandCBasdiametersandacommontangentmeetsABproducedatD.ShowthatBDisequaltotheradiusofthesmallercircle.

68. Thelines3x−4y+4=0and6x−8y−7=0aretangentstothesamecircle.Findtheradiusofthiscircle.

Ans.:

69. Fromtheorigin,chordsaredrawntothecircle(x−1)2+y2=1.Findtheequationofthelocusofthemidpointofthesechords.

Ans.:x2+y2−x=0

70. Findtheequationsofthepairoftangentstothecirclex2+y2−2x+4y=0from(0,1).

Ans.:2x2−2y2+3xy−3x+4y−2=0

71. Ifthepolarofpointsonthecirclex2+y2=a2withrespecttothecirclex2+y2=b2touchthe

circlex2+y2=c2,showthata,bandcareinGP.

72. Ifthedistancesoforigintothecentresofthreecirclesx2+y2−2λx=c2whereλisavariableandcisaconstantareinG.P,provethatthelengthofthetangentdrawntothemfromanypointonthe

circlex2+y2=c2areinG.P.

73. Atangentisdrawntoeachofthecirclesx2+y2=a2andx2+y2=b2.Ifthetwotangentsaremutuallyperpendicular,showthatthelocusoftheirpointofintersectionisacircleconcentricwiththegivencircles.

74. Ifthepoleofanylinewithrespecttothecirclex2+y2=a2liesonthecirclex2+y2=9a2,then

Page 217: Analytical Geometry: 2D and 3D

showthatthelinewillbeatangenttothecircle .

75. Atrianglehastwoofitssidesalongthey-axis,anditsthirdsidetouchesthecirclex2+y2−2ax−

2ay+a2=0.Provethatthelocusofthecircumcentreofthetriangleis2xy−2a(x+y)+a2=0.76. Lines5x+12y−10=0and6x−11y−40=0touchacircleC,ofdiameter6.IfthecentreofC1

liesinthefirstquadrant,findtheequationofcircleC2.whichisconcentricwithC1andcutsinterceptsoflength8ontheselines.

Ans.:

77. Findtheequationofthecirclethattouchesthey-axisatadistanceof4unitsfromtheoriginandcutsoffaninterceptof6unitsfromthex-axis.

Ans.:x2+y2+10x−8y+16=0

78. Findtheequationofthecircleinwhichthelinejoiningthepoints(0,b)and(b,−a)isachordsubtendinganangle45°atanypointonitscircumference

Ans.:x2+y2−2(a+b)x+2(a−b)y+(a2+b2)

79. Fromanypointonagivencircle,tangentsaredrawntoanothercircle.Provethatthelocusofthemiddlepointofthechordofcontactisathirdcircle;thedistancebetweenthecentresofthegivencircleisgreaterthanthesumoftheirradii.

80. Apointmovessothatthesumofthesquaresoftheperpendicularsthatfallfromitonthesidesofanequilateraltriangleisconstant.Provethatthelocusisacircle.

81. AcircleofconstantradiuspassesthroughtheoriginOandcutstheaxesinAandB.Showthatthe

locusofthefootoftheperpendicularfromABis(x2+y2)2(x2+y2)=4r2.

82. Findtheequationoftheimageofthecircle(x−3)2+(y−2)2=1bythemirrorx+y=19.

Ans.:(x−17)2+(y−16)2=1

83. Findthevalueofλforwhichthecirclex2+y2+6x+5+λ(x2+y2−8x+7)=0dwindlesintoapoint.

Ans.:

84. Avariablecirclealwaystouchestheliney=xandpassesthroughthepoint(0,0).Showthatthe

Page 218: Analytical Geometry: 2D and 3D

commonchordsofthiscircleandx2+y2+6x+8y−7=0willpassthroughafixedpoint

85. Theequationofthecirclethattouchestheaxesofthecoordinatesandtheline and

whosecentreliesinthefirstquadrantisx2+y2−2cx−2cy+c2=0.Findthevaluesofc.Ans.:(1,6)

86. Aregioninxy-planeisboundedbythecurve andtheliney=0.Ifthepoint(a,a+1)

liesintheinterioroftheregion,findtherangeofa.Ans.:a∈(−1,3)

87. Thepoints(4,−2)and(3,6)areconjugatewithrespecttothecirclex2+y2=24.Findthevalueofb.

Ans.:b=−6

88. Ifthetwocirclesx2+y2+2gx+2fy=0andx2+y2+2g1x+2ƒ1y=0toucheachother,show

thatƒ1g=gƒ1.89. Showthatthelocusofthepointsofchordsofcontactoftangentssubtendingarightangleatthe

centreisaconcentriccirclewhoseradiusis timestheradiusofthegivencircle.Alsoshowthat

thisisalsothelocusofthepointofintersectionofperpendiculartangents.90. Showthatthepoints(xi,yi),i=1,2,3arecollinearifandonlyiftheirpoleswithrespecttothe

circlesx2+y2=a2areconcurrent.91. ThelengthofthetangentsfromtwogivenpointsAandBtoacirclearet1andt2,respectively.If

thepointsareconjugatepoints,showthat

92. Showthattheequationtothepairoftangentsdrawnfromtheorigintothecirclex2+y2+2gx+

2ƒy+c=0is(gx+ƒy)2=(ƒ2+g2).Hencefindthelocusofthecentreofthecircleifthesetangentsareperpendicular.

Ans.:x2+y2=2c

93. ThreesidesofatrianglehavetheequationsLi=y−mrx−cr=0,r=1,2,3.ThenshowthatλL2L3+μL3L1+vL1L2=0whereλ,μ,v≠0istheequationofthecircumcircleofthetriangleifΣλ(m2+m3)=0andΣλ(m2m3−m1)=0.

94. Atriangleisformedbythelineswhosecombinedequationisc(x+y−4)(xy−2x−y+2)=0.

Page 219: Analytical Geometry: 2D and 3D

Showthattheequationofitscircumferenceisx2+y2−3x−5y+8=0.

95. Twodistinctchordsdrawnfromthepoint(p,q)onthecirclex2+y2=px+qy,wherepq≠0,are

bisectedbythex-axis.Showthatp2>8q2.

96. Showthatthenumberofpointswithintegralcoordinatesthatareinteriortothecirclex2+y2=16is45.

97. Findthenumberofcommontangentstothecirclesx2+y2−6x−14y+48=0andx2+y2−6x=0.

Ans.:4

98. Thetangentstothecirclex2+y2=4atthepointsAandBmeetatP(−4,0).FindtheareaofthequadrilateralPAOB.

Ans.:

99. Theequationsoffourcirclesare(x±a)2+(y±a)2=a2.Findtheradiusofacircletouchingallthefourcircles.

Ans.:

100. Acircleofradius2touchesthecoordinateaxesinthefirstquadrant.Ifthecirclemakesacompleterotationonthex-axisalongthepositivedirectionofthex-axis,thenshowthattheequationofthe

circleinthenewpositionisx2+y2−4(x+y)−8λx+(2+4π)2=0.101. Twotangentsaredrawnfromtheorigintoacirclewithcentreat(2,−1).Iftheequationofoneof

thetangentsis3x+y=0,findtheequationoftheothertangent.Ans.:x−3y=0

102. Findtheequationofthechordofthecirclex2+y2=a2passingthroughthepoint(2,3)fartherfromthecentre.

Ans.:2x+3y=17

103. Anequilateraltriangleisinscribedinthecirclex2+y2=a2,withthevertexat(a,0).Findtheequationofthesideoppositetothisvertex.

Ans.:2x+a=0

104. AlineisdrawnthroughthepointP(3,1)tocutthecirclex2+y2=9atAandB.FindthevalueofPA·PB.

Ans.:121

Page 220: Analytical Geometry: 2D and 3D

105. C1andC2arecirclesofunitradiuswiththeircentresat(0,0)and(1,0),respectively.C3isacircleofunitradius,passingthroughthecentresofthecirclesC1andC2andhavingitscentreabovethex-axis.FindtheequationofthecommontangenttoC1andC3thatpassesthroughC2.

Ans.:

106. Achordofthecirclex2+y2−4x−6y=0passingthroughtheoriginsubtendsanangle

atthepointwherethecirclemeetsthepositivey-axis.Findtheequationofthechord.Ans.:x−2y=0

107. AcirclewithitscentreattheoriginandradiusequaltoameetstheaxisofxatAandB.PandQarerespectivelythepoints(acosα,atanα)and(acosβ,atanβ)suchthatα−β=2γ.Showthatthe

locusofthepointofintersectionofAPandBQisx2+y2−2aytanγ=−2.

108. AcircleC1ofradiustouchesthecirclex2+y2=a2externallyandhasitscentreonthepositivex-

axis.AnothercircleC2ofradiusctouchescircleC1externallyandhasitscentreonthepositivex-axis.Ifa<b<c,showthatthethreecircleshaveacommontangentifa,b,careinGP.

109. Findtheequationsofcommontangentstothecirclesx2+y2+14x−14y+28=0andx2+y2−14x+4y−28=0

Ans.:28y+45y+371=0andy−7=0.

110. Ifacirclepassesthroughthepointsofintersectionofthecoordinateaxeswiththelinex−λy+1=

0(λ≠0)andx−2y+3=0thenλsatisfiestheequation6λ2−7λ+2=0.

111. OAandOBareequalchordsofthecirclex2+y2−2x+4y=0perpendiculartoeachotherand

passingthroughtheorigin.ShowthattheslopesofOAandOBsatisfytheequation3m2−8m−3=0.

112. Findtheequationofthecirclepassingthroughthepoints(1,0)and(0,1)andhavingthesmallestpossibleradius.

Ans.:x2+y2−x−y=0

113. Findtheequationofthecirclesituatedsystematicallyoppositetothecirclex2+y2−2x=0withrespecttothelinex+y=2.

Ans.:x2+y2−4x−2y+4=0

114. OisafixedpointandRmovesalongafixedlineLnotpassingthroughO.IfSistakenonORsuch

thatOR·OS=K2,thenshowthatthelocusofSisacircle.115. Showthatthecircumferenceofthetriangleformedbythelinesax+by+c=0,bx+cy+a=0

Page 221: Analytical Geometry: 2D and 3D

andcx+ay+b=0passesthroughtheoriginif(b2+c2)(c2+a2)(a2+b2)=abc(b+c)(c+a)(a+b).

116. Twocirclesaredrawnthroughthepoints(a,5a)and(4a,a)totouchthey-axis.Provethatthey

intersectatanangle

117. ShowthatthelocusofapointPthatmovessothatitsdistancefromthegivenpointOisalwaysinagivenration:1·(n≠−1)toitsdistanceonthelinejoiningthepointsthatdividesthelineOAinthegivenratioasdiameter.

118. Thelines3x−4y+4=0and6x−3y−7=0aretangentstothesamecircle.Findtheradiusofthecircle.

Ans.:

119. Theliney=xtouchesacircleatPsothat whereOistheorigin.Thepoint(−10,2)is

insidethecircleandlengthofthechordontheline Findtheequationofthe

line.

Ans.:x2+y2+18x−2y+32=0

120. Findtheintervalsofvaluesofaforwhichtheliney+x=0bisectstwochordsdrawnfromapoint

tothecircle

121. Showthatallchordsofthecircle3x2−y2−2x+4y=0thatsubtendarightangleattheoriginare

concurrent.Doestheresultholdforthecurve3x2+3y2−2x+4y=0?Ifyes,whatisthepointofconcurrency,andifnot,givethereason.

122. Findtheequationsofthecommontangentstothecirclesx2+y2−14x+6y+33=0andx2+y2

+30x−20y+1=0.Ans.:4x−3y−12=0,24x+7y−22=0

123. Provethattheorthocentreofthetrianglewhoseangularpointsare(acosα,asinα),(acosβ,asinβ)and(acosγ,asinγ)isthepoint[a(cosα+cosβ+cosγ),a(sinα+sinβ+sinγ)].

Page 222: Analytical Geometry: 2D and 3D

Chapter5

SystemofCircles

5.1RADICALAXISOFTWOCIRCLES

Definition5.1.1:Theradicalaxisoftwocirclesisdefinedasthelocusofapointsuchthatthelengthsoftangentsfromittothetwocirclesareequal.

ObtaintheequationoftheradicalaxisofthetwocirclesS≡x2+y2+2gx+2fy+c=0andS1≡x2+y2+2g1x+2fy+c1=0.

LetP(x1,y1)beapointsuchthatthelengthsoftangentstothetwocirclesareequal.

Thelocusof(x1,y1)is2(g−g1)x+2(f−f1)y+(c−c1)=0whichisastraightline.Therefore,theradicalaxisoftwogivencircleisastraightline.

Page 223: Analytical Geometry: 2D and 3D

Note5.1.1:IfS=0andS1=0aretheequationsoftwocircleswithunitcoefficientsforx2andy2termsthentheequationoftheradicalaxisisS−S1=0.

Note5.1.2:Radicalaxisoftwocirclesisastraightlineperpendiculartothelineofcentres.ThecentresofthetwocirclesareA(−g,−f)andB(−g1,−f1).

Theslopeofthelineofcentresis

Theslopeoftheradicalaxisis

∴m1m2=–1

Therefore,theradicalaxisisperpendiculartothelineofcentres.

Note5.1.3:IfthetwocirclesS=0andS1=0intersectthentheradicalaxisisthecommonchordofthetwocircles.

Note5.1.4:Ifthetwocirclestoucheachother,thentheradicalaxisisthecommontangenttothecircles.

Note5.1.5:Ifacirclebisectsthecircumferenceofanothercirclethentheradicalaxispassesthroughthecentreofthesecondcircle.

Showthattheradicalaxesofthreecirclestakentwobytwoareconcurrent.LetS1=0,S2=0andS3=0betheequationsofthreecircleswithunitcoefficientsforx2andy2terms.ThentheradicalaxesofthecirclestakentwobytwoareS1−S2=0,S2−S3=0andS3−S1=0.

∴(S1−S2)+(S2−S3)+(S3−S1)≡0

Page 224: Analytical Geometry: 2D and 3D

Sincesumofthetermsvanishesidentically,thelinesrepresentedbyS1−S2=0,S2−S3=0andS3−S1=0areconcurrent.Thecommonpointofthelinesiscalledtheradicalcentre.

5.2ORTHOGONALCIRCLES

Definition5.2.1:Twocirclesaredefinedtobeorthogonalifthetangentsattheirpointofintersectionareatrightangles.

FindtheconditionforthecirclesS≡x2+y2+2gx+2fy+c=0,S1≡x2+y2

+2g1x+2f1y+c1=0tobeorthogonal.

LetPbeapointofintersectionofthetwocirclesS=0andS1=0.ThecentresareA(−g,−f),B(−g1,−f1).

Theradiiare

Sincethetwocirclesareorthogonal,PAisperpendiculartoPB.(i.e.)APBisarighttriangle.

Showthatifacirclecutstwogivencirclesorthogonallythenitscentreliesontheradicalaxisofthetwogivencircles.LetS1=x2+y2+2g1x+2f1y+c1=0andS2=x2+y2+2g2x+2f2y+c1=0bethetwogivencircles.LetS=x2+y2+2gx+2fy+c=0cutsS1=0andS2=0orthogonally.

Page 225: Analytical Geometry: 2D and 3D

SinceS=0cutsS1=0andS2=0orthogonally,

Bysubtracting,weget

Thisshowsthat(−g,−f)liesontheline,2(g1−g2)x+2(f1−f2)y+(c1−c2)=0whichistheradicalaxisofthetwocircles.Therefore,thecentreofthecircleS=0liesontheradicalaxisofthecirclesS1

=0andS2=0.

5.3COAXALSYSTEM

Definition5.3.1:Asystemofcirclesissaidtobecoaxalifeverypairofthesystemhasthesameradicalaxis.

Expresstheequationofacoaxalsystemofcirclesinthesimplestform.Inacoaxalsystemofcircles,everypairofthesystemhasthesameradicalaxis.Therefore,thereisacommonradicalaxistoacoaxalsystemofcircles.Hence,inacoaxalsystemthecentresareallcollinearandthecommonradical

axisisperpendiculartothelinesofcentres.Therefore,letuschoosethelineofcentresasx-axisandthecommonradicalaxisasy-axis.Letusconsidertwocirclesofthecoaxalsystem,

Sincethecentreslieonthex-axis,f1=0andf2=0.Therefore,theequationsofthecirclesarex2+y2+2gx+c=0andx2+y2+

2g1x+c1=0.Theradicalaxisofthesetwocirclesis2(g−g1)x+(c−c1)=0.

However,thecommonradicalaxisisthey-axiswhoseequationisx=0.

Page 226: Analytical Geometry: 2D and 3D

∴c−c1=0orc=c1.Hence,thegeneralequationtoacoaxalsystemofcirclesisx2+y2+2gx+c=0wheregisavariableandcisaconstant.

Sotheequationofacoaxalsystemcanbeexpressedinthesimplestform

x2+y2+2λx+c=0whereλisavariableandcisaconstant.

5.4LIMITINGPOINTS

Definition5.4.1:Limitingpointsaredefinedtobethecentresofpointcirclesbelongingtoacoaxalsystem;thatis,theyarecentresofcirclesofzeroradiibelongingtoacoaxalsystem.

Obtainthelimitingpointsofthecoaxalsystemofcirclesx2+y2+2λx+c=

0.Centresare(−λ,0)andradiiare

Forpointcirclesradiiarezero.

Therefore,limitingpointsare

Theorem5.4.1:Thepolarofonelimitingpointofacoaxalsystemofcircleswithrespecttoanycircleofthesystempassesthroughtheotherlimitingpoint.

Proof:Letx-axisbethelineofcentresandy-axisbethecommonradicalaxisofacoaxalsystemofcircles.Thenanycircleofthecoaxalsystemis

Page 227: Analytical Geometry: 2D and 3D

whereλisavariableandcisaconstant.

Thelimitingpointsofthiscoaxalsystemofcirclesare

Thepolarofthepoint withrespecttothecircle(5.1)is

Thislinepassesthroughtheotherlimitingpoint.Foreverycoaxalsystemofcirclesthereexistsanorthogonalsystemofcircles.Letx-axisbethelineofcentresandy-axisbethecommonradicalaxis.Thentheequationtoacoaxalsystemofcirclesis

Letusassumethatthecircle

cuteverycircleofthecoaxalsystemofcirclesgivenby(5.2)orthogonally.Thentheconditionfororthogonalityis

Letusnowconsidertwocirclesofthecoaxalsystemforthedifferentvaluesofλ,sayλ1andλ2.Thecondition(5.4)becomes2gλ1=c+k,2gλ2=c+k.

∴2(λ1−λ2)g=0.Sinceλ1−λ2≠0,g=0andsok=−c.Hence,from(5.3)theequationofthecirclewhichcutseverymemberofthe

system(5.2)isx2+y2+2fy−c=0,wherefisanarbitraryconstant.Therefore,foreverycoaxalsystemofcirclesthereexistsanorthogonalsystemofcirclesgivenbyx2+y2+2fy−c=0;wherefisavariableandcisaconstant.Forthis

Page 228: Analytical Geometry: 2D and 3D

systemoforthogonalcirclesy-axisisthelineofcentresandx-axisisthecommonradicalaxis.

Note5.4.1:Everycircleoftheorthogonalcoaxalsystemofcirclespasses

throughthelimitingpoints .

Theorem5.4.2:IfS=x2+y2+2gx+2fy+c=0andS1=x2+y2+2g1x+2f1y+c1=0beanytwocirclesofacoaxalsystemthenanycircleofcoaxalsystemcanbeexpressedintheformS+λS1=0.

Proof:

Consider,

whereλisavariable.Inthisequation,(1+λ)isthecoefficientofx2andy2.

Dividingby(1+λ)equation(5.7)becomes inwhichthecoefficientof

x2andy2areunity.

Nowconsidertwodifferentvaluesofλ,thatis,λ1andλ2.Then, and

Theradicalaxisofthesetwocirclesis

Page 229: Analytical Geometry: 2D and 3D

Sinceλ1−λ2≠0andthereforeS−S1=0whichisthecommonradicalaxis.Therefore,everymemberofthecoaxalsystemcanbeexpressedintheformS+λS1=0whereλisavariable.

Theorem5.4.3:IfS=x2+y2+2gx+2fy+c=0isacircleofacoaxalsystemandL=lx+my+n=0isthecommonradicalaxisofthesystemthenS+λL=0istheequationofacircleofthecoaxalsystemofcircles.

Proof:

Considertwomembersofthesystem(5.10)forthedifferentvaluesofλ,thatis,λ1andλ2.Then,S+λ1L=0andS+λ2L=0Theradicalaxisofthesetwocirclesis(λ1−λ2)L=0.

Sinceλ1−λ2≠0,L=0whichisthecommonradicalaxis.Therefore,S+λL=0representsanycircleofthecoaxalsysteminwhichS=0isacircleandL=0isthecommonradicalaxis.

5.5EXAMPLES(RADICALAXIS)

Example5.5.1

Findtheradicalaxisofthetwocirclesx2+y2+2x+4y−7=0andx2+y2−6x+2y−5=0andshowthatitisatrightanglestothelineofcentresofthetwocircles.

Solution

Page 230: Analytical Geometry: 2D and 3D

TheradicalaxisofthecirclesisS−S1=0.

Theslopeoftheradicalaxisism1=−4.Thecentresofthetwocirclesare(−1,−2)and(3,−1).

Theslopeofthelineofcentresis

Therefore,theradicalaxisisperpendiculartothelineofcentres.

Example5.5.2

Showthatthecirclex2+y2+2gx+2fy+c=0willbisectthecircumferenceofthecirclex2+y2+2g1x+2f1y+c1=0,if2g1(g−g1)+2f1(f−f1)=c−c1.

Solution

Let

Theradicalaxisofthesetwocirclesis2(g−g1)c+2(f−f1)y+c−c1=0,Circle(5.14)bisectsthecircumferenceofthecircle(515).Therefore,radicalaxispassesthroughthecentreofthesecondcircle.Theradicalaxisofthetwogivencirclesbe

Page 231: Analytical Geometry: 2D and 3D

Example5.5.3

Showthatthecirclesx2+y2−4x+6y+8=0andx2+y2−10x−6y+14=0toucheachotherandfindthecoordinatesofthepointofcontact.

Solution

Theradicalaxisofthesetwocirclesis6x+12y−6=0.

ThecentresofthecirclesareA(2,−3)andB(5,3).

Theradiiofthecirclesare

TheperpendiculardistancefromA(2,−3)ontheradicalaxisx+2y−1=0is

radiusofthefirstcircle.

Therefore,radicalaxistouchesthefirstcircleandhencethetwocirclestoucheachother.

Theequationofthelinesofcentresis

or

Solving(5.18)and(5.19),wegetthepointofcontact.Therefore,thepointofcontactis(3,−1).

Example5.5.4

Page 232: Analytical Geometry: 2D and 3D

Showthatthecirclesx2+y2+2ax+c=0andx2+y2+2by+c=0touchif

Solution

Theradicalaxisofthetwogivencirclesis2ax−2by=0.Thecentreofthefirst

circleis(−a,0).Theradiusofthefirstcircleis

Ifthetwocirclestoucheachother,thentheperpendiculardistancefromthecentre(−a,0)totheradicalaxisisequaltotheradiusofthecircle.

Ondividingbya2b2c,weget

Example5.5.5

Findtheradicalcentreofthecirclesx2+y2+4x+7=0,2x2+2y2+3x+5y+9=0andx2+y2+y=0.

Solution

Let

Page 233: Analytical Geometry: 2D and 3D

Theradicalaxisofcircles(5.20)and(5.22)is

Theradicalaxisofthecircles(5.20)and(5.22)is

Solving(5.23)and(5.24)wegettheradicalcentreasfollows:

Therefore,theradicalcentreis(−2,−1).

Example5.5.6

Provethatifthepointsofintersectionofthecirclesx2+y2+ax+by+c=0andx2+y2+a1x+b1y+c1=0bythelinesAx+By+C=0andA1x+B1y+C1=0areconcyclicif

Solution

Let

Page 234: Analytical Geometry: 2D and 3D

Ax+By+C=0meetsthecircle(5.25)atPandQandA1x+B1y+C1=0meetsthecircle(5.26)atRandS.SinceP,Q,RandSareconcyclic,theequationofthiscirclebe

Theradicalaxisofthecircles(5.25)and(5.26)is

Theradicalaxisofcircles(5.25)and(5.29)is

Theradicalaxisofcircles(5.26)and(5.29)is

Sincethesethreeradicalaxesareconcurrentwegetfromequations(5.30),(5.31)and(5.32),

Example5.5.7

Provethatthedifferenceofthesquareofthetangentstotwocirclesfromanypointintheirplanevariesasthedistanceofthepointfromtheirradicalaxis.

Solution

LetP(x1,y1)beanypointandthetwocirclesbe

Page 235: Analytical Geometry: 2D and 3D

Theequationtotheradicalaxisofthesetwocirclesbe

Theperpendiculardistanceofthepointfromtheradicalaxisis

Fromequations(5.36)and(5.37),weget

Example5.5.8

Provethatforallconstantsλandμ,thecircle(x−a)(x−a+λ)+(y−b)(y−b+μ)=r2bisectsthecircumferenceofthecircle(x−a)2+(y−b)2=r2.

Solution

Theradicalaxisofthesetwocirclesis

Thecentreofthesecondcircleis(a,b).Substitutingx=a,y=bin(5.40),weget

λa+μb−λa−μb=0.

Page 236: Analytical Geometry: 2D and 3D

∴(a,b)liesontheradicalaxis.Therefore,theradicalaxisbisectsthecircumferenceofthesecondcircle.

Example5.5.9

Provethatthelengthofcommonchordofthetwocirclesx2+y2+2λx+c=0

and

Solution

Thetwogivencirclesare

CentresareA(−λ,0)andB(−μ,0),radiiare

Theradicalaxisisλx−μy+c=0.TheperpendiculardistancefromAon

Page 237: Analytical Geometry: 2D and 3D

Therefore,thelengthofcommonchord

Example5.5.10

Showthatthecirclex2+y2−8x−6y+21=0isorthogonaltothecirclex2+y2

−2y−15=0.Findthecommonchordandtheequationofthecirclepassingthroughthecentresandintersectingpointsofthecircles.

Solution

Theconditionfororthogonalityis2gg1+2ff1=c+c1.

(i.e.)2(−4)(0)+2(−3)(−1)=21−150+6=6whichistrue.

Therefore,thetwocirclescuteachotherorthogonally.TheequationofthecommonchordisS−S1=0.

AnycirclepassingthroughtheintersectionofthecirclesisS+λL=0.

Page 238: Analytical Geometry: 2D and 3D

(i.e.)x2+y2−8x−6y+21+λ(2x+y−9)=0.

Thispassesthroughthecentre(4,3)ofthefirstcircle.

Therefore,theequationoftherequiredcircleisx2+y2−8x−6y+21+2(2x+y−9)=0.

(i.e.)x2+y2−4x−4y+3=0

Example5.5.11

Findtheequationtothecirclewhichcutsorthogonallythethreecirclesx2+y2+2x+17y+4=0,x2+y2+7x+6y+11=0andx2+y2−x+22f+33=0.

Solution

Lettheequationofthecirclewhichcutsorthogonallythethreegivencirclesbex2+y2+2gx+2fy+c=0.Thentheconditionsfororthogonalityare

Page 239: Analytical Geometry: 2D and 3D

From(5.45),weget3g+10=1

From(5.41),weget−6−34=c+4orc=−44Therefore,theequationofthecirclewhichcutsorthogonallythethreegiven

circlesisx2+y2−6x−4y−44=0.

Aliter

Theradicalaxisofcircles(5.41)and(5.42)is

Theradicalaxisofcircles(5.41)and(5.43)is

Therefore,radicalcentreis(3,2).

Page 240: Analytical Geometry: 2D and 3D

Therefore,radicalcentreis(3,2).IfRisthelengthofthetangentfrompoints(3,2)tothefirstcirclethenR2=9

+4+6+34+4=57.Therefore,theequationoftherequiredcircleis(x−3)2+(y−2)2=57.

(i.e.)x2+y2−6x−4y−44=0

Example5.5.12

Findtheequationofthecirclewhichpassesthroughtheorigin,hasitscentreonthelinex+y=4andcutsorthogonallythecirclex2+y2−4x+2y+4=0.

Solution

Lettheequationoftherequiredcirclepassingthroughtheoriginbe

Thiscirclecutsorthogonallythecircle

Thecentreofthecircle(5.48)liesonx+y=4.

Adding,weget

Therefore,theequationoftherequiredcircleisx2+y2−4x−4y=0.

Example5.5.13

Page 241: Analytical Geometry: 2D and 3D

IftheequationofthecircleswithradiirandRareS=0andS1=0,respectively

thenshowthatthecircles willintersectorthogonally.

Solution

Withoutlossofgenerality,wecanassumethelineofcentresofthetwocirclesasx-axisandthedistancebetweenthecentresas2a.Thenthecentresofthetwocirclesare(a,0)and(−a,0).TheequationofthetwocirclesareS=(x−a)2+y2

−r2=0andS1=(x+a)2+y2−R2=0.

Consider

∴RS±rS1=0Clearly,thecoefficientsoftheRandrintheseequationsarethesameandsotheyrepresentcircles.

ConsiderRS+rS1=0

Also,RS−rS=0hastheequation

Equations(5.52)and(5.53)canbewrittenas R=0and

Theconditionfororthogonalityis2gg1+2ff1=c+c1.

Page 242: Analytical Geometry: 2D and 3D

Therefore,thecircles areorthogonal.

Exercises(RadicalAxis)

1. Findtheradicalaxisofthecirclesx2+y2+2x+4y=0and2x2+2y2−7x−8y+1=0.Ans.:11x+16y−1=0

2. Findtheradicalaxisofthecirclesx2+y2−4x−2y−11=0andx2+y2−2x−6y+1=0andshowthattheradicalaxisisperpendiculartothelineofcentres.

Ans.:x−2y+5=0

3. Showthatthecirclesx2+y2−6x−9y+13=0andx2+y2−2x−16y=0toucheachother.Findthecoordinatesofpointofcontact.

Ans.:(5,1)

4. Findtheequationofthecommonchordofthecirclesx2+y2+2ax+2by+c=0andx2+y2+

2bx+2ay+c=0andalsoshowthatthecirclestouchif(a+b)2=2c.

5. Showthatthecirclesx2+y2+2x−8y+8=0andx2+y2+10x−2y+22=0toucheachotherandfindthepointofcontact.

Ans.:

6. Findtheequationofthecirclepassingthroughtheintersectionofthecirclesx2+y2=6andx2+

y2−6x+8=0andalsothroughthepoint(1,1).

Ans.:x2+y2−x−y=0

7. Findtheequationofthecirclepassingthroughthepointofintersectionofthecirclesx2+y2−6x

+2y+4=0andx2+y2+2x−4y−6=0andwhoseradiusis3/2.

Ans.:5x2+5y2−18x+y+5=0

Page 243: Analytical Geometry: 2D and 3D

8. Ifthecirclesx2+y2+2gx+2fy=0andx2+y2+2g1x+2f1y=0toucheachotherthenshowthatfg1=f1g.

9. Findtheradicalcentreofthecirclesx2+y2+aix+biy+c=0,i=1,2,3.Ans.:(0,0)

10. Findtheradicalcentreofthecirclesx2+y2−x+3y−3=0,x2+y2−2x+2y+2=0andx2+

y2+2x+2y−9=0.Ans.:(2,1)

11. Theradicalcentreofthreecirclesisattheorigin.Theequationoftwoofthecirclesarex2+y2=1

andx2+y2+4x+4y−1=0.Findthegeneralformofthethirdcircle.Ifitpassesthrough(1,1)and(−2,1)thenfinditsequation.

Ans.:x2+y2+x−2y−1=0

12. Findtheradicalcentreofthecirclesx2+y2+x+2y+3=0,x2+y2+4x+7=0and2x2+2y2+3x+5y+9=0.

Ans.:(−2,−1)

13. Findtheequationofthecirclewhoseradiusis3andwhichtouchesthecirclex2+y2−4x−6y+2=0internallyatthepoint(−1,−1).

14. Showthattheradicalcentresofthreecirclesdescribedonthesidesofatriangleasdiameteristheorthocentreofthetriangle.

15. Findtheequationofthecirclewhichcutsorthogonallythethreecirclesx2+y2+y=0,x2+4y2+

4x+7=0,21x2+y2+3x+5y+9=0.

Ans.:x2+y2+4x+2y+1=0

16. AandBaretwofixedpointsandPmovessothatPA=n·PB.ShowthatthelocusofPisacircleandthatfordifferentvaluesofn,allthecircleshavethesameradicalaxis.

17. Findtheequationofcirclewhoseradiusis5andwhichtouchesthecirclex2+y2−2x−4y−20=0atthepoint(5,5).

18. Provethatthelengthofthecommonchordofthetwocircleswhoseequationsare(x−a)2+(y−

b)2=r2and(x−a)2+(y−b)2=c2is

19. Findtheequationtotwoequalcircleswithcentres(2,3)and(5,6)whichcutseachotherorthogonally.

20. IfthreecircleswithcentresA,BandCcuteachotherorthogonallyinpairsthenprovethatthepolarofAwithrespecttothecirclecentreBpassesthroughC.

21. Findthelocusofcentresofallthecircleswhichtouchthelinex=2aandcutthecirclex2+y2=

Page 244: Analytical Geometry: 2D and 3D

a2orthogonally.22. A,Barethepoints(a,0)and(−a,0).ShowthatifavariablecircleSisorthogonaltothecircleon

ABasdiameter,thepolarof(a,0)withrespecttothecircleSpassesthroughthefixedpoint(−a,0).

23. Ifacirclepassesthroughthepoint(a,b)andcutsthecirclex2+y2=k2orthogonallythenprove

thatthelocusofitscentresis2ax+2by−(a2+b2+k2)=0.

24. Showthatthecirclesx2+y2+10x+6y+14=0andx2+y2−4x+6y+8=0toucheachotheratthepoint(3,−1).

25. Showthatthecirclesx2+y2+2ax+4ay−3a2=0andx2+y2−8ax−6ay+7a2=0toucheachotheratthepoint(a,0).

26. Theequationofthreecirclesarex2+y2=1,x2+y2+8x+15=0andx2+y2+10y+24=0.Determinethecoordinateofthepointsuchthatthetangentsdrawnfromittothethreecirclesareequalinlength.

27. IfPandQbeapairofconjugatepointswithrespecttoacircleS=0thenprovethatthecircleonPQasdiametercutsthecircleS=0orthogonally.

28. Findtheequationofthecirclewhosediameteristhecommonchordofthecirclesx2+y2+2x+

3y+1=0andx2+y2+4x+3y+2=0.

5.6EXAMPLES(LIMITINGPOINTS)

Example5.6.1

IfA,BandCarethecentresofthreecoaxalcirclesandt1,t2andt3arethelengthsoftangentstothemfromanypointthenprovethat

Solution

Letthethreecirclesofcoaxalsystembe

ThecentresareA(−g1,0),B(−g2,0)andC(−g3,0)andBC=g3−g2,CA=g1−g3,

Page 245: Analytical Geometry: 2D and 3D

Then,

sinceΣ(g2−g3)=0andΣg1(g2−g3)=0.

Example5.6.2

Findtheequationsofthecircleswhichpassthroughthepointsofintersectionofx2+y2−2x+1=0andx2+y2−5x−6y−4=0andwhichtouchtheline2x−y+3=0.

Solution

Theradicalaxisofthesetwocirclesis

Theequationofanycirclepassingthroughtheintersectionofthesetwocirclesisx2+y2−2x+1+λ(x+2y−1)=0.

Thecentreofthiscircleis andradius= Thecircle

(5.56)touchestheline2x−y+3=0.

Page 246: Analytical Geometry: 2D and 3D

Theequationofthecirclesarex2+y2−2x+1±2(x+2y−1)=0.(i.e.)x2+y2−2x+1+2x+4y−2=0andx2+y2−2x+1−2x−4y+2=0(i.e.)x2+y2+4y−1=0andx2+y2−4x+4y+3=0

Example5.6.3

Findtheequationofthecirclewhichpassesthroughtheintersectionofthe

circlesx2+y2=4andx2+y2−2x−4y+4=0andhasaradius

Solution

Theradicalaxisofthesetwocirclesis2x+4y−8=0.Anycirclepassingthroughtheintersectionofthesetwocirclesis

Centreis(−λ,−2λ).

Page 247: Analytical Geometry: 2D and 3D

Therefore,therequiredcirclesarex2+y2−4−2(2x+4y−8)=0and

(i.e.)x2+y2−4x−8y+12=0and5x2+5y2+4x+8y−36=0

Example5.6.4

Findtheequationofthecirclewhosediameteristhecommonchordofthecirclesx2+y2+2x+3y+1=0andx2+y2+4x+3y+2=0.

Solution

Theradicalaxisofthesetwocirclesis2x+1=0.Anycircleofthesystemisx2+y2+2x+3y+1+λ(2x+1)=0.

Centreis .

Sincetheradicalaxisisadiameter,centreliesontheradicalaxis.

Page 248: Analytical Geometry: 2D and 3D

Hence,theequationoftherequiredcircleis

Example5.6.5

Findtheequationofthecirclewhichtouchesx-axisandiscoaxalwiththecirclesx2+y2+12x+8y−33=0andx2+y2=5.

Solution

Theradicalaxisofthesetwocirclesis

Anycircleofthecoaxalsystemisx2+y2−5+λ(6x+4y−14)=0.Centreis(−3λ,−2λ).

Thecircles(5.69)touchesx-axis(i.e.)y=0.

Page 249: Analytical Geometry: 2D and 3D

Therefore,thetwocirclesofthesystemtouchingx-axisare

Example5.6.6

Theline2x+3y=1cutsthecirclex2+y2=4inAandB.ShowthattheequationofthecircleonABasdiameteris13(x2+y2)−4x−6y−50=0.

Solution

Let

Anycirclepassingthroughtheintersectionofthecircleandthelineis

Centreis andradius=

IfABisadiameterofthecircle(5.72),theircentreshouldlieonAB.

Therefore,theequationofthecircleonABasdiameteris13(x2+y2−4)−2(2x+3y−1)=0.

Page 250: Analytical Geometry: 2D and 3D

∴13(x2+y2)−4x−6y+50=0

Example5.6.7

Apointmovessothattheratioofthelengthoftangentstothecirclesx2+y2+4x+3=0andx2+y2−6x+5=0is2:3.Showthatthelocusofthepointisacirclecoaxalwiththegivencircles.

Solution

ThelengthsoftangentsfromapointP(x1,y1)tothetwocirclesare

Giventhat,

Thelocusof

ThisisoftheformS1+λS2=0Hencethelocusofcircleisacirclecoaxalwiththetwogivencircles.

Example5.6.8

Findthelimitingpointsofthecoaxalsystemdeterminedbythecirclex2+y2+2x+4y+7=0andx2+y2+4x+2y+5=0.

Solution

Giventhat,

Page 251: Analytical Geometry: 2D and 3D

Theradicalaxisofthesetwocirclesis2x−2y−2=0.Anycircleofthecoaxalsystemisx2+y2+2x+4y+7+λ(2x−2y−2)=0.Centreis(−1−λ,−2+λ).

Radiusis

Limitingpointsarethecentresofcirclesofradiizero.Therefore,limitingpointsare(−2,−1)and(0,−3).

Example5.6.9

Thepoint(2,1)isalimitingpointofasystemofcoaxalcirclesofwhichx2+y2

−6x−4y−3=0isamember.Findtheequationtotheradialaxisandthecoordinatesoftheotherlimitingpoint.

Solution

Giventhat

x2+y2−6x−4y−3=0Since(2,1)isalimitpoint,thepointcirclecorrespondingtothecoaxalsystemis

Theradicalaxisofthesystemis

AnycircleofthecoaxalsystemisS+λL=0.

x2+y2−6x−4y−3+λ(2x+2y+8)=0

Page 252: Analytical Geometry: 2D and 3D

Centreis(3−λ,2−λ).

Radius

Forpointcircles,radius=0.

Therefore,thelimitingpointsarethecentresofpointcircleofthecoaxalsystem,thatis,(2,1)and(−5,−6).

Example5.6.10

Findtheequationofthecirclewhichpassesthoughtheoriginandbelongstothecoaxalsystemofwhichlimitingpointsare(1,2)and(4,3).

Solution

Since(1,2)and(4,3)arelimitingpointsoftwocirclesofthecoaxalsystemand(x−1)2+(y−2)2=0and(x−4)2+(y−3)2=0.

Radicalaxisis6x+2y−20=0.Anycircleofthesystemisx2+y2−2x−4y+5+λ(6x+2y−20)=0.Thispassesthroughtheorigin.

Hence,theequationofthesystemis

Page 253: Analytical Geometry: 2D and 3D

Example5.6.11

ApointPmovessothatitsdistancesfromtwofixedpointsareinaconstantratioλ.ProvethatthelocusofPisacircle.IfλvariesthenshowthatPgeneratesasystemofcoaxalcirclesofwhichthefixedpointsarethelimitingpoints.

Solution

LetP(x1,y1)beamovingpointandA(c,0)andB(0,−c)bethetwofixedpoints.Here,wehavechosenthefixedpointsonthex-axissuchthatPisitsmidpoint.Giventhat

ThisequationisoftheformS+λS′=0whichistheequationtoacoaxalsystemofcircles.Therefore,fordifferentvaluesofλ,Pgeneratesacoaxalsystemofcirclesof

which(x−a)2+y2=0and(x+a)2+y2=0aremembers.Theseequationsaretheequationofpointcircleswhosecentresare(a,0),(−a,0)whichisthefixedpoints.

Example5.6.12

Provethatthelimitingpointofthesystemx2+y2+2gx+c+λ(x2+y2+2fy+k)

=0subtendsarightangleattheoriginif

Solution

Page 254: Analytical Geometry: 2D and 3D

Thetwomembersofthesystemarex2+y2+2gx+c=0andx2+y2+2fy+k=0.Radicalaxisis2gx−2fy+c−k=0.Anycircleofthesystemisx2+y2+2gx+c+λ(2gx−2fy+c−k)=0.Centreis(−g−gλ,fλ).

Radius

Forpointcircle,radius=0.

Consideringthetwovaluesofλasλ1,λ2,

centresareA(−g(1+λ1),fλ1)andB(−g(1+λ2),fλ2)SinceOABisrightangledatO,OAisperpendiculartoOB.

Exercises

1. Findtheequationofthecirclepassingthroughtheintersectionofx2+y2−6=0andx2+y2+4y−1=0throughthepoint(−1,1).

Ans.:9x2+9y2+16y−34=0

Page 255: Analytical Geometry: 2D and 3D

2. Showthatthecirclesx2+y2=480andx2+y2−10x−24y+120=0toucheachotherandfindtheequation,ifathirdcirclewhichtouchesthecirclesattheirpointofintersectionandthex-axis

x2+y2−200x−400y+10000=0.

Ans.:5x2+5y2−40x+96y+30=0

3. Findtheequationofthecirclewhosecentreliesonthelinex+y−11=0andwhichpasses

throughtheintersectionofthecirclex2+y2−3x+2y−4=0withtheline2x+5y−2=0.

4. Findthelengthofthecommonchordofthecirclesx2+y2+4x−22y=0andx2+y2−10x+5y=0.

Ans.:40/7

5. Findthecoordinatesofthelimitingpointsofthecoaxalcirclesdeterminedbythetwocirclesx2+

y2−4x−6y−3=0andx2+y2−24x−26y+277=0.Ans.:(1,2),(3,1)

6. Findthecoordinatesofthelimitingpointsofthecoaxalsystemofcirclesofwhichtwomembers

arex2+y2+2x−6y=0and2x2+2y2−10y+5=0.Ans.:(1,2),(3,1)

7. Findthecoaxalsystemofcirclesifoneofwhosemembersisx2+y2+2x−6y=0andalimitingpointis(1,−2).

Ans.:x2+y2+2x+3y−7−λ(4x−y−12)=0

8. Findthelimitingpointofthecoaxalsystemdeterminedbythecirclesx2+y2−6x−6y+4=0

andx2+y2−2x−4y+3=0.

Ans.:

9. Findtheequationofthecoaxalsystemofcirclesoneofwhosemembersisx2+y2−4x−2y−5=0andthelimitingpointis(1,2).

Ans.:x2+y2−2x−4y+5+λ(x−y−5)=0

10. Iforiginisalimitingpointofasystemofcoaxalcirclesofwhichx2+y2+2gx+2fy+c=0isa

memberthenshowthattheotherlimitingpointsis

Page 256: Analytical Geometry: 2D and 3D

11. Showthattheequationofthecoaxalsystemwhoselimitingpointsare(0,0)and(a,b)isx2+y2+

k(2ax−2by−a2−b2)=0.

12. Theoriginisalimitingpointofasystemofcoaxalcirclesofwhichx2+y2+2gx+2fy+c=0isa

member.Showthattheequationofcirclesoftheorthogonalsystemis(x2+y2)(g+λf)+c(x−λy)=0fordifferentvaluesofx.

13. Showthatthecirclesx2+y2+2ax+2by+2λ(ax−by)=0whereλisaparameterfromacoaxalsystemandalsoshowthattheequationofthecommonradicalaxisandtheequationofcircles

whichareorthogonaltothissystemare

14. ApointPmovessuchthatthelengthoftangentstothecirclesx2+y2−2x−4y+5=0andx2+

y2+4x+6y−7=0areintheratio3:4.Showthatthelocusisacircle.

15. Showthatthelimitingpointsofthecirclex2+y2=a2andanequalcirclewithcentreontheline

lx+my+n=0beontheline(x2+y2)(lx+my+n)+a2(ln+mn)=0.

Page 257: Analytical Geometry: 2D and 3D

Chapter6

Parabola

6.1INTRODUCTION

Ifapointmovesinaplanesuchthatitsdistancefromafixedpointbearsaconstantratiotoitsperpendiculardistancefromafixedstraightlinethenthepathdescribedbythemovingpointiscalledaconic.Inotherwords,ifSisafixedpoint,lisafixedstraightlineandPisamovingpointandPMisthe

perpendiculardistancefromPonl,suchthat constant,thenthelocusofP

iscalledaconic.Thisconstantiscalledtheeccentricityoftheconicandisdenotedbye.

Ife=1,theconiciscalledaparabola.Ife<1,theconiciscalledanellipse.Ife>1,theconiciscalledahyperbola.ThefixedpointSiscalledthefocusoftheconic.Thefixedstraightlineis

calledthedirectrixoftheconic.Theproperty iscalledthefocus-directrix

propertyoftheconic.

6.2GENERALEQUATIONOFACONIC

Page 258: Analytical Geometry: 2D and 3D

Wecanshowthattheequationofaconicisaseconddegreeequationinxandy.Thisisderivedfromthefocus-directrixpropertyofaconic.LetS(x1,y1)bethefocusandP(x,y)beanypointontheconicandlx+my+n=0betheequationofthedirectrix.Thefocus-directrixpropertyoftheconicstates

(i.e.)

Thisequationcanbeexpressedintheformax2+2hxy+by2+2gx+2fy+c=0whichisaseconddegreeequationinxandy.

6.3EQUATIONOFAPARABOLA

LetSbethefocusandthelinelbethedirectrix.WehavetofindthelocusofapointPsuchthatitsdistancefromthefocusSisequaltoitsdistancefromthefixedlinel.

(i.e.) wherePMisperpendiculartothedirectrix.

DrawSXperpendiculartothedirectrixandbisectSX.LetAbethepointofbisectionandSA=AX=a.ThenthepointAisapointontheparabolasince

.TakeASasthex-axisandAYperpendiculartoASasthey-axis.Thenthe

coordinateofSare(a,0).Let(x,y)bethecoordinatesofthepointP.DrawPNperpendiculartothex-axis.

Page 259: Analytical Geometry: 2D and 3D

This,beingthelocusofthepointP,istheequationoftheparabola.Thisequationisthesimplestpossibleequationtoaparabolaandiscalledthestandardequationoftheparabola.

Note6.3.1:

1. ThelineAS(x-axis)iscalledtheaxisoftheparabola.2. ThepointAiscalledthevertexoftheparabola.3. AY(y-axis)iscalledthetangentatthevertex.4. Theperpendicularthroughthefocusiscalledthelatusrectum.5. Thedoubleordinatethroughthefocusiscalledthelengthofthelatusrectum.6. Theequationofthedirectrixisx+a=0.7. Theequationofthelatusrectumisx–a=0.

6.4LENGTHOFLATUSRECTUM

Tofindthelengthofthelatusrectum,drawLM′perpendiculartothedirectrix.

Then

6.4.1Tracingofthecurvey2=4ax

1. Ifx<0,yisimaginary.Therefore,thecurvedoesnotpassthroughtheleftsideofy-axis.2. Wheny=0,wegetx=0.Therefore,thecurvemeetsthey-axisatonlyonepoint,thatis,(0,0).

3. Whenx=0,y2=0,thatis,y=0.Hencethey-axismeetsthecurveattwocoincidentpoints(0,0).Hencethey-axisisatangenttothecurveat(0,0).

4. If(x,y)isapointontheparabolay2=4ax,(x,–y)isalsoapoint.Therefore,thecurveis

Page 260: Analytical Geometry: 2D and 3D

symmetricalaboutthex-axis.5. Asxincreasesindefinitely,thevaluesofyalsoincreasesindefinitely.Thereforethepointsofthe

curvelyingontheoppositesidesofx-axisextendtoinfinitytowardsthepositivesideofx-axis.

6.5DIFFERENTFORMSOFPARABOLA

1. Ifthefocusistakenatthepoint(–a,0)withthevertexattheoriginanditsaxisasx-axisthenits

equationisy2=–4ax.

2. Iftheaxisoftheparabolaisthey-axis,vertexattheoriginandthefocusat(0,a),theequationof

theparabolaisx2=4ay.

3. Ifthefocusisat(0,−a),vertex(0,0)andaxisasy-axis,thentheequationoftheparabolaisx2=–4ay.

Page 261: Analytical Geometry: 2D and 3D

ILLUSTRATIVEEXAMPLESBASEDONFOCUSDIRECTRIXPROPERTY

Example6.1

Findtheequationoftheparabolawiththefollowingfocianddirectrices:i. (1,2):x+y–2=0ii. (1,–1):x–y=0iii. (0,0):x–2y+2=0

Solution

i. LetP(x,y)beanypointontheparabola.DrawPMperpendiculartothedirectrix.Thenfromthe

definitionoftheparabola,

∴SP2=(x–1)2+(y–2)2PM=perpendiculardistancefrom(x,y)onx+y–2=0

Page 262: Analytical Geometry: 2D and 3D

Thisistheequationoftherequiredparabola.ii. ThepointSis(1,−1).Directrixisx–y=0

Fromanypointontheparabola,

iii. Sis(0,0).Directrixisx–2y+2=0

ForanypointPontheparabola,

Example6.2

Findthefoci,latusrectum,verticesanddirectricesofthefollowingparabolas:i. y2+4x–2y+3=0

ii. y2–4x+2y–3=0

iii. y2–8x–9=0

Page 263: Analytical Geometry: 2D and 3D

Solution

i.

Takex+ =X,y–1=Y.Shiftingtheorigintothepoint theequationoftheparabola

becomesY2=−4X.

∴Vertexis ,latusrectumis4,focusis andfootofthedirectrixis .The

equationofthedirectrixisx= or2x–1=0.

ii.

Page 264: Analytical Geometry: 2D and 3D

Shiftingtheorigintothepoint(–1,–1)bytakingx+1=Xandy+1=Ytheequationofthe

parabolabecomesY2=4X.∴Vertexis(−1,−1),latusrectum=4,focusis(0,−1)andfootofthedirectrixis(−2,−1).∴Theequationofthedirectrixisx+2=0.

y2–8x–9=0⇒y2=8x+9

Shifttheorigintothepoint andtake

∴TheequationoftheparabolabecomesY2=8X.Vertexis ,latusrectum=8andfocusis

Theequationofthedirectrixis

Exercises

Page 265: Analytical Geometry: 2D and 3D

1. Findtheequationoftheparabolawhosefocusis(2,1)anddirectrixis2x+y+1=0.

Ans.:x2–4xy+4y2–24x–12y+24=0

2. Findtheequationoftheparabolawhosefocusis(3,−4)andwhosedirectrixisx–y+5=0.

Ans.:x2+2xy+y2–16x–26y+25=0

3. Findthecoordinatesofthevertex,focusandtheequationofthedirectrixoftheparabola3y2=16x.Findalsothelengthofthelatusrectum.

Ans.:

4. Findthecoordinatesofthevertexandfocusoftheparabola2y2+3y+4x=2.Findalsothelengthofthelatusrectum.

Ans.:

5. Apointmovesinsuchawaythatthedistancefromthepoint(2,3)isequaltothedistancefromtheline4x+3y=5.Findtheequationofitspath.Whatisthenameofthiscurve?

Ans.:25[(x–2)2+(y–3)2]–(4x+3y–5)2

6.6CONDITIONFORTANGENCY

Findtheconditionforthestraightliney=mx+ctobeatangenttotheparabolay2=4axandfindthepointofcontact.

Solution

Theequationoftheparabolais

Theequationofthelineis

Solvingequations(6.1)and(6.2),wegettheirpointsofintersection.Thex-coordinatesofthepointsofintersectionaregivenby

Page 266: Analytical Geometry: 2D and 3D

Ify=mx+cisatangenttotheparabola,thentherootsofthisequationareequal.Theconditionforthisisthediscriminantisequaltozero.

Hence,theconditionfory=mx+ctobeatangenttotheparabolay2=4axisc=a/m.Substitutingc=a/minequation(6.3),weget

Therefore,thepointofcontactis

Note6.6.1:Anytangenttotheparabolais

6.7NUMBEROFTANGENTS

Showthattwotangentscanalwaysbedrawnfromapointtoaparabola.

Solution

Lettheequationtotheparabolabey2=4ax.Let(x1,y1)bethegivenpoint.Any

tangenttotheparabolais Ifthistangentpassesthrough(x1,y1),then

(1)Thisisaquadraticequationinm.

Therefore,therearetwovaluesofmandforeachvalueofmthereisatangent.Hence,therearetwotangentsfromagivenpointtotheparabola.

Page 267: Analytical Geometry: 2D and 3D

Note6.7.1:Ifm1,m2aretheslopesofthetwotangentsthentheyaretherootsofequation(6.3).

6.8PERPENDICULARTANGENTS

Showthatthelocusofthepointofintersectionofperpendiculartangentstoaparabolaisthedirectrix.

Solution

Lettheequationoftheparabolabey2=4ax.Let(x1,y1)bethepointofintersectionofthetwotangentstotheparabola.Anytangenttotheparabolais

Ifthistangentpassesthrough(x1,y1)then

Ifm1,m2aretheslopesofthetwotangentsfrom(x1,y1),thentheyaretherootsofequation(6.5).Sincethetangentsareperpendicular,

Therefore,thelocusof(x1,y1)isx+a=0,whichisthedirectrix.Showthatthelocusofthepointofintersectionoftwotangentstotheparabola

thatmakecomplementaryangleswiththeaxisisalinethroughthefocus.

Solution

Page 268: Analytical Geometry: 2D and 3D

Let(x1,y1)bethepointofintersectionoftangentstotheparabolay2=4ax.Any

tangenttotheparabolais Ifthislinepassesthrough(x1,y1),then

Ifm1,m2aretheslopesofthetwotangents,then

Ifthetangentsmakecomplementaryangleswiththeaxisoftheparabola,thenm1=tanθandm2=tan(90–θ).

Thelocusofthepointofintersectionofthetangentsisx–a=0,whichisastraightlinethroughtheorigin.

6.9EQUATIONOFTANGENT

Findtheequationofthetangentat(x1,y1)totheparabolay2=4ax.LetP(x1,y1)andQ(x2,y2)betwopointsontheparabolay2=4ax.Then

Theequationofthechordjoiningthepoints(x1,y1)and(x2,y2)is

Page 269: Analytical Geometry: 2D and 3D

Fromequations(6.6)and(6.7),weget

Hence,theequationofthechordPQis

WhenthepointQ(x2,y2)tendstocoincidewithP(x1,y1),thechordPQbecomesthetangentatP.Hence,theequationofthetangentatPis

Aliter:Theequationoftheparabolaisy2=4ax.

Differentiatingthisequationwithrespecttox1,weget

Theequationofthetangentat(x1,y1)is

6.10EQUATIONOFNORMAL

Findtheequationofthenormalat(x1,y1)ontheparabolay2=4ax.

Solution

Page 270: Analytical Geometry: 2D and 3D

Theslopeofthetangentat(x1,y1)is

Therefore,theslopeofthenormalat(x1,y1)is

Theequationofthenormalat(x1,y1)is

6.11EQUATIONOFCHORDOFCONTACT

Findtheequationofthechordofcontactoftangentsfrom(x1,y1)totheparabolay2=4ax.

Solution

LetQRbethechordofcontactoftangentsfromP(x1,y1).LetQandRbethepoints(x2,y2)and(x3,y3),respectively.Then,theequationoftangentsatQandRare

ThesetwotangentspassthroughP(x1,y1).

Page 271: Analytical Geometry: 2D and 3D

Thesetwoequationsshowthatthepoints(x2,y2)and(x3,y3)lieonthelineyy1=2a(x+x1).Therefore,theequationofthechordofcontactoftangentsfromP(x1,y1)is

yy1=2a(x+x1).

6.12POLAROFAPOINT

Findthepolarofthepointwithrespecttotheparabolay2=4ax.

Definition6.12.1Thepolarofapointwithrespecttoaparabolaisdefinedasthelocusofthepointofintersectionofthetangentsattheextremitiesofachordpassingthroughthatpoint.

Solution

LetP(x1,y1)bethegivenpoint.LetQRbeavariablechordpassingthroughP.LetthetangentsatQandRintersectat(h,k).Thentheequationofthechordofcontactoftangentsfrom(h,k)isyk=2a(x+h).ThischordpassesthroughP(x1,y1).

∴y1k=2a(x1+h)Thenthelocusof(h,k)isyy1=2a(x+x1)Hence,thepolarof(x1,y1)withrespecttoy2=4axis

yy1=2a(x+x1)

Note6.12.1:PointPisthepoleofthelineyy1=2a(x+x1).

Note6.12.2:Findthepoleofthelinelx+my+n=0withrespecttotheparabolay2=4ax.Let(x1,y1)bethepole.Thenthepolarof(x1,y1)is

Page 272: Analytical Geometry: 2D and 3D

Butthepolarof(x1,y1)isgivenbylx+my+n=0(6.13)

Equations(6.12)and(6.13)representthesameline.Then,identifyingthesetwoequations,weget

Hence,thepoleofthelineis

6.13CONJUGATELINES

Definition6.13.1Twolinesaresaidtobeconjugatetoeachotherifthepoleofeachliesontheother.Findtheconditionforthelineslx+my+n=0andl1x+m1y+n1=0tobeconjugatelineswithrespecttotheparabolay2=4ax.

Solution

Let(x1,y1)bethepoleofthelinesl1x+m1y+n1=0withrespecttotheparabola.Thepolarof(x1,y1)withrespecttothepolary2=4axislx+my+n=0.Theequationofthepolarof(x1,y1)withrespecttotheparabolay2=4axis

Butthepolarof(x1,y1)isgivenbylx+my+n=0(6.15)

Equations(6.14)and(6.15)representthesameline.Identifyingthesetwoequations,weget

Page 273: Analytical Geometry: 2D and 3D

Thepoleofthelinelx+my+n=0is

Sincethelineslx+my+n=0andl1x+m1y+n1=0areconjugatetoeachother,thepoleoflx+my+n=0willlieonl1x+m1y+n1=0.

Thisistherequiredcondition.

6.14PAIROFTANGENTS

Findtheequationofpairoftangentsfrom(x1,y1)totheparabolay2=4ax.

Solution

Theequationofalinethrough(x1,y1)is

Anypointonthislineis(x1+rcosθ,y1+rsinθ).Thepointsofintersectionofthelineandtheparabolaaregivenby

Thetwovaluesofrofthisequationarethedistancesofpoint(x,y)tothepoint(x1,y1).Ifline(6.16)isatangenttotheparabola,thenthetwovaluesofrmustbeequalandtheconditionforthisisthediscriminantofquadratic(6.17)iszero.

∴4(y1sinθ–2acosθ)2=4sin2θ(y2–4ax1)Eliminatingθinthisequationwiththehelpof(6.16),weget

Page 274: Analytical Geometry: 2D and 3D

Therefore,theequationofpairoftangentsfrom(x1,y1)is

6.15CHORDINTERMSOFMIDPOINT

Findtheequationofachordoftheparabolaintermsofitsmiddlepoint(x1,y1).

Solution

Lettheequationofthechordbe

Page 275: Analytical Geometry: 2D and 3D

Anypointonthislineis(x1+rcosθ,y1+rsinθ).Whenthechordmeetstheparabolay2=4ax,thispointliesonthecurve.

ThetwovaluesofrarethedistancesRPandRQ,whichareequalinmagnitudebutoppositeinsign.Theconditionforthisisthecoefficientofrisequaltozero.

Thisistherequiredequationofthechord.

6.16PARAMETRICREPRESENTATION

x=at2,y=2atsatisfytheequationy2=4ax.Thismeans(at2,2at)isapointontheparabola.Thispointisdenotedby‘t’andtiscalledaparameter.

6.17CHORDJOININGTWOPOINTS

Findtheequationofthechordjoiningthepoints onthe

parabolay2=4ax.

Solution

Theequationofthechordjoiningthepointsis

Page 276: Analytical Geometry: 2D and 3D

Note6.17.1:Thechordbecomesthetangentat‘t’ift1=t2=t.Therefore,theequationofthetangentattis

y(2t)=2x+2at2oryt=x+at2

6.18EQUATIONSOFTANGENTANDNORMAL

Findtheequationofthetangentandnormalat‘t’ontheparabolay2=4ax.

Solution

Theequationoftheparabolaisy2=4ax.Differentiatingwithrespecttox,

Theequationofthetangentattis

Theslopeofthenormalattis−t.Theequationofthenormalat‘t’is

6.19POINTOFINTERSECTIONOFTANGENTS

Page 277: Analytical Geometry: 2D and 3D

Findthepointofintersectionoftangentsatt1andt2ontheparabolay2=4ax.

Solution

Theequationoftangentsatt1andt2are

Hence,thepointofintersectionis[at1t2,a(t1+t2)].

6.20POINTOFINTERSECTIONOFNORMALS

Findthepointofintersectionofnormalsatt1andt2.

Solution

6.21NUMBEROFNORMALSFROMAPOINT

Showthatthreenormalscanalwaysbedrawnfromagivenpointtoaparabola.

Page 278: Analytical Geometry: 2D and 3D

Solution

Lettheequationoftheparabolabey2=4ax.Theequationofthenormalattis

y+xt=2at+at3Ifthispassesthrough(x1,y1)then

Thisbeingacubicequationint,therearethreevaluesfort.Foreachvalueoftthereisanormalfrom(x1,y1)totheparabolay2=4ax.

Note6.21.1:Ift1,t2,t3aretherootsofequation(6.18),then

Note6.21.2:From(6.18),2at1+2at2+2at3=0Therefore,thesumofthecoordinatesofthefeetofthenormalisalwayszero.

6.22INTERSECTIONOFAPARABOLAANDACIRCLE

Provethatacircleandaparabolameetatfourpointsandshowthatthesumoftheordinatesofthefourpointsofintersectioniszero.

Solution

Lettheequationofthecirclebe

Lettheequationoftheparabolabe

Page 279: Analytical Geometry: 2D and 3D

Lettheequationoftheparabolabe

Anypointontheparabolais(at2,2at).Whenthecircleandtheparabolaintersect,thispointliesonthecircle,

Thisbeingafourthdegreeequationint,therearefourvaluesoft.Foreachvalueoftthereisapointofintersection.Hence,therearefourpointsofintersectionofacircleandaparabola.Ift1,t2,t3,t4bethefourrootsofequation(6.24),then

Multiplyingequation(6.25)by2a,weget

2at1+2at2+2at3+2at4=0Therefore,thesumoftheordinatesofthefourpointsofintersectioniszero.

ILLUSTRATIVEEXAMPLESBASEDONTANGENTSANDNORMALS

Example6.3

Findtheequationsofthetangentandnormaltotheparabolay2=4(x–1)at(5,4).

Solution

y2=4(x–1)Differentiatingwithrespecttox,

Page 280: Analytical Geometry: 2D and 3D

∴Theequationofthetangentat(5,4)isy–4= (x–5).

2y–8=x–5orx–2y+3=0.Theslopeofthenormalat(5,4)is−2.∴Theequationofnormalat(5,4)isy–4=−2(x–5)or2x+y=14.

Example6.4

Findtheconditionthatthestraightlinelx+my+n=0isatangenttotheparabola.

Solution

Anystraightlinetangenttotheparabolay2=4axisoftheformy=mx+cif

Considerthelinelx+my+n=0(i.e.)my=−lx−n

Ifthisisatangenttotheparabola,y2=4axthen

Example6.5

Acommontangentisdrawntothecirclex2+y2=r2andtheparabolay2=4ax.Showthattheangleθwhichitmakeswiththeaxisoftheparabolaisgivenby

Page 281: Analytical Geometry: 2D and 3D

Solution

Lety=mx+cbeacommontangenttotheparabola

andthecircle

Ify=mx+cistangenttotheparabola(6.27)then

Ify=mx+cisatangenttothecircle(6.29)then

Equations(6.29)and(6.30)representthesamestraightline.Identifyingweget

Sincem2hastobepositive,

Example6.6

Page 282: Analytical Geometry: 2D and 3D

Astraightlinetouchesthecirclex2+y2=2a2andtheparabolay2=8ax.Showthatitsequationisy=±(x+2a).

Solution

Theequationofthecircleis

Theequationoftheparabolais

Atangenttotheparabola(6.32)is

Atangenttothecircle(6.33)is

Equations(6.33)and(6.34)representthesamestraightline.Identifyingweget,

m2=1or−2;m2=−2isimpossible.

∴m2=1orm=±1∴Theequationofthecommontangentisy=±x±2a.

∴y=±(x+2a)

Example6.7

Page 283: Analytical Geometry: 2D and 3D

Showthatforallvaluesofm,theliney=m(x+a)+ willtouchtheparabolay2

=4a(x+a).Henceshowthatthelocusofapoint,thetwotangentsformwhichtotheparabolasy2=4a(x+a)andy2=4b(x+b)onetoeachareatrightangles,isthelinex+a+b=0.

Solution

Solving(6.35)and(6.36),wegettheirpointsofintersection.Thex-coordinatesoftheirpointsofintersectionaregivenby,

∴Thetwovaluesofxandhenceofyofthepointsofintersectionarethesame.

Hence, isatangenttotheparabolay2=4a(x+a).Let(x1,y1)be

thepointofintersectionofthetwotangentstotheparabolay2=4a(x+a),y2=

4a(y+b).Thetangentsare and Sincetheypass

through(x1,y1),wehave

Page 284: Analytical Geometry: 2D and 3D

Sincethetangentsareatrightangles,m1m2=−1.Subtracting(6.38)from(6.37),weget

since

Cancelling

Thelocusof(x1,y1)isx+a+b=0.

Example6.8

Provethatthelocusofthepointofintersectionoftwotangentstotheparabolay2

=4ax,whichmakesanangleofαwithx-axis,isy2–4ax=(x+a)2tan2α.Determinethelocusofpointofintersectionofperpendiculartangents.

Solution

Let(x1,y1)bethepointofintersectionoftangents.Anytangenttotheparabola

isy=mx+ .Ifthispassesthrough(x1,y1)theny=mx1+ .

Page 285: Analytical Geometry: 2D and 3D

∴Thelocusof(x1,y1)isy2–4ax=(x+a)2tan2α.Ifthetangentsareperpendicular,tanα=tan90°=∞∴Thelocusofperpendiculartangentsisdirectrix.

Example6.9

Provethatiftwotangentstoaparabolaintersectonthelatusrectumproducedthentheyareinclinedtotheaxisoftheparabolaatcomplementaryangles.

Solution

Let(x1,y1)theequationoftheparabolabey2=4ax.Lety=mx+ beany

tangenttotheparabola.Letthetwotangentsintersectat(a,y1),apointonthe

latusrectum.Then(a1,y1)lies,ony=mx+ .

Ifm1andm2aretheslopesofthetwotangentstotheparabolathenm1m2=1.(i.e.)tanθ·tan(90–θ)=1.(i.e.)Thetangentmakescomplementaryanglestotheaxisoftheparabola.

Page 286: Analytical Geometry: 2D and 3D

Example6.10

Provethatthelocusofpolesofthechordsoftheparabolay2=4axwhichsubtendsaconstantangleαatthevertexisthecurve(x+4a)2tan2α=4(y2–4ax).

Solution

Let(x1,y1)bethepoleofachordoftheparabola.Thenthepolarof(x1,y1)is

whichisthechordofcontactfrom(x1,y1).ThecombinedequationofthelinesAQandARisgotbyhomogenizationoftheequationoftheparabolay2=4axwiththehelpof(6.40).∴Thecombinedequationofthelinesis

Thelocusof(x1,y1)is(x+4a)2tan2α=4(y2–4ax).

Page 287: Analytical Geometry: 2D and 3D

Note6.10.1:Ifα=90°,thelocusof(x1,y1)isx+4a=0.

Example6.11

Iftwotangentsaredrawntoaparabolamakingcomplementaryangleswiththeaxisoftheparabola,provethatthechordofcontactpassesthroughthepointwheretheaxiscutsthedirectrix.

Solution

Lety=mx+ beatangentfromapoint(x1,y1)totheparabolay2=4ax.Then

y1=mx1+ orm2x1–my1+a=0.Ifthetangentsmakecomplementaryangles

withtheaxisoftheparabolathenm1m2=1or

Theequationofthechordofcontactfrom(a,y1)totheparabolaisyy1=2a(x+a).Whenthechordofcontactmeetsthex-axis,y=0.

∴x+a=0orx=−a.∴Thechordofcontactpassesthroughthepoint(−a,0)wheretheaxiscutsthedirectrix.

Example6.12

Findthelocusofpolesoftangentstotheparabolay2=4axwithrespecttotheparabolax2=4by.

Solution

Let(x1,y1)bethepolewithrespecttotheparabolax2=4by.Thenthepolarof

(x1,y1)isxx1=2b(y+y1), .Thisisatangenttotheparabolay2=4ax.

Page 288: Analytical Geometry: 2D and 3D

Theconditionfortangentisc= (i.e.) orx1y1+2ab=0.

Thelocusof(x1,y1)isthestraightlinexy+2ab=0.

Example6.13

Fromavariablepointonthetangentatthevertexofaparabola,theperpendicularisdrawntoitspolar.Showthattheperpendicularpassesthroughafixedpointontheaxisoftheparabola.

Solution

Theequationofthetangentatthevertexisx=0.Anypointonthislineis(0,y1).Thepolarof(0,y1)withrespecttotheparabolay2=4axisyy1=2ax.Theequationoftheperpendiculartothepolarof(x1,y1)isy1x+2ay=k.This

passesthrough(0,y1).

∴k=2ay1.∴Theequationoftheperpendiculartothepolarfrom(0,y1)isy1x+2ay=2ay1,whenthislinemeetsthex-axis,y1x=2ay1orx=2aHence,theperpendicularpassesthroughthepoint(2a,0),afixedpointonthe

axisoftheparabola.

Example6.14

Thepolarofanypointwithrespecttothecirclex2+y2=a2touchestheparabolay2=4ax.Showthatthepointliesontheparabolay2=–ax.

Solution

Thepolarofthepoint(x1,y1)withrespecttothecirclex2+y2=a2isxx1+yy1=a2

Page 289: Analytical Geometry: 2D and 3D

Thisisatangenttotheparabolay2=4ax.Theconditionforthatisc= .

Thelocusof(x1,y1)isy2=–axwhichisaparabola.

Example6.15

Findthelocusofpoleswithrespecttotheparabolay2=4axoftangentstothecirclex2+y2=c2.

Solution

Letthepolewithrespecttotheparabolay2=4axbe(x1,y1).Thenthepolarof(x1,y1)is

yy1=2a(x+x1)

(i.e.) .Thisisatangenttothecirclex2+y2=a2.Theconditionfor

thisis‘c2=a2(1+m2).

Thelocusof(x1,y1)is4a2x2=c2(y2+4a2).

Example6.16

Page 290: Analytical Geometry: 2D and 3D

ApointPmovessuchthatthelinethroughitperpendiculartoitspolarwithrespecttotheparabolay2=4axtouchestheparabolax2=4by.ShowthatthelocusofPis2ax+by+4a2=0.

Solution

LetPbethepoint(x1,y1).ThepolarofPwithrespecttoy2=4axis

Theequationoftheperpendicularto(6.41)isy1x+2ay+k=0.Thispassesthrough(x1,y1).

Hence,theequationoftheperpendicularisy1x+2ay–(x1y1+2ay1)=0.

(i.e.)

Thisisatangenttotheparabolax2=4by.

∴Thecondition

∴Thelocusof(x1,y1)is2ax+by+4a2=0.

Example6.17

IfthepolarofthepointPwithrespecttoaparabolapassesthroughQthenshowthatthepolarofQpassesthroughP.

Solution

Lettheequationoftheparabolabey2=4ax.LetPandQbethepoints(x1,y1)and(x2,y2).ThenthepolarofPisyy1=2a(x+x1).SincethispassesthroughQ(x2,y2),wegety1y2=2a(x1+x2).Thiscondition

showsthatthepoint(x1,y1)liesonthelineyy2=2a(x+x2).

Page 291: Analytical Geometry: 2D and 3D

∴ThepolarofQpassesthroughthepointP(x1,y1).

Example6.18

Pisavariablepointonthetangentatthevertexoftheparabolay2=4ax.ProvethatthelocusofthefootoftheperpendicularfromPonitspolarwithrespecttotheparabolaisthecirclex2+y2–2ax=0.

Solution

Pisthevariablepointonthetangentatthevertexoftheparabolay2=4ax.Theequationofthetangentatthevertexisx=0.AnypointonthetangentatthevertexisP(0,y1).Thepolarof(0,y)is

Theequationoftheperpendiculartothispolaris

Thispassesthrough(0,y1).

∴2ay1=k.∴TheequationoftheperpendicularfromPtoitspolaris

Let(l,m)bethepointofintersectionof(6.42)and(6.43).Then2al–my1=0.

y1l+2am–2ay1=0Solving

Page 292: Analytical Geometry: 2D and 3D

Now,

∴Thelocusof(l,m)isx2+y2–2ax=0.

Example6.19

Iffromthevertexoftheparabolay2=4ax,apairofchordscanbedrawnatrightanglestooneanotherandwiththesechordsasadjacentsidesarectanglebemade,provethatthelocusoffurtherangleoftherectangleistheparabolay2=4a(x–8a).

Solution

Page 293: Analytical Geometry: 2D and 3D

LetAPandAQbethechordsoftheparabolasuchthat .Completethe

rectangleAPRQ.ThenthemidpointsofARandPQarethesame.LettheequationsofAPbey=mx.Solvingy=mxandy2=4ax,wegetm2x2=4axor

∴ThepointPis .SinceAQisperpendiculartoAP,slopeofAQis .

Hence,thepointQis(4am2,−4am).

Let(x1,y1)bethepointR.ThemidpointofARis ThemidpointofPQis

SincethemidpointofARisthesameasthatofPQ,

Hence,thelocusof(x1,y1)isy2=4a(x–8a).

Example6.20

Showthatifr1andr2bethelengthsofperpendicularchordsofaparaboladrawn

throughthevertexthen

Solution

Page 294: Analytical Geometry: 2D and 3D

ThecoordinatesofPare(r1cosθ,r1sinθ).ThecoordinatesofQare(r2sinθ,r2cosθ).SincePliesontheparabolay2=4ax,

Similarly,

Also

Fromequations(6.45)and(6.46),

Example6.21

Showthatthelatusrectumofaparabolabisectstheanglebetweenthetangents

Page 295: Analytical Geometry: 2D and 3D

Showthatthelatusrectumofaparabolabisectstheanglebetweenthetangentsandnormalateitherextremity.

Solution

LetLSL′bethelatusrectumoftheparabolay2=4ax.ThecoordinatesofLare(a,2a).TheequationoftangentatLisy·2a=2a(x+a)

Theslopeofthetangentis1.∴TheslopeofthenormalatLis−1.LSisperpendiculartox-axis.

∴LatusrectumbisectstheanglebetweenthetangentsandnormalatL.

Example6.22

Showthatthelocusofthepointsofintersectionoftangentstoy2=4axwhichinterceptaconstantlengthdonthedirectrixis(y2–4ax)(x+a)2=d2x2.

Solution

Page 296: Analytical Geometry: 2D and 3D

LetP(x1,y1)bethepointofintersectiontangenttotheparabola.ThentheequationofthepairoftangentsPQandPRisT2=SS1.(i.e.)[yy1–2a(x+x1]2=(y2–4ax)(y2–4ax1).Whentheselinesmeetthe

directrixx=−a,wehave

Ify1andy2aretheordinatesofthepointofintersectionoftangentswiththedirectrixx+a=0,then

Then

∴Thelocusof(x1,y1)is(y2–4ax)(x+a)2=d2x2.

Page 297: Analytical Geometry: 2D and 3D

Example6.23

Showthatthelocusofmidpointsofchordsofaparabolawhichsubtendarightangleatthevertexisanotherparabolawhoselatusrectumishalfthelatusrectumoftheparabola.

Solution

Lettheequationoftheparabolabe

Let(x1,y1)bethemidpointofthechordPQ.ThentheequationofPQisT=S1

ThecombinedequationofthelinesAPandAQisgotbyhomogenizationofequation(6.48)withthehelpof(6.49).

∴ThecombinedequationofOPandOQis

Page 298: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1)isy2=2a(x–4a)whichisaparabolawhoselatusrectumishalfthelatusrectumofthegivenparabola.

Example6.24

Showthatthelocusofmidpointsofchordsoftheparabolaofconstantlength2lis(y2–4ax)(y2+4a2)+4a2l2=0.

Solution

Let(x1,y1)bethemidpointofachordoftheparabola

Lettheequationofthechordbe

Anypointonthislineis(x1+rcosθ,y1+rsinθ).Thispointliesontheparabolay2=4ax.

ThetwovaluesofrarethedistancesRPandRQwhichareequalinmagnitudebutoppositeinsign.Theconditionforthisisthecoefficientofr=0.(i.e.)y1sinθ–2acosθ=0.

Page 299: Analytical Geometry: 2D and 3D

ThenfromEquation(6.50),

Thelocusof(x1,y1)is(y2–4ax)(y2+4a2)+4a2l2=0.(sincer=l)

Example6.25

Showthatthelocusofthemidpointsoffocalchordsofaparabolaisanotherparabolawhosevertexisatthefocusofthegivenparabola.

Solution

Letthegivenparabolabe

Let(x1,y1)bethemidpointofachordofthisparabola.Thenitsequationis

Ifthisisafocalchordthenthispassesthrough(a,0).

Thelocusof(x1,y1)isy2=2a(x–a)whichisaparabolawhosevertexisatthefocusofthegivenparabola.

Page 300: Analytical Geometry: 2D and 3D

Example6.26

Fromapointcommontangentsaredrawntothecircle andthe

parabolay2=4ax.Findtheareaofthequadrilateralformedbythecommontangents,thechordofcontactofthecircleandthechordofcontactoftheparabola.

Solution

Anytangenttotheparabolay2=4axis

Ifthisisalsoatangenttothecircle

∴m2(1+m2)=2orm4+m2–2=0or(m2–1)(m2+2)=0⇒m2=1or−2.Butm2=−2isinadmissiblesincem2hastobepositive.∴m

=±1.Hencethecommontangentsarey=±(x+a).ThetwotangentsmeetatP(−a,

0).

Theequationofthechordofcontactfrom(−a,0)tothecircle is

Page 301: Analytical Geometry: 2D and 3D

Theequationofthechordofcontactfrom(−a,0)totheparabolay2=4axis0=2a(x–a)orx–a=0.Whenx=a,y=±2a.HenceNandQare(a,2a)and(a,−2a).

When

∴AreaofquadrilateralLMQN=AreaoftrapeziumLMQN

Example6.27

ThepolarofapointPwithrespecttotheparabolay2=4axmeetsthecurveinQandR.ShowthatifPliesonthelinelx+my+n=0thenthelocusofthemiddlepointoftheQRisl(y2–4ax)+2a(lx+my+n)=0.

Solution

LetPbethepoint(h,k).ThepolarofP(h,k)withrespecttotheparabolay2=4axis

ThepolarofPmeetstheparabolay2=4axatQandR.LetP(x1,y1)bethemidpointofQR.Itsequationis

Page 302: Analytical Geometry: 2D and 3D

Equations(6.55)and(6.56)representthesameline.∴Identifyingequations(6.55)and(6.56)weget,

Sincethepoint(h,k)liesonlx+my+n=0,lh+mk+n=0.

Usingequation(6.56),

Example6.28

Provethatareaofthetriangleinscribedintheparabolay2=4axis

wherey1,y2andy3aretheordinatesoftheverticesofthe

triangle.

Solution

Let(x1,y1),(x2,y2)and(x3,y3)betheverticesofthetriangleinscribedinthe

parabolay2=4ax.Thentheverticesare .Theareaof

thetriangleis

Page 303: Analytical Geometry: 2D and 3D

Example6.29

Anequilateraltriangleisinscribedintheparabolay2=4axoneofwhoseverticesisatthevertexoftheparabola.Finditsside.

Solution

ThecoordinatesofBareB(rcos30°,rsin30°),

Sincethispointliesontheparabolay2=4ax,then

Exercises

1. Showthattwotangentscanbedrawnfromagivenpointtoaparabola.Ifthetangentsmakeanglesθ1andθ2withxaxissuchthat

i. tanθ1+tanθ2isaconstantshowthatthelocusofpointofintersectionoftangentsisastraightlinethroughthevertexofaparabola.

ii. iftanθ1·tanθ2isaconstantshowthatthelocusofthepointofintersectingisastraightline.

iii. ifθ1+θ2isaconstantshowthatthelocusofthepointofintersectionoftangentsisastraightlinethroughthefocus.

iv. ifθ1andθ2arecomplementaryanglesthenthelocusofpointofintersectionisthestraightlinex=a.

2. Findthelocusofpointofintersectionoftangentstotheparabolay2=4axwhichincludesanangle

of .

Ans.:3(x+a)2=y2–4ax

Page 304: Analytical Geometry: 2D and 3D

3. Showthatthelocusofthepolesofchordsoftheparabolay2=4axwhichsubtendsanangleof45°

atthevertexisthecurve(x+a)2=4(y2–4ax).

4. Showthatthelocusofpolesofalltangentstotheparabolay2=4axwithrespecttotheparabolay2

=4bxistheparabolaay2=4b2x.5. Showthatthelocusofpolesofchordsoftheparabolawhichsubtendsarightangleatthevertexisx+4a=0.

6. Showthatiftangentsbedrawntotheparabolay2=4axfromanypointonthestraightlinex+4a=0,thechordofcontactsubtendsarightangleatthevertexoftheparabola.

7. Perpendicularsaredrawnfrompointsonthetangentatthevertexontheirpolarswithrespectto

theparabolay2=4ax.Showthatthelocusofthefootoftheperpendicularisacirclecentreat(a,0)andradiusa.

8. Showthatthelocusofpoleswithrespecttotheparabolay2=4axoftangentstothecirclex2+y2

=4a2isx2–y2=4a2.9. ApointPmovessuchthatthelinethroughtheperpendiculartoitspolarwithrespecttothe

parabolay2=4axtouchestheparabolax2=4by.ShowthatthelocusofPis2ax+by+4a2x=0.

10. Ifachordoftheparabolay2=4axsubtendsarightangleatitsfocus,showthatthelocusofthe

poleofthischordwithrespecttothegivenparabolaisx2+y2+6ax+a2=0.

11. Showthatthelocusofpolesofallchordsoftheparabolay2=4axwhichareataconstantdistance

dfromthevertexisd2y2+4a2(d2–x2)=0.

12. Showthatthelocusofpolesofthefocalchordsoftheparabolay2=4axisx+a=0.

13. Iftwotangentstotheparabolay2=4axmakeequalangleswithafixedlineshowthatthechordofcontactpassesthroughafixedpoint.

14. Provethatthepolarofanypointonthecirclex2+y2–2ax–3a2=0withrespecttothecirclex2

+y2+2ax–3a2=0touchestheparabolay2=4ax.

15. Showthatthelocusofthepoleswithrespecttotheparabolay2=4axofthetangentstothecurve

x2–y2=aistheellipse4x2+y2=4ax.

16. Pisavariablepointontheliney=b,provethatthepolarofPwithrespecttotheparabolay2=4axisafixeddirectrix.

17. TheperpendicularfromapointOonitspolarwithrespecttoaparabolameetthepolarinthepointsMandcutstheaxisinG.Thepolarmeetsx-axisinTandtheordinatethroughOintersectsthecurveinPandP′.ShowthatthepointsG,M,P,P′andTlieonacirclewhosecentreisatthefocusS.

18. Tangentsaredrawntotheparabolay2=4axfromapoint(h,k).Showthattheareaofthetriangle

formedbythetangentsandthechordofcontactis

19. Provethatthelengthofthechordofcontactofthetangentsdrawnfromthepoint(x1,y1)tothe

parabolay2=4axis Henceshowthatoneofthetrianglesformedbythese

Page 305: Analytical Geometry: 2D and 3D

tangentsandtheirchordofcontactis

20. TangentsaredrawnfromavariablepointPtotheparabolay2=4axsuchthattheyformatriangle

ofconstantareawiththetangentatthevertex.ShowthatthelocusofPis(y2–4ax)x2=4c2.21. Provethatthetangenttoaparabolaandtheperpendiculartoitfromitsfocusmeetonthetangent

atthevertex.22. Showthataportionofatangenttoaparabolainterceptedbetweendirectrixandthecurvesubtends

arightangleatthefocus.

23. Thetangenttotheparabolay2=4axmakeanglesθ1andθ2withtheaxis.Showthatthelocusofthepointofintersectionsuchthatcotθ1+cotθ2=cisy=ac.

24. Ifperpendicularsbedrawnfromanytwofixedpointsontheaxisofaparabolaequidistantfromthefocusonanytangenttoit,showthatthedifferenceoftheirsquaresisaconstant.

25. Provethattheequationoftheparabolawhosevertexandfocusonx-axisatdistances4aand5a

fromtheoriginrespectively(a>0)isy2=4a(x–4a).Alsoobtaintheequationtothetangenttothiscurveattheendoflatusrectuminthefirstquadrant.

Ans.:y=x–a

26. Chordsofaparabolaaredrawnthroughafixedpoint.Showthatthelocusofthemiddlepointsisanotherparabola.

27. Findthelocusofthemiddlepointsofchordsoftheparabolay2=2xwhichtouchesthecirclex2+

y2–2x–4=0.

28. Atangenttotheparabolay2+4bx=0meetstheparabolay2=4axatPandQ.Showthatthelocus

ofthemiddlepointofPQisy2(2a+b)=4a2x.

29. Througheachpointofthestraightlinex–my=hisdrawnachordoftheparabolay2=4axwhich

isbisectedatthepoint.Provethatitalwaystouchestheparabola(y+2am)2=8axh.

30. Twolinesaredrawnatrightangles,onebeingatangenttotheparabolay2=4axandtheotherto

y2=4by.Showthatthelocusoftheirpointofintersectionisthecurve(ax+by)(x2+y2)=(bx–

ay)2.

31. Acirclecutstheparabolay2=4axatrightanglesandpassesthroughthefocus.Showthatthe

centreofthecircleliesonthecurvey2(a+x)=a(a+bx)2.32. Twotangentsdrawnfromapointtotheparabolamakeanglesθ1andθ2withthex-axis.Showthat

thelocusoftheirpointofintersectioniftan2θ1+tan2θ2=cisy

2–cx2=2ax.33. IfatrianglePQRisinscribedinaparabolasothatthefocusSistheorthocentreandthesidesmeet

theaxesinpointsK,LandMthenprovethatSK·SL·SM–4SA2=0whereAisthevertexoftheparabola.

34. Chordsoftheparabolay2=4axaredrawnthroughafixedpoint(h,k).Showthatthelocusofthe

Page 306: Analytical Geometry: 2D and 3D

midpointisaparabolawhosevertexis andlatusrectumis2a.

35. Showthatthelocusofthemiddlepointsofasystemofparallelchordsofaparabolaisalinewhichisparalleltotheaxisoftheparabola.

36. Showthatthelocusofthemidpointsofchordsoftheparabolawhichsubtendsaconstantangleα

atthevertexis(y2–2ax–8a2)2tan2α=16α2(4ax–y2).

ILLUSTRATIVEEXAMPLESBASEDONPARAMETERS

Example6.30

Provethatperpendiculartangentstotheparabolawillintersectonthedirectrix.

Solution

Letthetangentsatt1andt2intersectatP.Theequationoftangentsatt1andt2

are

Theslopesofthetangentsare .Sincethetangentsareperpendicular,

∴t1t2=−1

Thepointofintersectionofthetangentsatt1andt2isP(at1t2,a(t1+t2))(i.e.)

(−a,a(t1+t2)).Thispointliesonthelinex+a=0.∴Perpendiculartangentsintersectonthedirectrix.

Example6.31

Provethatthetangentsattheextremitiesofafocalchordintersectatrightanglesonthedirectrix.

Page 307: Analytical Geometry: 2D and 3D

Solution

Lett1andt2betheextremitiesofafocalchord.Thentheequationofthechordisy(t1+t2)=2x+2at1t2.Thispassesthroughthefocus(a,0).

∴Tangentsatt1andt2areperpendicular.Thepointofintersectionoftangentsatt1andt2is[at1t2,a(t1+t2)](i.e.)(−a,

a(t1+t2)).Thispointliesonthedirectrix.Hencethetangentsattheextremitiesofafocalchordintersectatrightanglesonthedirectrix.

Example6.32

Provethatanytangenttoaparabolaandperpendicularonitfromthefocusmeetonthetangentatthevertex.

Solution

Lettheequationoftheparabolay2=4ax.Theequationofthetangentattis

Theslopeofthetangentis .Theslopeoftheperpendiculartoitis–t.Hence

theequationoftheperpendicularlinepassingthroughfocus(a,0)is

Multiplyingequation(6.60)byt,weget

Equation(6.59)–equation(6.61)givesx(1+t2)=0orx=0.

∴y=at

Page 308: Analytical Geometry: 2D and 3D

Hence,thepointofintersectionof(6.59)and(6.60)is(0,at)andthispointliesony-axis.

Example6.33

Showthattheorthocentreofthetriangleformedbythetangentsatthreepointsonaparabolaliesonthedirectrix.

Solution

Lett1,t2andt3bepointsofcontactofthetangentsatthepointsA,BandC,respectivelyontheparabolay2=4ax,formingatrianglePQR.TheequationofQRis

Pisthepointofintersectionoftangentsatt1andt2.Thispointis[at1t2,a(t1+t2)].TheslopeofPL,perpendiculartoQRis−t3.∴TheequationofPLisy–a(t1+t2)=–t3[x–at1t2]

(i.e.)

ThentheequationofQMperpendicularfromQonPRis

Equation(6.63)–equation(3)givesx(t3–t2)=a(t2–t3)orx=−a.Thispointliesonthedirectrixx+a=0.Hencetheorthocentreliesonthe

directrix.

Example6.34

Page 309: Analytical Geometry: 2D and 3D

Thecoordinatesoftheendsofafocalchordoftheparabolay2=4axare(x1,y1)and(x2,y2).Provethatx1x2=a2andy1y2=−4a2.

Solution

Lett1andt2betheendsofafocalchord.Thentheequationofthefocalchordisy(t1+t2)=2x+at1t2.Sincethispassesthroughthefocus(a,0),0=2a+at1t2ort1t2=−1.

Example6.35

Aquadrilateralisinscribedinaparabolaandthreeofitssidespassthroughfixedpointsontheaxis.Showthatthefourthsidealsopassesthroughafixedpointontheaxisoftheparabola.

Solution

Lett1,t2,t3andt4berespectivelyverticesA,B,CandDofthequadrilateralinscribedintheparabolay2=4ax.TheequationofchordABis

Whenthismeetsthex-axisy=0(i.e.)x=−at1t2=k1.SinceABmeetsthex-axisatafixedpoint,

Similarly,

Multiplyingthese,weget

Page 310: Analytical Geometry: 2D and 3D

Hence,thefourthsideofthequadrilateralalsopassesthroughafixedpoint.

Example6.36

Tangentstotheparabolay2=4axaredrawnatpointswhoseabscissaeareintheratiok:1.Provethatthelocusoftheirpointofintersectionisthecurvey2=(k1/4

+k–1/4)2x2.

Solution

Letthetangentsatt1andt2intersectatP(x1,y1)

Giventhat

Thepointofintersectionofthetangentsatt1andt2isx1=at1t2andy1=a(t1+t2).

Page 311: Analytical Geometry: 2D and 3D

∴Thelocusof(x1,y1)isy2=(k1/4+k−1/4)2x.

Example6.37

Showthatthelocusofthemiddlepointofalltangentsfrompointsonthedirectrixtotheparabolay2=4axisy2(2x+a)=a(x+3a)2.

Solution

Let(−a,y1)beapointonthedirectrix.Lettbethepointofcontactoftangentsfrom(−a,y1)totheparabolay2=4ax.Theequationofthetangentattis

Sincethispassesthrough(−a,y1),

∴Thepointonthedirectrixis

Let(x1,y1)bethemidpointoftheportionoftangentbetweenthedirectrixandthepointofcontact.Then

and2y1t=2at2–a+at2

Thelocusof(x1,y1)isy2(2x+a)=a(3x+a)2.

Page 312: Analytical Geometry: 2D and 3D

Example6.38

TangentsaredrawnfromavariablepointPtotheparabolay2=4ax,suchthattheyformatriangleofconstantareac2withthetangentatthevertex.ShowthatthelocusofPis(y2–4ax)x2=4c4.

Solution

LetP(x1,y1)bethepointofintersectionoftangentsatt1andt2.Theequationof

thetangentatt1is ThismeetsthetangentatthevertexatQ.∴Qis

(0,at1).Similarly,Ris(0,at2).Pisthepointofintersectionoftangentsatt1andt2andthepointisP(at1t2,a(t1+t2)).TheareaofΔPQRisgivenasc2.

Therefore,thelocusof(x1,y1)isx2(y2–4ax)=4c4.

Example6.39

Provethatthedistanceofthefocusfromtheintersectionoftwotangentstoaparabolaisameanproportionaltothefocalradiiofthepointofconstant.

Solution

Page 313: Analytical Geometry: 2D and 3D

Letthetangentsat intersectatP.Thenthe

coordinatesofthepointPare(at1t2,a(t1+t2)).Sisthepoint(a,0).

Example6.40

Provethatthelocusofthepointofintersectionofnormalsattheendsofafocalchordofaparabolaisanotherparabolawhoselatusrectumisonefourthofthatofthegivenparabola.

Solution

Lettheequationoftheparabolabe

Lett1andt2betheendsofafocalchordoftheparabola.Forafocalchordt1t2=−1.

Page 314: Analytical Geometry: 2D and 3D

Theequationofthenormalatt1andt2are

If(x1,y1)isapointofintersectionofthenormalsatt1andt2then

Thelocusof(x1,y1)isy2=a(x–3a)whichisaparabolawhoselatusrectumisonefourthofthelatusrectumoftheoriginalparabola.

Example6.41

Ifthenormalatthepointt1ontheparabolay2=4axmeetsthecurveagainatt2

provethat

Solution

Theequationofthenormalatt1is

Page 315: Analytical Geometry: 2D and 3D

Theequationofthechordjoiningthepointst1andt2is

Equations(6.73)and(6.74)representthesamelines.Thereforeidentifyingwe

get

Example6.42

Ifthenormalsattwopointst1,t2ontheparabolay2=4axintersectagainatapointonthecurveshowthatt1+t2+t3=0andt1t2=2andtheproductofordinatesofthetwopointsis8a2.

Solution

Thenormalst1andt2meetatt3.

Page 316: Analytical Geometry: 2D and 3D

Subtracting Sincet1–t2≠0,t1t2=2.

Solvingequations(6.75)and(6.76),weget

Example6.43

Findtheconditionthatthelinelx+my+n=0isanormaltotheparabolaisy2=4ax.

Solution

Letthelinelx+my+n=0beanormalat‘t’.Theparabolaisy2=4ax.Theequationofthenormalattis

Buttheequationofthenormalisgivenas

Identifyingequations(6.77)and(6.78),weget and

(i.e.)al3+2alm2+m2n=0.

Page 317: Analytical Geometry: 2D and 3D

Example6.44

Showthatthelocusofpolesofnormalchordsoftheparabolaisy2=4axis(x+2a)y2+4a3=0.

Solution

Let(x1,y1)bethepoleofanormalchordnormalatt.Theequationofthepolarof(x1,y1)is

Theequationofthenormalattis

Equations(6.79)and(6.80representthesameline.∴Identifyingequations(6.79)and(6.80),weget

Example6.45

Intheparabolay2=4axthetangentatthepointPwhoseabscissaisequaltothelatusrectummeetstheaxisonTandthenormalatPcutsthecurveagaininQ.ProvethatPT:TQ=4:5.

Solution

Page 318: Analytical Geometry: 2D and 3D

LetPandQbethepointst1andt2respectively.Giventhat

Theequationofthetangentatt1is

whenthismeetsthex-axis,y=0.

HenceTisthepoint(−4a,0).Alsoasthenormalatt1meetsthecurveatt2,

Example6.46

Showthatthelocusofapointsuchthattwoofthethreenormaldrawnfromittotheparabolay2=4axcoincideis27ay2=4(x–2a)3.

Solution

Let(x1,y1)beagivenpointandtbefootofthenormalfrom(x1,y1)totheparabolay2=4ax.Theequationofthenormalat‘t’is

Page 319: Analytical Geometry: 2D and 3D

Sincethispassesthrough(x1,y1)wehave

Ift1,t2andt3befeetofthenormalsfrom(x1,y1)totheparabolathent1,t2andt3aretherootsofequation(6.84).

Iftwoofthethreenormalscoincidethent1=t2.

Fromequations(6.88)and(6.89), Sincet1isarootof

equation(6.84)

Example6.47

Ifthenormalsfromapointtotheparabolay2=4axcuttheaxisinpointswhosedistancesfromthevertexareinAPthenshowthatthepointliesonthecurve

Page 320: Analytical Geometry: 2D and 3D

27ay2=2(x–2a)3.

Solution

Let(x1,y1)beagivenpointandtbethefootofanormalfrom(x1,y1).Theequationofthenormalattis

Sincethispassesthrough(x1,y1),y1+x1t=2at+at3.

Ift1,t2andt3bethefeetofthenormalsfrom(x1,y1)then

Whenthenormalattmeetsthex-axis,y=0,from(6.91)wegetxt=2at+at3

orx=2a+at2.Thenthex-coordinatesofthepointswherethenormalmeetsthex-axisare

givenby GiventheseareinAP.

areinAP.

Fromequation(6.95),or

Page 321: Analytical Geometry: 2D and 3D

Sincet2isarootofequation(6.91),

∴Thelocusof(x1,y1)is27ay3=2(x–2a)3.

Example6.48

Showthatthelocusofthepointofintersectionoftwonormalstotheparabolawhichareatrightanglesisy2=a(x–3a).

Solution

If(x1,y1)isthepointofintersectionoftwonormalstotheparabolay2=4axthen

Ift1,t2andt3bethefeetofthethreenormalsfrom(x1,y1)then

Sincetwoofthenormalsareperpendicularthent1t2=−1

Sincet3isarootofequation(6.97),

Page 322: Analytical Geometry: 2D and 3D

Example6.49

Provethatanormalchordofaparabolawhichsubtendsarightangleatthe

vertexmakesanangle withthex-axis.

Solution

Lettheequationoftheparabolabe

Theequationofthenormalattis

ThecombinedequationofthelinesAPandAQis

Sincethetwolinesareatrightangles,coefficientofx2+coefficientofy2=0.

Page 323: Analytical Geometry: 2D and 3D

∴t=0ort2=2.t=0correspondstothenormaljoiningthroughthevertex.

∴Thenormalsmakeanangle withthex-axis.

Example6.50

Provethattheareaofthetriangleformedbythenormalstotheparabolay2=4ax

atthepointst1,t2andt3is

Solution

Theequationsofthenormalsatt1,t2,t3are

Solvingtheseequationspairwisewegettheverticesofthetriangle.Hencethe

verticesare andtwoothersimilarpoints.

Page 324: Analytical Geometry: 2D and 3D

Example6.51

ProvethatthelengthoftheinterceptsonthenormalatthepointP(at2,2at)totheparabolay2=4axmadebythecircledescribedonthelinejoiningthefocusand

Pasdiameteris

Solution

TheequationofthenormalatPisy+xt=2at+at3.

LetthecircleonPSasdiametercutthenormalatPatRandthex-axisatT.

Page 325: Analytical Geometry: 2D and 3D

Example6.52

NormalsatthreepointsP,QandRoftheparabolay2=4axmeetin(h,k).Prove

thatthecentroidofΔPQRliesontheaxisatadistance fromthevertex.

Solution

Lettbeafootofanormalfrom(h,k).Theequationofthenormalattis

Thispassesthrough(h,k).

⇒at3+t(2a–h)–k=0.Ift1,t2andt3arethefeetofthenormalsfrom(h,k)thent1+t2+t3=0,

ThecentroidoftheΔPQRis

Sincethecentroidliesonthex-axis,

Page 326: Analytical Geometry: 2D and 3D

Thex-coordinatesofthecentroidis

∴Centroidisatadistance fromthevertexoftheparabola.

Example6.53

ThenormalsatthreepointsP,QandRonaparabolameetatTandSbethefocusoftheparabola.ProvethatSP·SQ·SR=aTS2.

Solution

LetTbethepoint(h,k).ThenP,QandRarethefeetofthenormalsfromT(h,k).Theequationofthenormalattisy+xt=2at+at3.Ift1,t2andt3bethefeetofthenormalsfromTthent1+t2+t3=0.

Sisthepoint(a,0).

Page 327: Analytical Geometry: 2D and 3D

Example6.54

TheequationofachordPQoftheparabolay2=4axislx+my=1.Showthat

thenormalsatP,Qmeetonthenormalat

Solution

LetPandQbethepointst1andt2.ThenormalsatPandQmeetatR.Ift3isthefootofthenormalofthe3rdpointthen

TheequationofthechordPQislx+my=1.SincePandQarethepointst1andt2,

Page 328: Analytical Geometry: 2D and 3D

Example6.55

IfthenormalatPtotheparabolay2=4axmeetsthecurveatQandmakeanangleθwiththeaxisshowthat

i. itwillcuttheparabolaatθatanangle and

ii. PQ=4asecθcosec2θ.

Solution

LetPbethepoint(at2,2at).Theequationofthenormalattisy+xt=2at+at3.

Thenormalattmeetsthecurveat

LetɸbetheanglebetweenthenormalandthetangentatQ.Theslopeofthe

tangentatQis

Slopeofthenormalattis–t.

Page 329: Analytical Geometry: 2D and 3D

sincetanθ=−t

Example6.56

Provethatthecirclepassingthroughthefeetofthethreenormalstoaparaboladrawnfromanypointintheplanepassesthroughthevertexoftheparabola.Alsofindtheequationofthecirclepassingthroughthefeetofthenormals.

Solution

Lettheequationoftheparabolabe

Lettheequationofthecirclebe

LetP,QandRbethefeetofthenormalstoy2=4axfromagivenpoint(h,k).Thenwehaveat3+(2a–h)t–k=0.

Page 330: Analytical Geometry: 2D and 3D

Ift1,t2andt3bethefeetofthenormalsatP,QandRthent1+t2+t3=0.Weknowthatthecircle(6.111)andtheparabola(6.110)cutatfourpointsandift1,t2,t3andt4arethefourpointsofintersectionofthecircleandtheparabolathentheyaretherootsoftheequation,

Ift1,t2andt3correspondtothefeetofthenormalsfrom(h,k)then

Fromequations(6.113)and(6.114),t4=1.

Butt4isthepoint whichisthevertexoftheparabola.Hence

thecirclepassingthroughthefeetofthenormalsfromagivenpointalsopassesthroughthevertexoftheparabola.Henceequation(6.112)becomes

sincec=0Equations(6.111)and(6.115)arethesame.Bycomparingthecoefficients,

weget

∴Theequationofthecirclepassingthroughthefeetofthenormalis

Exercises

1. Showthattheportionofthetangentinterceptedbetweenthepointofcontactandthedirectrix

Page 331: Analytical Geometry: 2D and 3D

subtendsarightangleatthefocus.2. IfthetangentatapointPontheparabolameetstheaxisatTandPNistheordinateatPthenshow

thatAN=AT.3. IfthetangentatPmeetsthetangentatthevertexinYthenshowthatSYisperpendiculartoTPand

SY2=ASSP.4. IfA,BandC,arethreepointsonaparabolawhoseordinatesareinGPthenprovethatthetangents

atAandCmeetontheordinatesofB.5. Provethatthemiddlepointoftheinterceptsmadeonatangenttoaparabolabythetangentsattwo

pointsPandQliesonthetangentwhichisparalleltoPQ.

6. Ifpoints(at2,2at)isoneextremityofafocalchordoftheparabolay2=4ax,showthatthelength

ofthefocalchordis

7. Showthatthetangentsatoneextremityofafocalchordofaparabolaisparalleltothenormalattheotherextremity.

8. Ifthetangentsatthreepointsontheparabolay2=4axmakeangles60°,45°and30°withtheaxisoftheparabola,showthattheabscissaeandordinatesofthethreepointsareinGP.

9. Showthatthecircledescribedonthefocalchordofaparabolaasdiametertouchesthedirectrix.10. Showthatthetangentatoneextremityofafocalchordofaparabolaisparalleltothenormalatthe

otherextremity.11. Provethatthesemilatusrectumofaparabolaistheharmonicmeanofthesegmentsofafocal

chord.12. Provethatthecircledescribedonfocalradiiasdiametertouchesthetangentsatthevertexofa

parabola.

13. Threenormalstoaparabolay2=4xaredrawnthroughthepoint(15,12).Showthattheequationsare3x–y–33=0,4x+y–72=0andx–y–3=0.

14. ThenormalsattwopointsPandQofaparabolay2=4axmeetatthepoint(x1,y1)ontheparabola.ShowthatPQ=(x1+4a)(x1–8a).

15. Showthatthecoordinatesofthefeetofthenormalsoftheparabolay2=4axdrawnfromthepoint(6a,0)are(0,0),(4a,4a)and(4a,–4a).

16. ThenormalatPtotheparabolay2=4axmakesanangleawiththeaxis.Showthattheareaofthetriangle,formedbyitisthetangentsatitsextremitiesisaconstant.

17. IfP,QandRarethepointst1,t2andt3ontheparabolay2=4ax,suchthatthenormalatQandR

meetatPthenshowthat:i. thelinePQispassesthroughafixedpointontheaxis.ii. thelocusofthepoleofPQisx=a.

iii. thelocusofthemidpointofPQisy2=2a(x+2a).

iv. theordinatesofPandQaretherootsoftheequationy2+xy+8a2=0wheret3istheordinateofthepointofintersectionofthenormalsatPandQ.

18. IfacirclecutsaparabolaatP,Q,RandSshowthatPQandRSareequallyinclinedtotheaxis.

19. ThenormalsatthepointsPandRontheparabolay2=4axmeetontheparabolaatthepointP.

ShowthatthelocusoftheorthocentreofΔPQRisy2=a(x+6a)andthelocusofthecircumcentre

Page 332: Analytical Geometry: 2D and 3D

ofΔPQRistheparabola2y=x(x–a).20. Provethattheareaofthetriangleinscribedinaparabolaistwicetheareaofthetriangleformedby

thetangentsatthevertices.21. ProvethatanythreetangentstoaparabolawhoseslopesareinHPenclosesatriangleofconstant

area.22. Provethatthecircumcircleofatrianglecircumscribingaparabolapassesthroughthefocus.

23. IfthenormalsatanypointPoftheparabolay2=4axmeettheaxisatGandthetangentatvertexatHandifAbethevertexoftheparabolaandtherectangleAGQHbecompleted,provethatthe

equationtothelocusofQisx2=2ax+ay2.24. ThenormalatapointPofaparabolameetsthecurveagainatQandTisthepoleofPQ.Show

thatTliesonthedirectrixpassingthroughPandthatPTisbisectedbythedirectrix.

25. Iffromthevertexoftheparabolay2=4ax,apairofchordsbedrawnatrightanglestooneanotherandwiththesechordsasadjacentsidesarectanglebemadethenshowthatthelocusoffurther

angleoftherectangleistheparabolay2=4a(x–8a).

26. Thenormaltotheparabolay2=4axatapointPonitmeetstheaxisinG.ShowthatPandGareequidistantfromthefocusoftheparabola.

27. Twoperpendicularstraightlinesthroughthefocusoftheparabolay2=4axmeetitsdirectrixinTandT′respectively.ShowthatthetangentstotheparabolatotheperpendicularlinesintersectatthemidpointofTT′.

28. IfthenormalsatanypointP(18,12)totheparabolay2=8xcutsthecurveagainatQshowthat9·

PQ=80

29. IfthenormalatPtotheparabolay2=4axmeetsthecurveagainatQandifPQandthenormalat

Qmakeanglesθandɸ,respectivelywiththeaxis,provethattanθtan2ɸ+tan2θ+2=0.30. PQisafocalchordofaparabola.PP′andQQ′arethenormalsatPandQcuttingthecurveagain

atP′andQ′.ShowthatP′Q′isparalleltoPQandisthreetimesPQ.

31. IfPQbeanormalchordoftheparabola.y2=4axandifSbethefocus,showthatthelocusofthe

centroidofthetriangleSPQisy2(ay2+180a2–108ax)+128a4=0.32. IfthetangentsatPandQmeetatTandtheorthocenteroftheΔPTQliesontheparabola,show

thateithertheorthocentreisatthevertexorthechordPQisnormaltotheparabola.

33. Ifthreenormalsfromapointtotheparabolay2=4axcutstheaxisinpoints,whosedistancesfrom

thevertexareinAP,showthatthepointonthecurve27ay2=2(x–a)3.34. Tangentsaredrawntoaparabolafromanypointonthedirectrix.Showthatthenormalsatthe

pointsofcontactareperpendiculartoeachotherandthattheyintersectonanotherparabola.

35. Showthatiftwotangentstoaparabolay2=4axinterceptaconstantlengthonanyfixedtangent,thelocusoftheirpointofintersectionisanotherequalparabola.

36. Showthattheequationofthecircledescribedonthechordinterceptedbytheparabolay2=4axon

theliney=mx+casdiameterism2(x2+y2)+2(mc–2a)x–4ay+c(4am+c)=0.37. Circlesaredescribedonanytwocommonchordsofaparabolaasdiameter.Provethattheir

commonchordpassesthroughthevertexoftheparabola.

38. IfP(h,k)isafixedpointintheplaneofaparabolay2=4ax.ThroughPavariablesecantisdrawn

Page 333: Analytical Geometry: 2D and 3D

tocuttheparabolainQandR.TisapointonQRsuchthat

i. PQ·PR=PT2.ShowthatthelocusofTis(y–k)2=k2–4ah.

ii. PQ+PR=PT.ShowthatthelocusofTisy2–k2=4a(x–h).

39. Showthatthelocusofthepointofintersectionoftangents,totheparabolay2=4axatpoints

whoseordinatesareintheratio

40. Showthatthelocusofthemiddlepointsofasystemofparallelchordsofaparabolaisalinewhichisparalleltotheaxisoftheparabola.

41. P,QandRarethreepointsonaparabolaandthechordPQmeetsthediameterthroughRinT.

OrdinatesPMandQNaredrawntothisdiameter.ShowthatRMRN=RT2.

Page 334: Analytical Geometry: 2D and 3D

Chapter7

Ellipse

7.1STANDARDEQUATION

Aconicisdefinedasthelocusofapointsuchthatitsdistancefromafixedpointbearsaconstantratiotoitsdistancefromafixedline.Thefixedpointiscalledthefocusandthefixedstraightlineiscalledthedirectrix.Theconstantratioiscalledtheeccentricityoftheconic.Iftheeccentricityislessthanunitytheconiciscalledanellipse.Letusnowderivethestandardequationofanellipseusingtheabovepropertycalledfocus-directrixproperty.

7.2STANDARDEQUATIONOFANELLIPSE

LetSbethefocusandlinelbethedirectrix.DrawSXperpendiculartothedirectrix.DivideSXinternallyandexternallyintheratioe:1(e<1).LetAandA′

bethepointsofdivision.Since and ,fromthedefinitionofellipse,

thepointsAandA′lieontheellipse.LetAA′=2aandCbeitsmiddlepoint.

Page 335: Analytical Geometry: 2D and 3D

Addingequations(7.1)and(7.2),wegetSA+SA′=e(AX+A′X).

Subtractingequations(7.1)from(7.2),wegetSA′−SA=e(CX′−CX)

TakeCSasthex-axisandCMperpendiculartoCS,asy-axis.LetP(x,y)beanypointontheellipse.DrawPMperpendiculartothe

directrix.ThenthecoordinatesofSare(ae,0).Fromthefocus-directrixproperty

oftheellipse,

Thisiscalledthestandardequationofanellipse.

Page 336: Analytical Geometry: 2D and 3D

Note7.2.1:

1. Equation(7.5)canbewrittenas:

2. AA′iscalledthemajoraxisoftheellipse.3. BB′iscalledtheminoraxisoftheellipse.4. Ciscalledthecentreoftheellipse.5. Thecurvemeetsthex-axisatthepointA(a,0)andA′(−a,0).6. Thecurvemeetsthey-axisatthepointsB(0,b)andB′(0,−b).7. Thecurveissymmetricalaboutboththeaxes.If(x,y)isapointonthecurve,then(x,−y)and(−x,y)arealsothepointsonthecurve.

8. Fromtheequationoftheellipse,weget

Therefore,foranypoint(x,y)onthecurve,−a≤x≤aand−b≤y≤b.9. Thedoubleordinatethroughthefocusiscalledthelatusrectumoftheellipse.

(i.e.)LSL′isthelatusrectum.

10. Secondfocusandseconddirectrix:Onthenegativesideoftheorigin,takeapointS′suchthatCS=CS′andanotherpointX′suchthatCX=CX′=a.

DrawX′M′perpendiculartoAA′andPM′perpendiculartoX′M′.Thenwecanshowthat

givesthelocusofPas HereS′iscalledthesecondfocusandX′M′isthesecond

directrix.11.

i. ShiftingtheorigintothefocusS,theequationoftheellipseis

Page 337: Analytical Geometry: 2D and 3D

ii. ShiftingtheorigintoA,theequationoftheellipseis

iii. ShiftingtheorigintoX,theequationofthefocusis

12. Theequationofanellipseiseasilydeterminedifwearegiventhefocusandtheequationofthedirectrix.

7.3FOCALDISTANCE

Thesumofthefocaldistancesofanypointontheellipseisequaltothelengthofthemajoraxis.

Intheabovefigure,(section2.2)

Note7.3.1:

7.4POSITIONOFAPOINT

Apoint(x1,y1)liesinside,onoroutsideoftheellipseaccordingas −1

isnegative,zeroorpositive.

Page 338: Analytical Geometry: 2D and 3D

LetQ(x1,y1)beapointontheordinatePNwherePisapointontheellipse

Then,

Similarly,iftheQ′(x′,y′)isapointoutsidetheellipse,

EvidentlyifQ(x′,y′)isapointontheellipse,

7.5AUXILIARYCIRCLE

Thecircledescribedonthemajoraxisasdiameteriscalledtheauxiliarycircle.LetPbeanypointontheellipse.LettheordinatethroughPmeettheauxiliary

circleatP′.Since wehavethegeometricalrelation,P′N2=AN·A′N.

Page 339: Analytical Geometry: 2D and 3D

ThepointP′wheretheordinatePNmeetstheauxiliarycircleiscalledthecorrespondingpointofP.Therefore,theordinateofanypointontheellipsetothatofcorrespondingpointontheellipseareintheratiosoflengthsofsemi-minoraxisandsemi-majoraxis.Thisratiogivesanotherdefinitiontoanellipse.Consideracircleandfromeachpointonit,drawperpendiculartoadiameter.Thelocusofthesepointsdividingtheseperpendicularsinagivenratioisan

ellipseandforthisellipsethegivencircleistheauxiliarycircle.

ILLUSTRATIVEEXAMPLESBASEDONFOCUS-DIRECTRIXPROPERTY

Example7.1

Findtheequationoftheellipsewhosefoci,directrixandeccentricityaregivenbelow:

i. Focusis(1,2),directrixis2x−3y+6=0andeccentricityis2/3ii. Focusis(0,0),directrixis3x+4y−1=0andeccentricityis5/6

iii. Focusis(1,–2),directrixis3x−2y+1=0andeccentricityis1/

Solution

i. LetP(x1,y1)beapointontheellipse.Then

Page 340: Analytical Geometry: 2D and 3D

Therefore,thelocusof(x1,y1)istheellipse101x2+81y2+48x−330x−324y+441=0.

ii.

Therefore,thelocusof(x1,y1)istheellipse27x2+20y2−24xy+6x+8y−1=0.

iii.

Therefore,thelocusof(x1,y1)istheellipse17x2+22y2+12xy−58x+108y+129=0.

Example7.2

Findtheequationoftheellipsewhose

i. Fociare(4,0)and(−4,0)and

Page 341: Analytical Geometry: 2D and 3D

ii. Fociare(3,0)and(−3,0)and

Solution

i. Ifthefociare(ae,0)and(−ae,0)thentheequationoftheellipseis Here,ae=4and

∴Theequationoftheellipseis

ii. Ifthefociare(ae,0)and(−ae,0)theequationoftheellipseis

Here,ae=3and a2e2=9and

Therefore,theequationoftheellipseis

Example7.3

Findtheeccentricity,fociandthelengthofthelatusrectumoftheellipse.

i. 9x2+4y2=36

ii. 3x2+4y2−12x−8y+4=0

iii. 25x2+9y2−150x−90y+225=0.

Page 342: Analytical Geometry: 2D and 3D

Solution

i. 9x2+4y2=36Dividingby36,weget

Thisisanellipsewhosemajoraxisisthey-axisandminoraxisisthex-axisandcentreattheorigin.

Therefore,eccentricity=

Therefore,fociare

Therefore,latusrectum=

ii.

Shifttheorigintothepoint(2,1).Therefore,centreis(2,1).

Page 343: Analytical Geometry: 2D and 3D

Therefore,theequationoftheellipseis

Therefore,fociare(3,1)and(1,1)withrespecttooldaxes.

Lengthofthelatusrectum

iii.

Shifttheorigintothepoint(3,5).

Therefore,theequationoftheellipseis

Therefore,centreis(3,5).Thisisanellipsewithy-axisonthemajoraxisandx-axisastheminoraxis.

Page 344: Analytical Geometry: 2D and 3D

Therefore,focilieonthelinex=3.

Therefore,fociare(3,9)and(3,1)andLeangthofthelatusrectum=

Exercises

1. Findthecentre,fociandlatusrectumoftheellipse:

i. 3x2+4y2+12x+8y−32=0Ans.:(−2,−1);(0,−1);(−4,−1);6

ii. 9x2+25y2=225

Ans.:

iii. x2+9y2=9

Page 345: Analytical Geometry: 2D and 3D

Ans.:

iv. 2x2+3y2−4x+6y+4=0

Ans.:

2. Findtheequationoftheellipsewhosefociare(0,±2)andthelengthofmajoraxisis2

Ans.:5x2+y2=5

3. Findtheequationoftheellipsewhosefociis(3,1),eccentricity anddirectrixisx−y+6=0.

Ans.:7x2+2xy+7y2−60x−20y+44=0

4. Findtheequationofellipsewhosecentreisattheorigin,onefocusis(0,3)andthelengthofsemi-majoraxisis5.

Ans.:

5. Findtheequationofellipsewhosefocusis(1,−1),eccentricityis anddirectrixisx−y+3=0.

Ans.:7x2+2xy+7y2−22x+22y+7=0

6. Findtheequationoftheellipsewhosecentreis(2,−3),onefocusat(3,−3)andonevertexat(4,−3).

Ans.:3x2+4y2−12x+24y+36=0

7. Findthecoordinatesofthecentre,eccentricityandfocioftheellipse8x2+6y2−6x+12y+13=0

Ans.:

Page 346: Analytical Geometry: 2D and 3D

8. Findtheequationoftheellipsewithfociat(0,1)and(0,−1)andminoraxisoflength1.

Ans.:2x2+4y2=5

9. Anellipseisdescribedbyusingoneendlessstringwhichispassedthroughtwopoints.Iftheaxesare6and4unitsfindthenecessarylengthandthedistancebetweenthepoints.

Ans.:

7.6CONDITIONFORTANGENCY

Tofindtheconditionthatthestraightliney=mx+cmaybeatangenttotheellipse:

Lettheequationoftheellipsebe

Lettheequationofthestraightlinebe

Solvingequations(7.6)and(7.7),wegettheirpointsofintersection;thex-

coordinatesofthepointsofintersectionaregivenby

Ify=mx+cisatangenttotheellipsethenthetwovaluesofxofthisequationareequal.Theconditionforthatisthediscriminantofthequadraticequationiszero.

Page 347: Analytical Geometry: 2D and 3D

Thisistherequiredconditionfortheliney=mx+ctobeatangenttothegivenellipse.

Note7.6.1:Theequationofanytangenttotheellipseisgivenby

7.7DIRECTORCIRCLEOFANELLIPSE

Toshowthatalwaystwotangentscanbedrawnfromagivenpointtoanellipseandthelocusofpointofintersectionofperpendiculartangentsisacircle:

Lettheequationoftheellipsebe

Anytangenttothisellipseis

Ifthistangentpassesthroughthepoint(x1,y1)theny1=

Thisisaquadraticequationinmandhencetherearetwovaluesform.Foreachvalueofm,thereisatangent(realorimaginary)andhencetherearetwo

Page 348: Analytical Geometry: 2D and 3D

tangentsfromagivenpointtoanellipse.Ifm1andm2aretherootsofthe

equation(7.11),then

Ifthetwotangentsareperpendicularthenm1m2=−1.

Thelocusof(x1,y1)isx2+y2=a2+b2whichisacircle,centreat(0,0)and

radius

Note7.7.1:Thiscircleiscalledthedirectorcircleoftheellipse.

7.8EQUATIONOFTHETANGENT

Tofindtheequationofthechordjoiningthepoints(x1,y1)and(x2,y2)andfindtheequationofthetangentat(x1,y1)totheellipse:LetP(x1,y1)andQ(x2,y2)betwopointsontheellipse.Lettheequationof

ellipsebe

Then

and

Page 349: Analytical Geometry: 2D and 3D

Subtracting,

Fromequation(7.15),wegettheequationofthechordjoiningthepoints(x1,y1)and(x2,y2)as:

Thischordbecomesthetangentat(x1,y1)ifQtendstoPandcoincideswithP.Hence,byputtingx2=x1andy2=y1inequation(7.16),wegettheequationofthetangentat(x1,y1).Therefore,theequationofthetangentat(x1,y1)is:

Dividingbya2b2,weget

However, since(x1,y1)liesontheellipse.

Therefore,fromequation(7.17),theequationofthetangentat(x1,y1)is

7.9EQUATIONOFTANGENTANDNORMAL

Page 350: Analytical Geometry: 2D and 3D

Tofindtheequationoftangentandnormalat(x1,y1)totheellipse

Theequationoftheellipseis

Differentiatingwithrespecttox,weget

However, =slopeofthetangentat(x1,y1).Therefore,theequationof

thetangentat(x1,y1)is,

Dividingbya2b2,weget

Slopeofthenormalat(x1,y1)is

Theequationofthenormalat(x1,y1)totheellipseis

Page 351: Analytical Geometry: 2D and 3D

Dividingbyx1,y1,weget,

Therefore,theequationofnormalat(x1,y1)totheellipse is

7.10EQUATIONTOTHECHORDOFCONTACT

Tofindtheequationtothechordofcontactoftangentsdrawnfrom(x1,y1)

totheellipse

Theequationoftheellipseis

LetQRbethechordofcontactoftangentsfromP(x1,y1).LetQandRbethepoints(x2,y2)and(x3,y3),respectively.ThentheequationoftangentsatQandR

Page 352: Analytical Geometry: 2D and 3D

are:

ThesetwotangentspassthroughP(x1,y1).

Therefore, and

Theabovetwoequationsshowthatthepoints(x2,y2)and(x3,y3)lieontheline

Hence,theequationofthechordofcontactis

7.11EQUATIONOFTHEPOLAR

TofindtheequationofthepolarofthepointP(x1,y1)ontheellipse

LetP(x1,y1)bethegivenpoint.LetQRbeavariablechordthroughthepointP(x1,y1).LetthetangentsatQandRmeetatT(h,k).TheequationofthechordcontactfromT(h,k)is:

Thischordofcontactpassesthrough(x1,y1).

Page 353: Analytical Geometry: 2D and 3D

ThelocusofT(h,k)isthepolarofthepoint(x1,y1).

Therefore,thepolarof(x1,y1)is

Note7.11.1:

1. Whenthepoint(x1,y1)liesontheellipse,thepolarof(x1,y1)isthetangentat(x1,y1).Whenthepoint(x1,y1)liesinsidetheellipsethepolarof(x1,y1)isthechordofcontactoftangentsfrom(x1,y1).

2. Theline iscalledthepolarofthepoint(x1,y1)and(x1,y1)iscalledthepoleofthe

line

7.12CONDITIONFORCONJUGATELINES

Tofindthepoleofthelinelx+my+n=0withrespecttotheellipse

anddeducetheconditionforthelineslx+my+n=0andl1x+m1y

+n1=0tobeconjugatelines:

Let(x1,y1)bethepoleoftheline

withrespecttotheellipse

Thenthepolarof(x1,y1)is:

Page 354: Analytical Geometry: 2D and 3D

Thentheequations(7.24)and(7.26)representthesameline.∴Identifyingequations(7.24)and(7.26),weget

Hence,thepoleofthelinelx+my+n=0is Twolinesaresaidto

beconjugateifthepoleoftheeachliesontheother.

∴Thepoint liesonthelinel1x+m1y+n1=0.

Thisistherequiredconditionforthelineslx+my+n=0andl1x+m1y+n1=0tobeconjugatelines.

ILLUSTRATIVEEXAMPLESBASEDONTANGENTS,NORMALS,POLE-POLARANDCHORD

Example7.4

Findtheequationofthetangenttotheellipsex2+2y2=6at(2,−1).

Solution

Theequationoftheellipseisx2+2y2=6.

Page 355: Analytical Geometry: 2D and 3D

Theequationofthetangentat(x1,y1)is

Therefore,theequationofthetangentat(2,−1)is

(i.e.)2x−2y=6⇒x−y=3

Example7.5

Findtheequationofthenormaltotheellipse3x2+2y2=5at(−1,1).

Solution

Therefore,theequationofthenormaltotheellipse3x2+2y2=5is2x+3y=1.

Example7.6

IfBandB′aretheendsoftheminoraxisofanellipsethenprovethatSB=S′B′=awhereSandS′arethefocianda′isthesemi-majoraxis.Showalsothat

Page 356: Analytical Geometry: 2D and 3D

SBS′B′isarhombuswhoseareais2abe.

Solution

Sis(ae,0);S′is(−ae,0)Bis(0,b);B′is(0,−b)

Inthefigure,SBS′B′thediagonalsSS′andBB′areatrightangles.Therefore,SBS′B′isarhombus.

Example7.7

IfthetangentatPoftheellipse meetsthemajoraxisatTandPNisthe

ordinateofP,thenprovethatCN·CT=a2whereCisthecentreoftheellipse.

Page 357: Analytical Geometry: 2D and 3D

Solution

LetPbethepoint(x1,y1)

Theequationoftangentat(x1,y1)is

Whenthetangentmeetsthex-axis,y=0

Example7.8

ThetangentatanypointPontheellipse meetsthetangentsatAandA′

(extremitiesofmajoraxis)inLandM,respectively.ProvethatAL·A′M=b2.

Solution

Page 358: Analytical Geometry: 2D and 3D

LettheequationofthetangentatPbe Theequationofthe

tangentatthepointAisx=a.Solvingthesetwoequations,weget

Example7.9

IfSYandS′Y′beperpendicularsfromthefociuponthetangentsatanypointof

theellipse ,thenprovethatY,Y′lieonthecirclex2+y2=a2andthatSY

·S′Y′=b2.

Solution

Page 359: Analytical Geometry: 2D and 3D

TheequationofthetangentatanypointPis

Theslopeofthetangentism.

Therefore,theslopeoftheperpendicularlineSYis Sisthepoint(ae,0).

∴TheequationofSYisy= (x−ae).

LetY,thefootoftheperpendicular,be(x1,y1)Thenfromequation(7.27),weget

Fromequation(7.28),weget

Addingequations(7.29)and(7.30),weget

Cancelling,

Thelocusof(x1,y1)isx2+y2=a2.Similarly,wecanprovethatthelocusofY′isalsothiscircle.Hence,YandY′lieonthiscircle.

Page 360: Analytical Geometry: 2D and 3D

Note7.12.1:Thiscircleiscalledtheauxiliarycircle(x2+y2=a2).Thisisthecircledescribedonthemajoraxisasdiameter.

Example7.10

IfnormalatapointPontheellipse meetsthemajoraxisatGthen

provethat:

i. CG=e2CN,whereCisthecentreoftheellipseandNisthefootoftheperpendicularfromPtothemajoraxis.

ii. SG=eSPwhereSisthefocusoftheellipse.

Solution

i. LetPbethepoint(x1,y1).

Theequationofthenormalat(x1,y1)is

Whenthismeetsthex-axis,y=0.

Page 361: Analytical Geometry: 2D and 3D

ii.

Example7.11

Inanellipse,provethatthetangentandnormalatanypointParetheexternalandinternalbisectorsoftheangleSPS′whereSandS′arethefoci.

Solution

LetP(x1,y1)beanypointontheellipse.

Page 362: Analytical Geometry: 2D and 3D

LetthenormalatPmeetthex-axisatL.TheequationofthenormalatPis

Wheny=0,x=e2x1∴Lis(e2x1,0).

Fromequations(7.33)and(7.34),weget

Fromequations(7.33)and(7.34),weget

Therefore,thenormalPListheinternalbisectorof SincethetangentatPis

perpendiculartothenormalatP,thetangentPistheexternalbisector.

Example7.12

Findtheanglesubtendedbyafocalchordoftheellipse passing

throughanendoftheminoraxisatthecentreoftheellipse.

Solution

Page 363: Analytical Geometry: 2D and 3D

Theequationoftheellipseis

Theequationofthefocalchordis

ThecombinedequationofthelinesCBandCQisgotbyhomogenizationoftheequationoftheellipsewiththehelpofstraightline(7.37).

TheanglebetweenthelinesCBandCQisgivenby

SincetheangleBCQisobtuse,θ=tan−1

Example7.13

Abarofgivenlengthmoveswithitsextremitiesontwofixedstraightlinesat

Page 364: Analytical Geometry: 2D and 3D

Abarofgivenlengthmoveswithitsextremitiesontwofixedstraightlinesatrightangles.Provethatanypointoftheroddescribesanellipse.

Solution

LetOAandOBbethetwoperpendicularlinesandABbetherodoffixedlength.LetP(x1,y1)beanypointoftherod.LettherodbeinclinedatanangleθwithOX.

(i.e.)

TakePA=aandPB=b.Thenx=OQ=RP=bcosθ,y=QP=bsinθ,

Hence,

Therefore,thelocusofPisanellipse.

Example7.14

Theequation25(x2−6x+9)+16y2=400representsanellipse.Findthecentreandfocioftheellipse.Howshouldtheaxisbetransformedsothattheellipseis

representedbytheequation

Solution

Page 365: Analytical Geometry: 2D and 3D

25(x2−6x+9)+16y2=40025(x−3)2+16y2=400

Dividingby400, Takex−3=X,y=Y.

Then

ThemajoraxisofthisellipseistheY-axis.

Centreis(3,0).Fociare(3,±ae)(i.e.) (i.e.)(3,±3).Nowshiftorigin

tothepoint(3,0)andthenrotatetheaxesthroughrightangles.Thenthe

equationoftheellipsebecomes

Example7.15

Showthatifs,s′arethelengthsoftheperpendicularonatangentfromthefoci,a,a′thosefromtheverlicesandethatfromthecentrethens,s′−e2=e2(aa′−c2)whereeistheeccentricity.

Solution

Lettheequationoftheellipsebe

Page 366: Analytical Geometry: 2D and 3D

FociareS(ae,0)andS′(−ae,0).VerticesareA(a,0)andA′(−a,0),centreis(0,

0).Anytangenttotheellipse(7.38)is

TheperpendiculardistancefromS(ae,0)is=

Fromequations(7.39)and(7.40),wegetss′−c2=e2(aa′−c2).

Example7.16

Acircleofradiusrisconcentricwiththeellipse .Provethateach

commontangentisinclinedtotheaxisatanangletan−1 andtowardsits

length.

Solution

Theequationoftheellipseis

Page 367: Analytical Geometry: 2D and 3D

Theequationofthecircleconcentricwiththeellipseis

Anytangenttotheellipseis

Anytangenttothecircleis

Ifthetangentisacommontangentthen

Therefore,theinclinationtothemajoraxisisθ=tan−1

Example7.17

Provethatthesumofthesquaresoftheperpendicularsofanytangentofan

ellipse fromtwopointsontheminoraxis,eachdistance from

thecentreis2a2.

Solution

Theequationoftheellipseis .

Page 368: Analytical Geometry: 2D and 3D

Anytangenttotheellipseis .Theperpendiculardistancefrom

tothetangentis

Theperpendiculardistancefrom isgivenby

Example7.18

Letdbetheperpendiculardistancefromthecentreoftheellipse tothe

tangentdrawnatapointPontheellipse.IfF1andF2arethetwofociofthe

ellipsethenshowthat .

Solution

Theequationoftheellipseis .LetP(x1,y1)beanypointonit.

Page 369: Analytical Geometry: 2D and 3D

Theequationofthetangentat(x1,y1)is .

TheperpendiculardistancefromConthistangentis

WeknowthatPF1=a−ex1,PF2=a+ex1

Fromequations(7.45)and(7.46),weget

Page 370: Analytical Geometry: 2D and 3D

Example7.19

Showthatthelocusofthemiddlepointsoftheportionofatangenttotheellipse

includedbetweentheaxesisthecurve

Solution

Anytangenttotheellipse is

Whenthetangentmeetsthex-axis,y=0.

Whenitmeetsthey-axis,x=0.

Therefore,thepointsofintersectionofthetangentswiththeaxesare

and Let(x1,y1)bethemidpointoflineAB.

Therefore,thelocusofP(x1,y1)is

Page 371: Analytical Geometry: 2D and 3D

Example7.20

Provethatthetangenttotheellipse meetstheellipse in

points,tangentsatwhichareatrightangles.

Solution

Anytangenttotheellipse is

AtQandRletthetangentsmeettheellipse

LetL(x1,y1)bethepointofintersectionoftangentsatQandR.ThenQRisthechordofcontactformL.Itsequationis

Equations(7.48)and(7.49)representthesameline.Identifyingequations(7.48)

and(7.49),weget

Page 372: Analytical Geometry: 2D and 3D

Therefore, Thelocusof(x1,y1)istheequationofthedirector

circleoftheellipse(7.49).However,directorcircleistheintersectionofperpendiculartangents.Hence,thetangentsatQandRareatrightangles.

Example7.21

AchordPQofanellipsesubtendsarightangleatthecentreoftheellipse

ShowthatthelocusoftheintersectionofthetangentsatQandRisthe

ellipse

Solution

Theequationofellipseis

LetR(x1,y1)bethepointofintersectionoftangentsatPandQ.TheequationofthechordofcontactofPQis

Page 373: Analytical Geometry: 2D and 3D

ThecombinedequationofCPandCQisgotbyhomogenizationofequation(7.51)withthehelpofequation(7.52).

Since ,coefficientofx2+coefficientofy2=0.

ThelocusofP(x1,y1)is

Example7.22

Showthatthelocusofpoleswithrespecttotheellipse ofanytangentto

theauxiliarycircleis

Solution

Let(x1,y1)bethepolewithrespecttotheellipse .

Page 374: Analytical Geometry: 2D and 3D

Thepolarof(x1,y1)is

Thisisatangenttotheauxiliarycirclex2+y2=a2.Theconditionforthatisc2=a2(1+m2).

Dividingby

Thelocusof(x1,y1)is

Example7.23

Showthatthelocusofpolesoftangentstothecircle(x−h)2+(y−k)2=r2with

respecttotheellipse is

Solution

Let(x1,y1)bethepolewithrespecttotheellipse .Thenthepolarof(x1,

y1)is Thislineisatangenttothecircle(x−h)2+(y−k)2=r2.The

Page 375: Analytical Geometry: 2D and 3D

conditionforthisisthattheradiusofthecircleshouldbeequaltotheperpendiculardistancefromthecentreonthetangents.

Therefore,thelocusof(x1,y1)is

Example7.24

Findthelocusofthepoleswithrespecttotheellipseofthetangentstotheparabolay2=4px.

Solution

Let(x1,y1)bethepolewithrespecttotheellipse Thepolarof(x1,y1)is

Thisisatangenttotheparabolay2=4px.

∴Theconditionis

Page 376: Analytical Geometry: 2D and 3D

Therefore,thelocusof(x1,y1)isa2py2+b4x=0.

Example7.25

AnytangenttoanellipseiscutbythetangentsattheextremitiesofthemajoraxisinthepointTandT′.ProvethatthecircledrawnonTT′asdiameterpassesthroughthefoci.

Solution

Lettheequationoftheellipsebe

TheendsofmajoraxisareA(a,0)andA′(−a,0).Anytangenttotheellipseis

ThistangentmeetsthetangentsatA,A′atTandT′,respectively.Thenthe

coordinatesofTandT′areT T′ Theequation

ofthecircleonTT′asdiameteris

Page 377: Analytical Geometry: 2D and 3D

ThiscirclepassesthroughthefociS(ae,0)andS′(−ae,0).

Example7.26

TheordinateNPofapointPontheellipseisproducedtomeetthetangentatoneendofthelatusrectumthroughthefocusSinQ.ProvethatQN=SP.

Solution

LetLSL′bethelatusrectumthroughthefocusS.TheequationoftangentatLis

LetPbethepoint(x1,y1).TheequationoftheordinateatPis

WhenthetangentatLmeetstheordinateatPinQ,thecoordinatesofQaregivenbysolvingequations(7.56)and(7.57).

or

Page 378: Analytical Geometry: 2D and 3D

y1=a−ex1∴QN=a−ex1

WeknowthatSP=a−ex1.Therefore,QN=SP.

Example7.27

ThetangentandnormalatapointPontheellipsemeettheminoraxisinTandQ.ProvethatTQsubtendsarightangleateachofthefoci.

Solution

Theequationofellipseis

TheequationofthetangentandnormalatP(x1,y1)is

WhenthetangentandnormalmeetintheminoraxisinTandQ,respectively,

thecoordinatesofTandQareT and

ThecoordinatesofSare(ae,0).

Page 379: Analytical Geometry: 2D and 3D

Slopeof

Slopeof

Now,m1m2=−1.Therefore,TQsubtendsarightangleatthefocusS.ThecoordinatesofS′are

(−ae,0).HenceitisprovedthatTQsubtendsarightangleatS′.

Example7.28

IfSandS′bethefocioftheellipse andebeitseccentricitythenprove

thattan wherePisanypointontheellipse.

Solution

Theequationofellipseis .

ThecoordinatesofSare(ae,0)andS′are(−ae,0).

∴SS′=2ae

Page 380: Analytical Geometry: 2D and 3D

InanyΔABC,weknowthattan wheresisthesemiperimeterof

ΔABC.

Let

Then

Hence,

Example7.29

AvariablepointPontheellipseofeccentricityeisjoinedtoitsfociSandS′.ProvethatthelocusoftheincentreoftheΔPSS′isanellipsewhoseeccentricity

Page 381: Analytical Geometry: 2D and 3D

is

Solution

Lettheequationoftheellipsebe .

ThecoordinatesofthefociareS(ae,0)andS′(−ae,0).LetP(h,k)beanypointontheellipse.ThenSP+S′P=2a.AlsoSS′=2ae.AlsoSP=a−eh,S′P=a+ek.Letthecoordinatesoftheincentrebe(x1,y1).Then

Since(h,k)liesontheellipse

Page 382: Analytical Geometry: 2D and 3D

ThelocusofP(x1,y1)is whichisanellipsewhoseeccentricitye1

isgivenby,

Therefore,thelocusoftheincentreoftheΔPSS′isanellipsewhoseeccentricity

e1is

Exercises

1. Findtheequationofthetangenttotheellipsewhichmakesequalinterceptsontheaxes.

Ans.:

2. Findthelengthoflatusrectum,eccentricity,equationofthedirectrixandfocioftheellipse25x2+

16y2=400.

Ans.:

3. Theequationtotheellipseis2x2+y2−8x−2y+1=0.Findthelengthofitssemiaxescoordinatesofthefoci,lengthoflatusrectumandequationofthedirectrix.

Page 383: Analytical Geometry: 2D and 3D

Ans.:2,2 ,(2,–1),(2,3),2 ,x−2=0,y−1=0

4. Provethat touchestheellipse andfindthecoordinatesofthepointof

contact.

Ans.:

5. IfpbethelengthoftheperpendicularfromthefocusSoftheellipse onthetangentsat

Pthenshowthat

6. IfSTbetheperpendicularfromthefocusSonthetangentatanypointPontheellipse

thenshowthatTliesontheauxiliarycircleoftheellipse.

7. Thelinexcosα+ysinα=pinterceptedbytheellipse subtendsarightangleatits

centreprovethatthevalueofpis

8. Ifthechordofcontactofthetangentsdrawnfromthepoint(α,β)totheellipse

touchesthecirclex2+y2=c2provethatthepoint(α,β)liesontheellipse

9. Pisapointontheellipse andQ,thecorrespondingpointontheauxiliarycircle.Ifthe

tangentatPtotheellipsecutstheminoraxisinT,thenprovethatthelineQTtouchestheauxiliarycircle.

Page 384: Analytical Geometry: 2D and 3D

10. Tangentstotheellipse makeanglesθ1andθ2withthemajoraxis.Findtheequation

ofthelocusoftheirintersectionwhentan(θ1+θ2)isaconstant.11. Showthatthelocusofthepointofintersectionoftwoperpendiculartangentstoanellipseisa

circle.12. Provethatachordofanellipseisdividedharmonicallybyanypointonitanditspolewithrespect

totheellipse.13. IfthepolarofPwithrespecttoanellipsepassesthroughthepointQ,showthatpolarofQpasses

throughP.14. Findtheconditionforthepoleofthestraightlinelx+my=1withrespecttotheellipse

maylieontheellipse

Ans.:a2l2+b2m2=4

15. Chordsoftheellipse touchthecirclex2+y2=r2.Findthelocusoftheirpoles.

16. Chordsoftheellipse alwaystouchtheellipse .Showthatthelocusofthe

polesis

17. ProvethattheperpendicularfromthefocusofanellipsewhosecentreisConanypolarofPwillmeetCPonthedirectrix.

18. Showthatthefocusofanellipseisthepoleofthecorrespondingdirectrix.

19. Atangenttotheellipse meetstheellipse atQandR.Showthatthe

locusofthepoleofQRwithrespecttothelatterisx2+y2=a2+b2.20. Ifthemidpointofachordliesonafixedlinelx+my+n=0,showthatthelocusofpoleofthe

chordistheellipse

21. Findthelocusofthepolesofchordsoftheellipse whichtouchtheparabolaay2=

−2b2x.

Page 385: Analytical Geometry: 2D and 3D

22. Theperpendicularfromthecentreoftheellipse onthepolarofapointwithrespectto

theellipseisequaltoc.Provethatthelocusofthepointistheellipse,

23. Showthatthelocusofthepoleswithrespecttoanellipseofastraightlinewhichtouchesthecircledescribedontheminoraxisoftheellipseasdiameter.

24. Showthatthelocusofpolesoftangentstotheellipse withrespecttox2+y2=abis

anequalellipse.25. Provethatthetangentsattheextremitiesoflatusrectumofanellipseintersectonthe

correspondingdirectrix.

26. Findthecoordinatesofallpointsofintersectionoftheellipse andthecirclex2+y2=

6.Writedowntheequationofthetangentstotheellipseandcircleatthepointofintersectionandfindtheanglebetweenthem.

27. Tangentsaredrawnfromanypointontheellipse tothecirclex2+y2=a2.Provethat

theirchordofcontacttouchestheellipsea2x2+b2y2=r4.

28. Provethattheanglebetweenthetangentstotheellipse andthecirclex2+y2=abat

theirpointofintersectionistan−1

29. Provethatthesumofthereciprocalsofthesquaresofanytwodiametersofanellipsewhichareatrightanglestooneanotherisaconstant.

30. Anellipseslidesbetweentwostraightlinesatrightanglestoeachother.Showthatthelocusofitscentreisacircle.

31. Showthatthelocusofthefootofperpendicularsdrawnfromthecentreoftheellipse

Page 386: Analytical Geometry: 2D and 3D

onanytangenttoitis(x2+y2)2=a2x2+b2y2.32. Twotangentstoanellipseinterestatrightangles.Provethatthesumofthesquaresofthechords

whichtheauxiliarycircleinterceptsonthemisconstantandequaltothesquareofthelinejoiningthefoci.

33. Showthattheconjugatelinesthroughafocusofanellipseareatrightangles.34. Anarchwayisintheformofasemi-ellipse,themajoraxisofwhichcoincideswiththeroadlevel.

Ifthebreadthoftheroadis34feetandamanwhois6feethigh,justreachesthetopwhen2feetfromasideoftheroad,findthegreatestheightofthearch.

35. IfthepoleofthenormaltoanellipseatPliesonthenormalatQthenshowthatthepoleofthenormalatQliesonthenormalatP.

36. PQ,PRisapairofperpendiculartangentstotheellipse .ProvethatQRalwaystouches

theellipse

37. Showthatthepoints(xr,yr),r=1,2,3arecollineariftheirpolarswithrespecttotheellipse

areconcurrent.

38. Ifl1andl2bethelengthoftwotangentstotheellipse atrightanglestooneanother,

provethat

39. IfRPandRQaretangentsfromanexternalpointR(x1,y1)totheellipse andSbethe

focusthenshowthat

Page 387: Analytical Geometry: 2D and 3D

7.13ECCENTRICANGLE

LetPbeapointontheellipseandP′bethecorrespondingpointontheauxiliarycircle.TheangleCP′makeswiththepositivedirectionofx-axisiscalledtheeccentricangleofthepointPontheellipse.Ifthisangleisdenotedbyθ,thenCN=acosθandNP′=asinθ.

Page 388: Analytical Geometry: 2D and 3D

Weknowthat

ThenthecoordinatesofanypointPare(CN,NP).

(i.e.)(acosθ,bsinθ)∴‘θ’iscalledtheeccentricangleanditisalsocalledtheparameterofthepointP.

7.14EQUATIONOFTHECHORDJOININGTHEPOINTS

Tofindtheequationofthechordjoiningthepointswhoseeccentricanglesare‘θ’and‘ϕ’:Thetwogivenpointsare(acosθ,bsinθ)and(acosϕ,bsinϕ).Theequation

ofthechordjoiningthetwopointsis

Page 389: Analytical Geometry: 2D and 3D

Dividingbyab,

Therefore,theequationofthechordjoiningthepointswhoseeccentricangles

are‘θ’‘ϕ’is

Note7.14.1:Thischordbecomesthetangentat‘θ’ifϕ=θ

∴Theequationofthetangentat‘θ’is

7.15EQUATIONOFTANGENTAT‘Θ’ONTHEELLIPSE

Page 390: Analytical Geometry: 2D and 3D

Theequationoftheellipseis .

Differentiatingwithrespecttox,weget,

Theequationofthetangentat‘θ’is,

Dividingbyab,

Theslopeofthenormalat

Therefore,theequationofthenormalatθis:

Dividingbysinθcosθ,weget,

Page 391: Analytical Geometry: 2D and 3D

Therefore,equationofnormalat‘θ’ontheellipse is

7.16CONORMALPOINTS

Ingeneral,fournormalscanbedrawnfromagivenpointtoanellipse.Ifα,β,γ,andδbetheeccentricanglesofthesefourconormalpointsthenα+β+γ+δisanoddmultipleofπ.Let(h,k)beagivenpoint.LetP(acosθ,bsinθ)beanypointontheellipse

.

Theequationofthenormalatθis

Ifthenormalpassesthrough(h,k)then

Thisisafourthdegreeequationintandhencetherearefourvaluesfort.Foreachvalueoft,thereisavalueofθandhencetherearefourvaluesofθsayα,β,γ,andδ.Hence,therearefournormalsfromagivenpointtoanellipse.

Hence, aretherootsoftheequation(7.63).

Page 392: Analytical Geometry: 2D and 3D

7.17CONCYCLICPOINTS

Acircleandanellipsewillcutfourpointsandthatthesumoftheeccentricanglesofthefourpointsofintersectionisanevenmultipleofπ.Lettheequationoftheellipsebe

Lettheequationofthecirclebe

Anypointontheellipseis(acosb,asinθ).Whenthecircleandtheellipseintersect,thispointliesonthecircle.

Page 393: Analytical Geometry: 2D and 3D

Substitutingthesevaluesinequation(7.67),weget

Equation(7.68)isafourthdegreeequationintandhencetherearefourvaluesfort,realorimaginary.Foreachvalueofttherecorrespondsavalueofθ.Henceingeneraltherearefourpointsofintersectionofacircleandanellipsewitheccentricanglesθ1,θ2,θ3,andθ4.Weknowthat,

Page 394: Analytical Geometry: 2D and 3D

7.18EQUATIONOFACHORDINTERMSOFITSMIDDLEPOINT

Tofindtheequationofachordintermofitsmiddlepoint:

Lettheequationoftheellipsebe

LetR(x1,y1)bethemidpointofachordPQofthisellipse.LettheequationofchordPQbe

Anypointonthislineis(x1+rcosθ,y1+rsinθ).Whenthechordmeetstheellipsethispointliesontheellipse(7.69).

IfR(x1,y1)isthemidpointofthechordPQthenthetwovaluesofrarethedistancesPRandRQwhichareequalinmagnitudebutoppositeinsign.

Theconditionforthisisthecoefficientofr=0.

Substituting inequation(7.72),weget

Page 395: Analytical Geometry: 2D and 3D

Hence,theequationofchordintermsofitsmiddlepointisT=S1

where

7.19COMBINEDEQUATIONOFPAIROFTANGENTS

Tofindthecombinedequationofpairoftangentsfrom(x1,y1)totheellipse

Lettheequationofthechordthrough(x1,y1)be

Anypointonthislineis(x1+rcosθ,y1+rsinθ)

Ifthispointliesontheellipse ,

Thetwovaluesofrarethedistancesofthepointofintersectionofthechordandtheellipsefrom(x1,y1).Thelinewillbecomeatangentifthetwovaluesofrareequal.Theconditionforthisisthediscriminantofthequadraticequationiszero.

Page 396: Analytical Geometry: 2D and 3D

Usingthevaluesofcosθandsinθfromequation(7.70a),

Thisisthecombinedequationofthepairoftangentsfrom(x1,y1).

Note7.19.1:Thecombinedequationofthepairoftangentsfromthepoint(x1,y1)is

Page 397: Analytical Geometry: 2D and 3D

Ifthetwotangentsareperpendicularthencoefficientofx2+coefficientofy2=0.

Thelocusof(x1,y1)isx2+y2=a2+b2.Therefore,thelocusofthepointofintersectionofperpendiculartangentsisacircle.Thisequationiscalledthedirectrixofthecircle.

7.20CONJUGATEDIAMETERS

Example7.30

Findtheconditionthatthelinelx+my+n=0maybeatangenttotheellipse

.

Solution

Letlx+my+n=0beatangenttotheellipse .

Letthelinebetangentat‘θ’.Theequationofthetangentatθis

However,theequationoftangentisgivenas

Identifyingequations(7.71a)and(7.72a),weget

Page 398: Analytical Geometry: 2D and 3D

Squaringandadding,weget

Thisistherequiredcondition.

Example7.31

Findtheconditionforthelinelx+my+n=0tobeanormaltotheellipse

.

Solution

Theequationoftheellipseis .

Page 399: Analytical Geometry: 2D and 3D

Theequationofnormalis

Letthisequationbenormalat‘θ’.Theequationofthenormalat‘θ’is

Theequations(7.73)and(7.74)representthesameline.Therefore,identifyingequations(7.73)and(7.74),weget

Squaringandaddingequations(7.78)and(7.79),weget

Thisisrequiredcondition.

Example7.32

Showthatthelocusofthepointofintersectionoftangentstoanellipseatthepointswhoseeccentricanglesdifferbyaconstantisanellipse.

Solution

LettheeccentricanglesofPandQbeα+βandα−β.∴(α+β)−(α−β)=2β=2k;aconstant∴β=k.

TheequationoftangentsatPandQare

Page 400: Analytical Geometry: 2D and 3D

Let(x1,y1)betheirpointofintersection.Then

Solvingequations(7.77)and(7.78),weget

Squaringandadding,weget

Sinceβ=k,thelocusof(x1,y1)is whichisanellipse.

Example7.33

Page 401: Analytical Geometry: 2D and 3D

Showthatthelocusofpolesofnormalchordsoftheellipse is

Solution

Let(x1,y1)bethepoleofthenormalchordoftheellipse

Thenthepolarof(x1,y1)withrespecttoellipseis

Letthisbenormalat‘θ’ontheellipseofequation(7.84).Thentheequationofthenormalat‘θ’is

Equations(7.80)and(7.81)representthesameline.Therefore,identifyingequations(7.80)and(7.81),weget

Squaringandaddingweget,

Page 402: Analytical Geometry: 2D and 3D

Therefore,thelocusof(x1,y1)is

Example7.34

Findthelocusofmidpointsofthenormalchordsoftheellipse .

Solution

Let(x1,y1)bethemidpointofachordoftheellipsewhichisnormalatθ.Theequationofthechordintermsofitsmiddlepointis

Theequationofthenormalat‘θ’is

Equations(7.82)and(7.83)representthesameline.Therefore,identifyingequations(7.87)and(7.88)weget,

Squaringandadding,weget

Page 403: Analytical Geometry: 2D and 3D

Squaringandadding,weget

Therefore,thelocusof(x1,y1)is

Example7.35

Ifthechordjoiningtwopoints,whoseeccentricanglesareαandβontheellipse

cutsthemajoraxisatadistancedfromthecentre,showthattan

Solution

Theequationofthechordjoiningthepointswhoseeccentricanglesareαand

Thislinemeetsthemajoraxisatthepoint(d,0).

Page 404: Analytical Geometry: 2D and 3D

Example7.36

Thetangentatthepointαontheellipsemeetauxiliarycircleontwopointswhichsubtendarightangleatthecentre.Showthattheeccentricityoftheellipseis(1+sin2α)–1/2.

Solution

Lettheequationoftheellipsebe

Page 405: Analytical Geometry: 2D and 3D

Theequationoftheauxiliarycircleis

Theequationofthetangentat .Thislinemeetstheauxiliary

circleatPandQ.ThenthecombinedequationofthelinesCQand

(i.e.)

since coefficientofx2+coefficientofy2=0

Example7.37

Ifthenormalattheendofalatusrectumofanellipsepassesthroughoneextremityoftheminoraxis,showthattheeccentricityofthecurveisgivenbye4

+e2−1=0.

Solution

Page 406: Analytical Geometry: 2D and 3D

Lettheequationoftheellipsebe .

ThecoordinatesoftheendLofthelatusrectumare Theequationofthe

normalatLis

Thisnormalpassesatthepoint

Thislinepassesthroughthepoint(0,−b).

Example7.38

Provethatthetangentandnormalatapointontheellipsebisecttheanglebetweenthefocalradiiofthatpoint.

Page 407: Analytical Geometry: 2D and 3D

Solution

Lettheequationoftheellipsebe

LetPTandPQbethetangentandnormalatanypointPontheellipse.The

equationofthenormalat(x1,y1)is

Whenthismeetthemajoraxis,y=0.

SinceSP′=a+ex1andSP=a−ex1.

Hence,PGbisectsinternally SincethetangentPTisperpendiculartoSG,

PTistheexternalbisectorof Therefore,thetangentandnormalatParethe

bisectorsoftheanglesbetweenthefocalradiithroughthatpoint.

Example7.39

Page 408: Analytical Geometry: 2D and 3D

Showthatthelocusofthemiddlepointofchordoftheellipse which

subtendsarightangleatthecentreis

Solution

Theequationoftheellipseis

Let(x1,y1)bethemidpointofachordoftheellipseofequation(7.87).

Thenitsequationis

IfCisthecentreoftheellipse,thecombinedequationofthelinesCPandCQis

Since ,coefficientofx2+coefficientofy2=0.

Page 409: Analytical Geometry: 2D and 3D

Example7.40

Provethattheportionofthetangenttotheellipseinterceptedbetweenthecurveandthedirectrixsubtendsarightangleatthecorrespondingfocus.

Solution

LetPbethepoint(acosθ,bsinθ)ontheellipse .Theequationofthe

tangentatθis

Theequationofthecorrespondingdirectrixis

Solvingequations(7.88)and(7.89),wegetT,thepointofintersection.

Page 410: Analytical Geometry: 2D and 3D

TheslopeofSPis

TheslopeofSTis

Example7.41

Anormalinclinedat45°tothex-axisoftheellipse isdrawn.Itmeets

themajorandminoraxisinPandQrespectively.IfCisthecentreoftheellipse,

showthattheareaof∆CPQis sq.units.

Solution

Page 411: Analytical Geometry: 2D and 3D

Theequationofthenormalat‘θ’is

Whenthismeetsx-axis,y=0.

Therefore,Pis

Whenitmeetsy-axis,x=0.

Therefore,Qis

Cis(0,0).

Slopeofthenormal=

Page 412: Analytical Geometry: 2D and 3D

Example7.42

Ifα−βisaconstant,provethatthechordjoiningthepoints,‘α’and‘β’touchesafixedellipse.

Solution

Theequationofthechordjoiningthepointsαandβis

Take thentheaboveequationbecomes =cosk.

Thislineisatangenttotheellipse

Example7.43

Ifthechordjoiningthevariablepointsatθandϕontheellipse

subtendsarightangleatthepoint(a,0)thenshowthat

Solution

Page 413: Analytical Geometry: 2D and 3D

Pisthepoint(acosθ,bsinθ).

Qisthepoint(acosϕ,bsinϕ).

SlopeofAPis

SlopeofAQis

SinceAPisperpendiculartoAQ,

Example7.44

Page 414: Analytical Geometry: 2D and 3D

Ifthenormaltotheellipse atthepointαcutsthecurvejoinin2αshow

thatcos

Solution

Theequationoftheellipseis

a2=14,b2=5

Theequationofthenormalat‘α’is

Example7.45

Page 415: Analytical Geometry: 2D and 3D

IfthenormalatanypointPtotheellipse meetsthemajorandminor

axesinGandgandifCFbetheperpendicularuponthisnormal,whereCisthecentreoftheellipse,thenprovethatPF·Pg=a2andPF·PG=b2.

Solution

LetP(acosθ,bsinθ)beanypointontheellipse.LetthenormalatPmeetthemajoraxisinGandminoraxising.LetCFbetheperpendicularfromCtothenormalatP.TheequationsofthetangentandnormalatPare

ThenthecoordinatesofGandgare and

PF=CLwhereCListheperpendicularonthetangent.

Page 416: Analytical Geometry: 2D and 3D

Example7.46

Showthattheconditionforthenormalsatthepoints(xi,yi),i=1,2,3onthe

ellipse tobeconcurrentis

Solution

Let(h,k)bethepointofconcurrenceofthenormal.Theequationofthenormal

at

Sincethisnormalpassesthrough(h,k),

Page 417: Analytical Geometry: 2D and 3D

Similarly,

Eliminatinghandkfromequations(7.94),(7.95)and(7.96),weget

Example7.47

Showthattheareaofthetriangleinscribedinanellipseis

aretheeccentricanglesofthevertices

andhencefindtheconditionthattheareaofthetriangleinscribedinanellipseismaximum.

Solution

LetΔABCbeinscribedintheellipse

Page 418: Analytical Geometry: 2D and 3D

LetA,BandCbethepoints(acosα,bsinα),(acosβ,bsinβ)and(acosγ,bsinγ),respectively.Thentheareaofthe∆ABCisgivenby,

IfA′,B′andC′arethecorrespondingpointsontheauxiliarycirclethen

AreaofΔABCisthegreatestwhentheareaofΔA′B′C′isthegreatest.However,theareaofA′B′C′isthegreatestwhenthetriangleisequilateral.In

Page 419: Analytical Geometry: 2D and 3D

thiscasetheeccentricanglesofthepointsP,QandRare

(i.e.)TheeccentricanglesofthepointsP,QandRdifferby

Example7.48

Ifthreeofthesidesofaquadrilateralinscribedinanellipseareinafixeddirection,showthatthefourthsideofthequadrilateralisalsoinafixeddirection.

Solution

Letα,β,γandδbetheeccentricanglesoftheverticesofthequadrilateralABCDinscribedintheellipse

ThentheequationofthechordPQis

TheslopeofthechordPQis .

SincethedirectionofPQisfixed, constant.

Similarly,

Page 420: Analytical Geometry: 2D and 3D

Therefore,thedirectionofPSisalsofixed.

Example7.49

Provethattheareaofthetriangleformedbythetangentsatthepointsα,βandγis

Solution

Theequationoftangentsatαandβare

Solvingequations(7.104)and(7.105)weget,

Page 421: Analytical Geometry: 2D and 3D

Therefore,thepointofintersectionoftangentsatPis

Hence,theareaofthetriangleformedbythetangentsatα,βandγis

Page 422: Analytical Geometry: 2D and 3D

Exercises

1. Ifαandβbetheeccentricanglesattheextremitiesofachordofanellipseofeccentricitye,prove

thatcos

2. LetPandQbetwopointsonthemajoraxisofanellipse equidistantfromthecentre.

ChordsaredrawnthroughPandQmeetingtheellipseatpointswhoseeccentricanglesareα,β,g

andδ.Thenprovethattan

3. Provethatthechordjoiningthepointsontheellipse whoseeccentricanglesdifferby

touchesanotherellipsewhosesemi-axesarehalfthoseofthefirst.

Page 423: Analytical Geometry: 2D and 3D

4. PSP′andQSQ′aretwofocalchordsofellipse suchthatPQisadiameter.Provethat

P′Q′passesthroughafixedpointonthemajoraxisoftheellipse.Findalsoitsequation.

Ans.:

5. PandP′arethecorrespondingpointsonanellipseanditsauxiliarycircle.ProvethatthetangentsatPandP′intersectonthemajoraxis.

6. ThetangentatoneendPofadiameterPP′ofanellipseandanychordP′QthroughtheotherendmeetatR.ProvethatthetangentatQbisectsPR.

7. Provethatthethreeellipses willhaveacommontangentif

8. AnytangenttotheellipseiscutbythetangentsattheendsofthemajoraxisinTandT′.ProvethatthecircleonTT′asdiameterwillpassthroughthefoci.

9. Findthecoordinatesofthepointsontheellipse ,thetangentsatwhichwillmakeequal

angleswiththeaxis.Alsoprovethatthelengthoftheperpendicularfromthecentreoneitherof

theseis

Ans.:

10. Findtheconditionforthelinexcosα+ysinα=pisatangenttotheellipse

Ans.:αcos2α+bsin2α=p2

11. Ifthetangenttotheellipse ,interceptslengthsαandβonthecoordinateaxesthen

Page 424: Analytical Geometry: 2D and 3D

showthat

12. Ifxcosα+ysinα−p=0beatangenttotheellipse ,provethatp2=a2cos2α+b2

sinα.IfPbethepointofcontactofthetangentxcosα+ysinα=pandN,thefootofthe

perpendicularonit,fromthecentreoftheellipse,provethat

13. ThetangentatoneendofPofadiameterOP′ofanellipseandanychordP′QthroughtheotherendmeetinR.ProvethatthetangentatQbisectsOR.

14. PandP′arecorrespondingpointsonanellipseandtheauxiliarycircle.ProvethatthetangentsatPandP′intersectonthemajoraxis.

15. IfthenormalatapointPontheellipseofsemi-axesa,bandcentreCcutsthemajorandminor

axesatGandg,showthata2Cg2+b2CG2=(a2−b2)2.AlsoprovethatPG=e·GN,wherePNistheordinateofP.

16. ThetangentsandnormalatapointPontheellipse meetthemajoraxisinTandT′so

thatTT′=a.ProvethattheeccentricangleofPisgivenbye2cos2θ+cosθ−1=0.17. Provethat,thelinejoiningtheextremitiesofanytwoperpendiculardiametersofanellipsealways

touchesaconcentriccircle.18. Showthatthelocusofthefootoftheperpendiculardrawnfromthecentreoftheellipse

onanytangenttoitis(x2+y2)2=(a2x2+b2y2)2.

19. IfPisanypointontheellipse whoseordinateisy′,provethattheanglebetweenthe

tangentatPandthefixeddistanceofPis

20. Showthatthefeetofthenormalsthatcanbedrawnfromthepoint(h,k)totheellipse

lieonthecurveb2(k−y)+a2y(x−h)=0.

21. Ifthenormalsatthefourpoints(xi,yi),i=1,2,3,4ontheellipse areconcurrent

Page 425: Analytical Geometry: 2D and 3D

showthat:

22. Ifthenormalsatthefourpointsθi,i=1,2,3,4areconcurrent,provethat(Σcosθi)(Σsecθi)=4.

Showthatthemeanpositionofthesefourpointsis where(h,k)isthepoint

ofconcurrency.

23. Ifthenormalsatthepointsα,βandγontheellipse areconcurrentthenprovethat

24. Ifα,β,γandδaretheeccentricanglesofthefourcornerpointsontheellipse then

provethat:(i)Σcos(α+β)=0and(ii)Σsin(α+β)=0.25. IfthepoleofthenormaltoanellipseatPliesonthenormalatQ,showthatthepoleofthenormal

atQliesonthenormalatP.26. FindthelocusofthemiddlepointsofthechordsofellipsewhosedistancefromthecentreCis

constantc.

27. Findthelocusofthemidpointofchordsoftheellipseofconstantlength2l.

28. Showthatthelocusofmidpointsofchordsoftheellipse ,tangentsattheendsof

whichintersectonthecirclex2+y2=a2is

29. Ifthemidpointofachordliesonafixedlinelx+my+n=0showthatthelocusofthepoleofthe

Page 426: Analytical Geometry: 2D and 3D

chordistheellipse

30. Showthatthelocusofmiddlepointsofthechordsoftheellipsethatpassthroughafixedpoint(h,

k)istheellipse

31. Provethatthelocusofthepointofintersectionoftangentstoanellipseattwopointswhoseeccentricanglesdifferbyaconstantisanellipse.Ifthesumoftheeccentricanglesbeconstantthenprovethatthelocusisastraightline.

32. TPandTQarethetangentsdrawntoanellipsefromapointTandCisitscentre.Provethatthe

areaofthequadrilateralCPTQisabtan whereθandϕaretheeccentricanglesofPandQ.

33. TheeccentricanglesoftwopointsPandQontheellipse areθandϕ.Provethatthe

areaofthisparallelogramformedbythetangentsattheendsofthediametersthroughPandQis4abcosec(θ−ϕ).

34. Chordsoftheellipse passthroughafixedpoint(h,k).Showthatthelocusoftheir

middlepointsistheellipse

35. IfPisanypointonthedirectorcircle,showthatthelocusofthemiddlepointsofthechordin

whichthepolarofPcutstheellipseis

36. Showthatthelocusofmidpointsofthechordsoftheellipse touchingtheellipse

37. IfthenormalstoanellipseatPi,i=1,2,3,4areconcurrentthenthecirclethroughP1,P2andP3meetstheellipseagaininapointP4whichistheotherendofthediameterthroughP4.

38. Findthecentreofthecirclepassingthroughthethreepoints,ontheellipsewhoseeccentricanglesareα,βandγ.

Page 427: Analytical Geometry: 2D and 3D

39. IfABCbeamaximumtriangleinscribedinanellipsethenshowthattheeccentricanglesofthe

verticesdifferby andthenormalsA,BandCareconcurrent.

40. Thetangentandnormaltotheellipsex2+4y2=2,atthepointPmeetthemajoraxisinQandR,

respectivelyandQR=2.ShowthattheeccentricangleofPiscos−1

41. Iftwoconcentricellipsesbesuchthatthefociofonelieontheotherthenprovethattheangle

betweentheiraxesis wheree1ande2aretheireccentricities.

42. Showthatthelengthofthefocalchordoftheellipse whichmakesanangleθwiththe

majoraxisis .

43. Ifthenormalsaredrawnattheextremitiesofafocalchordofanellipse,provethatalinethroughtheirpointofintersectionparalleltothemajoraxiswillbisectthechord.

44. Iftangentsfromthepointtotheellipse cutoffalengthequaltothemajoraxisfrom

thetangentat(a,0),provethatTliesonaparabola.45. IfthenormalatanypointPonanellipsecutsthemajoraxisatG,provethatthelocusofthe

middlepointofPQisanellipse.

46. Showthatthelocusoftheintersectionoftwonormalstotheellipse whichare

perpendiculartoeachotheris

47. Iftheanglebetweenthediameterofanypointoftheellipse andthenormalatthat

Page 428: Analytical Geometry: 2D and 3D

pointisθ,provethatthegreatestvalueof

48. Pisanypointonanellipse.ProvethatthelocusofthecentroidGofthepointPandthetwofocioftheellipseisaconcentricellipseofthesameeccentricity.

49. IfP,Q,RandSareconormalpointsonanellipse,showthatthecirclepassingthroughPandRwillcuttheellipseatapointS′whereSandS′aretheendsofadiameteroftheellipse.

50. Showthatthelocusofpoleofanytangenttotheellipsewithrespecttotheauxiliarycircleisasimilarconcentricellipsewhosemajoraxisisatrightanglestothatoftheoriginalellipse.

51. Thenormalsoffourpointsofanellipsemeetat(h,k).Iftwoofthepointslieon

provethattheothertwopointslieon

52. Ifthenormalstotheellipse attheendsofthechordslx+my=1andl1x+m1y=1be

concurrentthenshowthata2ll1=b2mm1=−1.

53. Provethattwostraightlinesthroughthepointsofintersectionofanellipsewithanycirclemakeequalangleswiththeaxesoftheellipse.

54. Showthattheequationofapairofstraightlineswhichareatrightanglesandeachofwhichpasses

throughthepoleoftheothermaybewrittenaslx+my+n=0andn(mx−ny)+lm(a2−b2)=0.Alsoprovethattheproductofthedistancesofsuchpairoflinesfromthecentrecommonly

exceeds

55. ShowthattherectangleundertheperpendiculardrawntothenormalatapointofanellipsefromthecentreandfromthepoleofthenormalisequaltotherectangleunderthefocaldistancesofP.

56. ProvethatifP,Q,RandSarethefeetofthenormalstotheellipse andthecoordinates

(x1,y1),(x2,y2),arethepolesofPQandRSthentheyareconnectedbytherelations

57. Ifthenormalsatfourpointsoftheellipse areconcurrentandiftwopointslieonthe

linelx+my=1,showthattheothertwopointslieontheline .Henceshowthatifthe

feetofthetwonormalsfromapointPtothisellipsearecoincidentthenthelocusofthemidpoints

Page 429: Analytical Geometry: 2D and 3D

ofthechordsjoiningthefeetoftheothernormalsis

7.20.1LocusofMidpoint

Locusofmidpointofaseriesofparallelchordsoftheellipse:Let(x1,y1)bethemidpointofachordparalleltotheliney=mx.ThentheequationofthechordisT=S1.

Itsslopeis

Sincethischordisparalleltoy=mx,

Thelocusof(x1,y1)is whichisastraightlinepassingthroughthecentre

oftheellipse.Ify=m1xbisectallchordsparalleltoy=mxthen

Page 430: Analytical Geometry: 2D and 3D

Bysymmetryofthisresult,weseethatthediametery=mxbisectallthechordsparalleltoy=m1x.

Definition7.20.1Twodiametersaresaidtobeconjugatetoeachotherifchordsparalleltooneisbisectedbytheother.Therefore,theconditionforthediameter

y=mxandy=m1xtobeconjugatediametersis

7.20.2Property:TheEccentricAnglesoftheExtremitiesofaPairofSemi-conjugateDiameterDifferbyaRightAngle

LetPCP′andDCD′beapairofconjugatediameters.LetPbethepoints(acosθ,

bsinθ)andDbethepoints(acosϕ,bsinϕ).ThentheslopeofCPis

TheslopeofCDis

SinceCPandCDaresemi-conjugatediameters

Therefore,theeccentricanglesofapairofsemi-conjugatediametersdifferbyarightangle.

Page 431: Analytical Geometry: 2D and 3D

Note7.20.1:ThecoordinatesofDare

(i.e.)(−asinθ,bcosθ)

Therefore,ifthecoordinatesofPare(acosθ,bsinθ)thenthecoordinatesofDare(−asinθ,bcosθ).ThecoordinatesofP′are(−acosθ,−bsinθ).ThecoordinatesofD′are(asinθ,−bcosθ).

7.20.3Property:IfCPandCDareaPairofSemi-conjugateDiametersthenCD2

+CP2isaConstant

ThecoordinatesofC,PandDareC(0,0)

P(acosθ,bsinθ)andD(−asinθ,bcosθ).

Page 432: Analytical Geometry: 2D and 3D

Then

7.20.4Property:TheTangentsattheExtremitiesofaPairofConjugateDiametersofanEllipseEnclosesaParallelogramWhoseAreaIsConstant

LetPCP′andDCD′beapairofconjugatediameters.LetPbethepoint(acosθ,

bsinθ).ThenDisthepoint

(i.e.)(−asinθ,bcosθ).

TheequationofthetangentatPis

TheslopeofthetangentatPis

TheslopeofCDis

Sincethetwoslopesareequal,thetangentsatPisparalleltoDCD′.Similarly,wecanshowthatthetangentatP′isparalleltoDCD′.Therefore,thetangentat

Page 433: Analytical Geometry: 2D and 3D

PandP′areparallel.Similarly,thetangentDandD′areparallel.Hence,thetangentsatP,P′,D,D′fromaparallelogramEFGH.TheareaoftheparallelogramEFGH

7.20.5Property:TheProductoftheFocalDistancesofaPointonanEllipseIsEqualtotheSquareoftheSemi-diameterWhichIsConjugatetotheDiameter

ThroughthePoint

LetSandS′bethefociofellipse .LetPbeanypointontheellipseand

drawMPM′perpendiculartothedirectrix.

Then,

Page 434: Analytical Geometry: 2D and 3D

7.20.6Property:IfPCP′andDCD′areConjugateDiameterthenTheyarealsoConjugateLines

Weknowthatthepolarofapointandthechordofcontactoftangentsfromittotheellipsearethesame.Therefore,thepoleofthediameterPCP′willbethepointofintersectionofthetangentsatPandP′whichareparallel.Therefore,thepoleofPCP′liesatinfinityontheconjugatediameterDCD′.Hence,PCP′andDCD′areconjugatelines.

Note7.20.2:Conjugatediameterisaspecialcaseofconjugatelines.

7.21EQUI-CONJUGATEDIAMETERS

Definition7.21.1Twodiametersofanellipsearesaidtobeequiconjugatediametersiftheyareofequallength.

7.21.1Property:Equi-conjugateDiametersofanEllipseLiealongtheDiagonalsoftheRectangleFormedbytheTangentattheEndsofitsAxes

LetPCP′andDCD′betwoconjugatediametersoftheellipse .Letthe

coordinatesofPbe(acosθ,bsinθ).ThenthecoordinatesofDare(−asinθ,bcosθ).CisthepointC(0,0).

Page 435: Analytical Geometry: 2D and 3D

IfCPandCDareequi-conjugatediametersthenCP2=CD2.

When theequationofthediameteris

When equationsofthesetwoconjugatediametersare Therefore,

theequi-conjugatediametersare whicharetheequationsofthe

diagonalsformedbythetangentsatthefourverticesoftheellipse.

ILLUSTRATIVEEXAMPLESBASEDONCONJUGATEDIAMETERS

Example7.50

Page 436: Analytical Geometry: 2D and 3D

Showthatthelocusofthepointofintersectionoftangentsattheextremitiesofa

pairofconjugatediametersoftheellipse istheellipse

Solution

LetPCP′andDCD′beapairofconjugatediametersoftheellipse .

LetPbethepoint(acosθbsinθ).ThenD′isthepoint

Let(x1,y1)bethepointofintersectionofthetangentsatPandD.TheequationsofthetangentsatPandDare

Sincethesetwotangentsmeetat(x1,y1),

Page 437: Analytical Geometry: 2D and 3D

and

Squaringandaddingfromequations(7.103)and(7.104),weget

Therefore,thelocusof(x1,y1)is

Example7.51

IfPandDaretheextremitiesofapairofconjugatediameteroftheellipse

showthatthelocusofthemidpointofPDis

Solution

LetPbethepoint(acosθ,bsinθ).ThenthecoordinatesofDare(−asinθ,bcosθ).Let(x1,y1)bethemidpointofPD.

Squaringandaddingfromequations(7.105)and(7.106),weget

Page 438: Analytical Geometry: 2D and 3D

Therefore,thelocusof(x1,y1)is whichisaconcentricellipse.

Example7.52

IfCPandCDaretwoconjugatesemi-diametersofanellipse then

provethatthelinePDtouchestheellipse

Solution

LettheeccentricangleofPbeθ.ThentheeccentricangleofDis The

equationofthechordPDis

(i.e)

where

Page 439: Analytical Geometry: 2D and 3D

Thisstraightlinetouchestheellipse

Example7.53

FindtheconditionthatthetwostraightlinesrepresentedbyAx2+2Hxy+By2=

0maybeapairofconjugatediametersoftheellipse .

Solution

LetthetwostraightlinesrepresentedbyAx2+2Hxy+By2=0bey=m1xandy

=m2x.Then

Theconditionforthelinestobeconjugatediametersis

Thisistherequiredcondition.

Example7.54

IfPandDbetheendsofconjugatesemi-diametersoftheellipsethenshowthatthelocusofthefootoftheperpendicularfromthecentreonthelinePDis2(x2+y2)2=a2x2+b2y2.

Solution

Page 440: Analytical Geometry: 2D and 3D

LettheeccentricangleofPbeθ.ThentheeccentricangleofDisθ+ .The

equationofPDis

Theequationofthelineperpendiculartothisandpassingthroughthecentre(0,0)is

Let(x1,y1)bethefootoftheperpendicularfrom(0,0)onPD.Then(x1,y1)liesontheabovetwolines.

Solvingfor and ,weget

Substitutingfor and inequation(7.107),weget

Page 441: Analytical Geometry: 2D and 3D

Therefore,thelocusof(x1,y1)is2(x2+y2)=a2x2+b2y2.

Example7.55

CPandCDaresemi-conjugatediametersoftheellipse .Ifthecircleson

CPandCDasdiametersintersectinRthenprovethatthelocusofthepointRis2(x2+y2)2=a2x2+b2y2.

Solution

LetPbethepoint(acosθ,bsinθ).ThenDisthepoint(−asinθ,bcosθ).Cisthepoint(0,0).TheequationsofthecirclesonCPandCDasdiametersarex(x−acosθ)+

y(y−bsinθ)=0andx(x+asinθ)+y(y−bcosθ)=0.

(i.e.)x2+y2=axcosθ+bysinθandx2+y2=−axsinθ+bycosθ.Let(x1,y1)beapointofintersectionofthesetwocircles.Then

Bysquaringandaddingequations(7.111)and(7.112),weget

Therefore,thelocusof(x1,y1)is(x2+y2)2=a2x2+b2y2.

Example7.56

Page 442: Analytical Geometry: 2D and 3D

Ifthepointsofintersectionoftheellipses and bethepointsof

conjugatediametersoftheformerprovethat

Solution

Anyconicpassingthroughthepointofintersectionoftheellipses

Page 443: Analytical Geometry: 2D and 3D

and

Page 444: Analytical Geometry: 2D and 3D

is

whereλ=−1,equation(7.118)reducesto

Thisbeingahomogeneousequationofseconddegreeinxandyrepresentsapairofstraightlines,thatis,equation(7.116)representsapairofstraightlines

passingthroughtheorigin.

Page 445: Analytical Geometry: 2D and 3D

or

Example7.57

Ifαandβbetheanglessubtendedbythemajoraxisofanellipseattheextremitiesofapairofconjugatediametersthenshowthatcos2α+cos2βisaconstant.

Solution

Letequationoftheellipsebe .

LetPbethepoint(acosα,bsinβ).ThenDisthepoint

TheslopeofAPis

TheslopeofA′Pis

Page 446: Analytical Geometry: 2D and 3D

Changingaintoα+ ,

Addingequations(7.117)and(7.118),weget

Example7.58

Ifxcosα+ysinα=pisachordjoiningtheendsPandDofconjugatesemi-diametersoftheellipsethenprovethata2cos2α+b2sin2α=2p2.

Solution

Lettheequationoftheellipsebe .LetPCP′andDCD′beapairof

conjugatediameters.LetPbethepoint(acosθ,bsinθ)thenDisthepoint

Page 447: Analytical Geometry: 2D and 3D

TheequationofPDis

However,theequationofPDisgivenas

Equations(7.119)and(7.120)representthesameline.Identifyingequations(7.119)and(7.120),weget

Example7.59

CPandCDareconjugatediametersoftheellipse .Atangentisdrawn

paralleltoPDmeetingCPandCDinRandSrespectively.ProvethatRandSlie

Page 448: Analytical Geometry: 2D and 3D

ontheellipse

Solution

LetCPandCDbeapairofconjugatediametersoftheellipse

LetPbethepoint(acosθ,bsinθ).ThenDisthepoint(−asinθ,bcosθ).SlopeofPDis

LettheequationofthetangentparalleltoPDbe

LetRbethepoint(h,k).Since(h,k)liesonthistangent,

Inaddition,theequationofCPis

Sincethispassesthrough(h,k),

Substitutinginequation(7.122),weget

Page 449: Analytical Geometry: 2D and 3D

Eliminatingmfromequations(7.123)and(7.124),

Dividingbya2b2, Thelocusof(h,k)is Similarly,thepointS

alsoliesontheaboveellipse.

Example7.60

Atangenttotheellipse cutsthecirclex2+y2=a2+b2inPandQ.

ProvethatCPandCQarealongconjugatessemi-diametersoftheellipsewhereCisthecentreofthecircle.

Solution

Theequationoftheellipseis

Page 450: Analytical Geometry: 2D and 3D

Theequationofthecircleisx2+y2=a2+b2.(7.125)Theequationofthetangentatθontheellipseis

ThismeetsthecircleinPandQ.ThecombinedequationCPandCQisgotbyhomogenizationofequation(7.125)withthehelpofequation(7.126),

∴CPandCQareconjugatesemi-diametersoftheellipse.

Example7.61

Provethattheacuteanglebetweentwoconjugatediametersisleastwhentheyareofequallength.

Solution

LetPCP′andDCD′betheconjugatediameters.

Page 451: Analytical Geometry: 2D and 3D

Fromequations(7.127)and(7.128),

RHSisleastwhenthedenominatoristhelargest.Thishappenswhen

Therefore,theacuteanglebetweenthediametersisminimumwhentheconjugatediametersareofequallengthandtheleastacuteangleisgivenby

Example7.62

Findthelocusofthepointofintersectionofnormalsattwopointsonanellipsewhichareextremitiesofconjugatediameters.

Solution

Lettheequationoftheellipsebe

Page 452: Analytical Geometry: 2D and 3D

Lettheequationoftheellipsebe

LetPandDbetheextremitiesofapairofconjugatediametersoftheellipse(7.129).LetPandDbethepointsP(acosθ,bsinθ)andD(−asinθ,bcosθ).TheequationsofthenormalatPandDare

Solvingequations(7.130)and(7.131),weget,

Squaringandadding,weget

Therefore,thelocusofthepointofintersectionofthesetwonormalsis(a2x2+b2y2)3=(a2−b2)2(a2x2−b2y2)2.

Page 453: Analytical Geometry: 2D and 3D

Example7.63

Ifthepointofintersectionoftheellipses and beatthe

extremitiesoftheconjugatediametersoftheformerthenprovethat

Solution

Page 454: Analytical Geometry: 2D and 3D

Thegivenellipsesare

Solvingequations(7.134)and(7.135)wegettheirpointofintersections.

Equation(7.134)−(7.135)gives

Thisisapairofstraightlinespassingthroughtheorigin.Ify=mxisoneofthe

linesthen

Thisisaquadraticequationinm.Ifm1andm2aretheslopesofthetwostraightlinesthroughtheoriginthen

Ifm1andm2aretheslopesofthepairofconjugatediametersthen

Fromequations(7.137)and(7.138),weget

Page 455: Analytical Geometry: 2D and 3D

Example7.64

LetPandQbetheextremitiesoftwoconjugatediametersoftheellipse

andSbethefocus.ThenprovethatPQ2−(SP−SQ)2=2b2.

Solution

LetSbe(ae,0)andPbe(acosθ,bsinθ).ThenSP=a−aecosθ,SQ=a+aesinθ.

Page 456: Analytical Geometry: 2D and 3D

Example7.65

IfCPandCDaresemi-conjugatediametersoftheellipse ,provethat

thelotusoftheorthocentreofΔPCDis2(b2y2+a2x2)3=(a2−b2)2(a2x2−b2y2)2.

Solution

LetPbethepoint(asinθ,bcosθ).ThenDis(−asinθ,bcosθ).TangentatPisparalleltoCD.TangentatDisparalleltoCP.Therefore,thealtitudesthroughPandDarethenormalsatPandD,

respectively.Let(x1,y1)betheorthocentre.TheequationofthenormalatPis

TheequationofthenormalatQis

Solvingequations(7.139)and(7.140)wegetthecoordinatesoftheorthocentre.

Squaringandadding,weget

Page 457: Analytical Geometry: 2D and 3D

Therefore,thelocusoftheorthocentreis2(a2x2+b2y2)3=(a2−b2)2(a2x2−b2y2)2.

Exercises

1. LetCPandCQbeapairofconjugatediametersofanellipseandletthetangentsatPandQmeetatR.ShowthatCRandPQbisecteachother.

2. Findtheconditionthatforthediametersof throughitspointsofintersectionwiththe

linelx+my+n=0tobeconjugate.

Ans.:l2+m2=a2l2+b2m2

3. Provethatb2x2+2hxy−a2y2=0representsconjugatediametersoftheellipse forall

valuesofh.

4. Provethata2x2+2hxy−b2y2=0representsconjugatediametersoftheellipseax2+by2=1forallvaluesofh.

5. Findthecoordinatesoftheendsofthediameteroftheellipse16x2+25y2=400whichisconjugateto5y=4x.

Ans.:

6. Findthelengthofsemi-diameterconjugatetothediameterwhoseequationisy=3x.7. Throughthefociofanellipse,perpendicularsaredrawntoapairofconjugatediameters.Prove

thattheymeetonaconcentricellipse.

8. Adiameteroftheellipse meetsonelatusrectuminPandtheconjugatediameter

meetstheotherlatusrectuminQ.ProvethatPQtouches

Page 458: Analytical Geometry: 2D and 3D

9. IfPP′isadiameterandQisanypointontheellipse,provethatQPandQP′areparalleltoapairofconjugatediametersoftheellipse.

10. Ifα+β=γ(aconstant)thenprovethatthetangentsataandbontheellipse .intersect

onthediameterthroughγ.11. Showthatthelinejoiningtheextremitiesofanytwodiametersofanellipsewhichareatright

anglestooneanotherwillalwaystouchafixedcircle.12. Showthatthesumofthereciprocalsofthesquareofanytwodiametersofanellipsewhichareat

rightanglestooneanotherisaconstant.

13. PandQareextremitiesoftwoconjugatediametersoftheellipse .andSisafocus.

ProvethatPQ2+(SP−SQ)2=2b2.14. Ifthedistancebetweenthetwofociofanellipsesubtendsangles2αand2βattheendsofapairof

conjugatediameters.Showthattan2α+tan2βisaconstant.15. Showthatthesumofthesquaresofthenormalattheextremitiesofconjugatesemi-diametersand

terminatedbymajoraxisisa2(1−e2)(2−e2).16. IfPandQaretwopointsonanellipsesuchthatCPisconjugatetothenormalatQ,provethatCQ

isconjugatetothenormalatP.

17. Twoconjugatediametersoftheellipse centreatCmeetthetangentatanypointPisE

andF.ProvethatPE·PF=CD2.

18. IfCPandCDareconjugatesemi-diametersoftheellipse ,thenormalatPcutsthe

majoraxisatGandthelineDCinFthenprovethatPG:CD=b:a.

19. ThenormalatavariablepointPofanellipse cutsthediameterCDconjugatetoPin

Q.ProvethattheequationofthelocusofQis

20. Showthatforaparallelograminscribedinanellipse,thesumofthesquaresofthesidesisconstant.

21. Showthatthemaximumvalueofthesmalleroftwoanglesbetweentwoconjugatediametersofan

ellipseis andtheminimumvalueofthisangleis whereaandbareitssemi-

majorandsemi-minoraxes,respectively.

Page 459: Analytical Geometry: 2D and 3D

22. IfPCP′andDCD′aretwoconjugatediametersoftheellipse .andQisanypointonthe

circlex2+y2=c2thenprovethatPQ2+DQ2+P2Q2+PQ2=2(a2+b2+2c2).

23. Twoconjugatediametersoftheellipse cutthecirclex2+y2=r2atPandQ.Show

thatthelocusofthemidpointofPQisa2[(x2+y2)2−r2x2]+b2[(x2+y2)2−r2y2]=0.24. Inanellipsewhosesemi-axesareaandb,provethattheacute-anglebetweentwoconjugate

diameterscannotbelessthan

25. IfCPandCDareconjugatediametersofanellipseshowthat4(CP2−CD2)=(SP−S′P)2−(SD

−S′D)2.26. Twoconjugatesemi-diametersofanellipseareinclinedatanglesαandβtothemajoraxis.Show

thattheirlengthscanddareconnectingtherelationc2sin2α+d2sin2β=0.27. Findtheconditionforthelinesl1x+m1y=0andl2x+m2y=0tobeconjugatediametersof

.

Ans.:a2ll1+b2mm1=0

28. Showthatax2+2hxy−by2=0representsconjugatediametersoftheellipseax2+by2=1forallvaluesofa.

29. Provethatax2+2hxy−by2=0representsconjugatediametersoftheellipseax2+by2=1forallvaluesofh.

30. CPandCQareconjugatesemi-diametersoftheellipse .AtangentparalleltoPQ

meetsCPandCQinRandS,respectively.ShowthatRandSlieontheellipse

31. IftwoconjugatediametersCPandCQofanellipsecutthedirectorcircleinLandM,provethatLMtouchestheellipse.

32. Twoconjugatediametersoftheellipse cutsthecirclex2+y2=ratPandQ.Show

thatthelocusofthemidpointofPQisa2[(x2+y2)2−r2x2]+b2[(x2+y2)2−r2y2]=0.

Page 460: Analytical Geometry: 2D and 3D

33. TheeccentricanglesoftwopointsPandQontheellipse areαandβ.Provethatthe

areaoftheparallelogramformedbythetangentsattheendsofthediametersthroughPandQis

andhenceshowthatitisleastwhenPandQaretheextremitiesofapairofconjugate

diameters.

34. LetPCP′beadiameteroftheellipse .IfthenormalatPmeetstheordinateatP′inT,

showthatthelocusofTis

35. IftwoconjugatediametersCPandCQofanellipsecutthedirectorcircleinLandM,provethatLMtouchestheellipse.

36. Inanellipse,apairofconjugatediametersisproducedtomeetadirectrix.Showthattheorthocentreofthetrianglessoformedisafocus.

37. ThroughafixedpointP,apairoflinesisdrawnparalleltoavariablepairofconjugatediametersofagivenellipse.ThelinesmeettheprincipalaxesinQandR,respectively.ShowthatthemidpointofQRliesonafixedline.

38. PerpendicularsPMandPNaredrawnfromanypointPofanellipseontheequi-conjugatediameteroftheellipse.ProvethattheperpendicularsfromPtoitspolarbisectMN.

39. Intheellipse3x2+7y2=21,findtheequationsoftheequi-conjugatediametersandtheirlengths.

Ans.:

40. Provethatthetangentstotheellipse atthepointswhoseeccentricanglesareθand

meetononeoftheequi-conjugatediameters.

41. Fromapointononeoftheequi-conjugatediametersofanellipsetangentsaredrawntotheellipse.

Showthatthesumoftheeccentricanglesofthepointofcontactisanoddmultipleof .

42. Tangentsaredrawnfromanypointontheellipse tothecirclex2+y2=r2.Provethat

thechordsofcontactaretangentstotheellipsea2x2+b2y2=r4.If ,provethatthe

Page 461: Analytical Geometry: 2D and 3D

lineandthecentretothepointsofcontactwiththecircleareconjugatediametersofthesecondellipse.

43. AnytangenttoanellipsemeetsthedirectorcircleinPandD.ProvethatCPandCDareinthedirectionsofconjugatediametersoftheellipse.

44. IfCPisconjugatetothenormalatQ,provethatCQisconjugatetothenormalatP.45. Provethatthestraightlinesjoiningthecentretotheintersectionofthestraightline

withtheellipseareconjugatediameters.

Page 462: Analytical Geometry: 2D and 3D

Chapter8

Hyperbola

8.1DEFINITION

Ahyperbolaisdefinedasthelocusofapointthatmovesinaplanesuchthatitsdistancefromafixedpointisalwaysetimes(e>1)itsdistancefromafixedline.Thefixedpointiscalledthefocusofthehyperbola.Thefixedstraightlineiscalledthedirectrixandtheconstanteiscalledtheeccentricityofthehyperbola.

8.2STANDARDEQUATION

LetSbethefocusandthelinelbethedirectrix.DrawSXperpendiculartothedirectrix.DivideSXinternallyandexternallyintheratioe:1(e>1).LetAand

A′bethepointofdivision.Since and thepointsAandA′lieonthe

curve.LetAA′=2aandCbeitsmiddlepoint.

Page 463: Analytical Geometry: 2D and 3D

Addingequations(8.1)and(8.2),weget

Subtractingequation(8.1)fromequation(8.2),weget

TakeCSasthex-axisandCYperpendiculartoCXasthey-axis.Then,thecoordinatesofSare(ae,0).LetP(x,y)beanypointonthecurve.DrawPMperpendiculartothedirectrixandPNperpendiculartox-axis.

Fromthefocusdirectrixpropertyofhyperbola,

Dividingbya2(e2−1),weget

Thisiscalledthestandardequationofhyperbola.

Page 464: Analytical Geometry: 2D and 3D

Note8.2.1:

1. Thecurvemeetsthex-axisatpoints(a,0)and(−a,0).

2. Whenx=0,y2=−a2.Therefore,thecurvemeetsthey-axisonlyatimaginarypoints,thatis,therearenorealpointsofintersectionofthecurveandy-axis.

3. If(x,y)isapointonthecurve,(x,−y)and(−x,y)arealsopointsonthecurve.Thisshowsthatthecurveissymmetricalaboutboththeaxes.

4. Foranyvalueofy,therearetwovaluesofx;asyincreases,xincreasesandwheny→∞,xalso→∞.Thecurveconsistsoftwosymmetricalbranches,eachextendingtoinfinityinboththedirections.

5. AA′iscalledthetransverseaxisanditslengthis2a.6. BB′iscalledtheconjugateaxisanditslengthis2b.

7. Ahyperbolainwhicha=biscalledarectangularhyperbola.Itsequationisx2−y2=a2.Its

eccentricityis

8. ThedoubleordinatethroughthefocusSiscalledlatusrectumanditslengthis

9. ThereisasecondfocusS′andaseconddirectrixl′tothehyperbola.

8.3IMPORTANTPROPERTYOFHYPERBOLA

Thedifferenceofthefocaldistancesofanypointonthehyperbolaisequaltothelengthoftransverseaxis.

8.4EQUATIONOFHYPERBOLAINPARAMETRICFORM

Page 465: Analytical Geometry: 2D and 3D

(asecθ,btanθ)isapointonthehyperbola forallvaluesofθ,θis

calledaparameterandisdenotedby‘θ’.Theparametricequationsofhyperbolaarex=asecθ,y=btanθ.

8.5RECTANGULARHYPERBOLA

Ahyperbolainwhichb=aiscalledarectangularhyperbola.Thestandardequationoftherectangularhyperbolaisx2−y2=a2.

8.6CONJUGATEHYPERBOLA

ThefociareS(ae,0)andS′(−ae,0)andtheequationsofthedirectricesare

Bythesymmetryofthehyperbola,ifwetakethetransverseaxisasthey-

axisandtheconjugateaxisasx-axis,thentheequationofthehyperbolais

Thishyperbolaiscalledtheconjugatehyperbola.Here,thecoordinatesofthe

fociareS(0,be)andS′(0,−be).Theequationsofthedirectricesare

Thelengthofthetransverseaxisis2b.Thelengthoftheconjugateaxisis2a.

Page 466: Analytical Geometry: 2D and 3D

Thelengthofthelatusrectumis

Thefollowingaresomeofthestandardresultsofthehyperbolawhose

equationis

1. Theequationofthetangentat(x1,y1)is

2. Theequationofthenormalat(x1,y1)is

3. Theequationofthechordofcontactoftangentsfrom(x1,y1)is

4. Thepolarof(x1,y1)is

5. Theconditionthatthestraightliney=mx+cisatangenttothehyperbolaisc2=a2m2−b2and

istheequationofatangent.

6. Theequationofthechordofthehyperbolahaving(x1,y1)asthemidpointis

7. Theequationofthepairoftangentsfrom(x1,y1)isT2=SS1

8. Parametricrepresentation:x=asecθ,y=btanθisapointonthehyperbolaandthispointisdenotedbyθ.θiscalledaparameterofthehyperbola.

Theequationofthetangentat

Theequationofthenormalat

9. Thecircledescribedonthetransverseaxisasdiameteriscalledtheauxiliarycircleandits

equationisx2+y2=a2.

Page 467: Analytical Geometry: 2D and 3D

10. Theequationofthedirectorcircle(thelocusofthepointofintersectionofperpendiculartangents)

isx2+y2=a2−b2.

Example8.6.1

Findtheequationofthehyperbolawhosefocusis(1,2),directrix2x+y=1and

eccentricity

Solution

LetP(x1,y1)beanypointonthehyperbola.Then

Hence,theequationofthehyperbolawhichisthelocusof

(x1,y1)is7x2+12xy−2y2−2x+14y−22=0.

Example8.6.2

Showthattheequationofthehyperbolahavingfocus(2,0),eccentricity2anddirectrixx−y=0isx2+y2−4xy+4x−4=0.

Solution

Page 468: Analytical Geometry: 2D and 3D

Sis(2,0):e=2andequationofthedirectrixisx−y=0.LetP(x,y)beany

pointonthehyperbola.Then,

Hence,theequationofthehyperbolaisx2+y2−4xy+4x−4=0.

Example8.6.3

Findtheequationofthehyperbolawhosefocusis(2,2),eccentricity and

directrix

3x−4y=1

Solution

Sis(2,2): anddirectrix3x−4y=1.LetP(x,y)beanypointonthe

hyperbola.

Hence,theequationofthehyperbolais19x2+216xy−44y2−346x−472y−791=0.

Example8.6.4

Page 469: Analytical Geometry: 2D and 3D

Findtheequationofthehyperbolawhosefocusis(0,0),eccentricity and

directrixxcosα+ysinα=p

Solution

Foranypointonthehyperbola,

Hence,theequationofthehyperbolais16(x2+y2)−25(xcosα+ysinα−p)2

=0.

Example8.6.5

Findtheequationofthehyperbolawhosefociare(6,4)and(−4,4)andeccentricity2.

Solution

Sis(6,4)andS′(−4,4),andCisthemidpointofSS′

Page 470: Analytical Geometry: 2D and 3D

Hence,theequationofthehyperbolais

Example8.6.6

Findtheequationofthehyperbolawhosecenteris(−3,2),oneendofthe

transverseaxisis(−3,4)andeccentricityis

Solution

Centreis(−3,4)Ais(−3,4)∴A′is(−3,6);a=2

Hence,theequationofthehyperbolais

(sincethelineparalleltoy-axisisthetransverseaxis)

Page 471: Analytical Geometry: 2D and 3D

Example8.6.7

Findtheequationofthehyperbolawhosecentreis(1,0),onefocusis(6,0),andlengthoftransverseaxisis6.

Solution

Hence,theequationofthehyperbolais (i.e.)16x2−9y2−32x−

128=0.

Example8.6.8

Findtheequationofthehyperbolawhosecentreis(3,2),onefocusis(5,2)andonevertexis(4,2).

Solution

Cis(3,2),Ais(4,2)andSis(5,2).Hence,CA=1andthetransverseaxisisparalleltox-axis.

∴a=1Alsoae=2.Sincea=1ande=2,b2=a2(e2−1)=1(4−1)=3.

Page 472: Analytical Geometry: 2D and 3D

Hence,theequationofthehyperbolais

Example8.6.9

Findtheequationofthehyperbolawhosecentreis(6,2),onefocusis(4,2)ande=2.

Solution

Transverseaxisisparalleltox-axisandCS=2unitsinmagnitude.

Hence,theequationofthehyperbolais

Example8.6.10

Findthecentre,eccentricityandfociofhyperbola9x2−16y2=144.

Solution

Dividingby144,weget

Hence,thecentreofthehyperbolais(0,0)

Page 473: Analytical Geometry: 2D and 3D

Hence,thefociare(5,0)and(−5,0).

Example8.6.11

Findthecentre,fociandeccentricityof12x2−4y2−24x+32y−127=0

Solution

Hence,centreis(1,4).

Hence,thefociare(6,4)and(−4,4).

Example8.6.12

Page 474: Analytical Geometry: 2D and 3D

Findthecentreandeccentricityofthehyperbola9x2−4y2+18x+16y−43=0.

Solution

Hence,centreis(−1,2),a2=4andb2=9.

Example8.6.13

IffromthecentreCofthehyperbolax2−y2=a2,CMisdrawnperpendiculartothetangentatanypointofthecurvemeetingthetangentatMandthecurveatN,showthatCM·CN=a2.

Solution

TheequationofthetangentatP(x1,y1)inx2−y2=a2isxx1−yy1=a2.

TheequationofthelineCNisxy1+yx1=0ThenCM,whichisperpendicularfromConthetangent,isgivenby

Page 475: Analytical Geometry: 2D and 3D

Solvingx2−y2=a2andxy1+yx1=0wegetthecoordinatesofN

Example8.6.14

Tangentstothehyperbolamakeanglesθ1,θ2withthetransverseaxis.Findtheequationofthelocusofpointofintersectionsuchthattan(θ1+θ2)isaconstant.

Solution

Lettheequationofthehyperbolabe .Then,theequationofthetangent

tothehyperbolais

Ifthistangentpassesthrough(x1,y1),then

Ifm1andm2aretheslopesofthetwotangents,then

Page 476: Analytical Geometry: 2D and 3D

Itisgiventhattan(θ1+θ2)=k.

Hence,thelocusof(x1,y1)isk(x2+y2−a2−b2)2xy=0.

Example8.6.15

Provethattwotangentsthatcanbedrawnfromanypointonthehyperbolax2−

y2=a2−b2totheellipse whichmakecomplementaryangleswiththe

axes.

Solution

Thetangentdrawnfromanypointtotheellipse is

Sincethispassesthrough(x1,y1)

Ifm1andm2aretheslopesofthetangents,then

Page 477: Analytical Geometry: 2D and 3D

Since(x1,y1)liesonx2−y2=a2−b2,wehave

Hence,thetwotangentsmakecomplementaryangleswiththeaxes.

Example8.6.16

Chordsofthehyperbola areataconstantdistancefromthecentre.Find

thelocusoftheirpoles.

Solution

Let(x1,y1)bethepolewithrespecttohyperbola .Thepolarof(x1,y1)

is Theperpendiculardistancefromthecentreonthepolaris

(aconstant)(i.e.)

Hence,thelocusof(x1,y1)is

Example8.6.17

Findtheequationofcommontangentstothehyperbolas and

Page 478: Analytical Geometry: 2D and 3D

Solution

Thetwogivenhyperbolasare and

Theconditionsfory=mx+ctobeatangenttothehyperbolasare

c2=a2m2−b2and

Hence,therearetwocommontangentswhoseequationsare

Example8.6.18

Showthatthelocusofmidpointsofnormalchordsofthehyperbolax2−y2=a2

is

(y2−x2)3=4a2x2y2.

Solution

Theequationofthehyperbolaisx2−y2=a2.Let(x1,y1)bethemidpointofanormalchordofthehyperbola.Theequation

ofthenormalis andtheequationofthechordintermsofthe

Page 479: Analytical Geometry: 2D and 3D

middlepointis Boththeseequationsrepresentthesameline.

Hence,identifyingthem,weget

Squaringandsubtracting,weget

Thefocusof(x1,y1)is(y2−x2)3=4a2x2y2.

Example8.6.19

Provethatthelocusofmiddlepointsofchordsofthehyperbola

passingthroughafixedpoint(h,k)isahyperbolawhosecentreis

Solution

Theequationofthehyperbolais .

Page 480: Analytical Geometry: 2D and 3D

Theequationofthechordofthehyperbolaintermsofitsmiddlepointis

Sincethischordpassesthroughthefixedpoint(h,k),

Thelocusof(x1,y1)is ,whichisahyperbolawhose

centreis

Example8.6.20

Showthatthelocusofthefootoftheperpendicularfromthecentreuponany

normaltothehyperbola

Solution

LetP(asecθ,btanθ)beapointonthehyperbola.Letm(x1,y1)bethefootoftheperpendicularfromthecentrewithnormalatP.Theequationofthenormal

atPis

Page 481: Analytical Geometry: 2D and 3D

TheequationoftheperpendicularfromC(0,0)onthisnormalis

Thesetwolinesintersectat(x1,y1)

Solvingthesetwoequationforx1andy1weget

Page 482: Analytical Geometry: 2D and 3D

Hence,thelocusof(x1,y1)is

Example8.6.21

Chordsofthecurvex2+y2=a2touchthehyperbola .Provethattheir

middlepointslieonthecurve(x2+y2)2=a2x2−b2y2.

Solution

Let(x1,y1)bethemidpointofthechordofthecircle.Itsequationis

Thisisatangenttothehyperbola .

Hence,theconditionis

Page 483: Analytical Geometry: 2D and 3D

Hence,thelocusof(x1,y1)is(x2+y2)2=(a2x2−b2y2).

Example8.6.22

Showthatthelocusofmidpointsofnormalchordsofthehyperbolax2−y2=a2

is(y2−x2)2=4a2xy.

Solution

Let(x1,y1)bethemidpointofthenormalchordofthehyperbolax2−y2=a2.Then,theequationofthechordis

Theequationofthenormalat‘θ’is

Thesetwoequationsrepresentthesameline.Identifying,weget

Thelocusof(x1,y1)is(y2−x2)3=4a2x2y2.

Page 484: Analytical Geometry: 2D and 3D

Example8.6.23

Anormaltothehyperbola meetstheaxesatQandRandlinesQLand

RLaredrawnatrightanglestotheaxesandmeetatL.ProvethatthelocusofthepointListhehyperbola(a2x2−b2y2)=(a2+b2)2.ProvefurtherthatthelocusofthemiddlepointofQRis4(a2x2−b2y2)=(a2+b2)2.

Solution

LetP(h,k)bethepointonthehyperbola .Theequationofthenormal

at(h,k)is Whenthislinemeetsthex-axisy=0

Therefore,thecoordinatesofQare .ThecoordinatesofRare

.Let(x1,y1)bethecoordinatesofL.Then,

Page 485: Analytical Geometry: 2D and 3D

since(h,k)liesonthe

hyperbola.Thelocusof(x1,y1)isa2x2-b2y2=(a2+b2)2.

Let(α,β)bethemidpointofQR.Then,

since(h,k)lieson

thehyperbola.Thelocusof(α,β)isis4(a2x2-b2y2)=(a2+b2)2.

Example8.6.24

Thechordsofthehyperbolax2−y2=a2touchtheparabolay2=4ax.Provethatthelocusoftheirmidpointisthecurvey2(a−y)=x3.

Solution

Let(x1,y1)bethemidpointofthechordofthehyperbola .Itsequation

is

Thelineisatangenttotheparabolay2=4ax.Theconditionis

Page 486: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1)isx(x2−y2)=ay2(i.e.)y2(a−y)=x8.

Example8.6.25

Avariabletangenttothehyperbola meetsthetransverseaxisatQand

thetangentatthevertexatR.ShowthatthelocusofthemidpointQRisx(4y2+b2)=ab2.

Solution

Theequationofthetangentat'θ'is

Whenthislinemeetsthetransverseaxis,y=0andx=acosθ.HereQis(acosθ,0).Whenitmeetsthelinex=a,

Let(h,k)bethemidpointofQR.Then,

Page 487: Analytical Geometry: 2D and 3D

Hence,thelocusof(h,k)isb2x+4xy2=ab2orx(b2+4y2)=ab2.

Example8.6.26

Showthatthelocusofthemidpointsofthechordsofthehyperbola that

subtendsarightangleatthecentreis

Solution

LetP(x1,y1)bethemidpointofachordofthehyperbols .

Page 488: Analytical Geometry: 2D and 3D

Then,theequationofthechordisT=S1

Thechordsubtendsarightangleatthecentreofthehyperbola.Hence,thecombinedequationofthelinesCPandCQis

Since∠QCR=90°,coefficientofx2+coefficientofy2=0.

Example8.6.27

Page 489: Analytical Geometry: 2D and 3D

Frompointsonthecirclex2−y2=a2tangentsaredrawntothehyperbolax2−y2

=a2.Provethatthelocusofthemiddlepointsofthechordsofcontactisthecurve(x2−y2)=a2(x2+y2).

Solution

LetP(x1,y1)beapointonthecirclex2+y2=a2.

Let(h,k)bethemidpointofthechordofcontactQRofthetangentsfromPtothehyperbolax2−y2=a2.Thentheequationofchordofcontacttothehyperbolais

xx1−yy1=a2

Theequationofthechordintermsofthemiddlepoint(h,k)is

xh−yk=h2−k

Thesetwoequationsrepresentthesameline.Identifyingthem,weget

Page 490: Analytical Geometry: 2D and 3D

Hence,thelocusof(h,k)is(x2−y2)2=a2(x2+y2).

Example8.6.28

Ifthetangentandnormalatanypointofthehyperbola meetonthe

conjugateaxisatQandR,showthatthecircledescribedwithQRasthediameterpassesthroughthefociofthehyperbola.

Solution

Theequationofthetangentandnormalat(x1,y1)onthehyperbola are

ThesetwolinesmeettheconjugateaxisatQandR.Thereforesubstitutex=0in

equations(8.3)and(8.4).ThecoordinatesofQare ThecoordinatesofR

are

TheequationofthecirclewithQRasdiameteris

Substitutingx=±aeandy=0

Page 491: Analytical Geometry: 2D and 3D

(i.e.)a2e2−(a2+b2)=0(i.e.)a2e2−a2e2=0whichistrue.Hence,thecirclewithQRasdiameterpassesthroughthefoci.

Exercises

1. Findtheequationofthehyperbolawhosefocusis(1,2),directrix2x+y=1andeccentricity .

Ans.:7x2+12xy−2y2−2x+14y−22=0

2. Showthattheequationofthehyperbolahavingfocus(2,0),eccentricity2anddirectrixx−y=0

isx2+y2−4xy+4=0.

3. Findtheequationofthehyperbolawhosefocusis(2,2),eccentricity anddirectrix3x−4y=1.

Ans.:19x2+44y2−216xy−346x+472y−791=0

4. Findtheequationofthehyperbolawhosefocusis(0,0),eccentricity anddirectrixxcosα+ysin

α=p.

Ans.:16(x2+y2)−25(xcosα+ysinα−p)2=0

5. Findtheequationofthehyperbolawhosecentreis(−3,2)andoneendofthetransverseaxisis

(−3,4)andeccentricityis .

Ans.:4x2−21y2+24x+84y+36=0

6. Findtheequationofthehyperbolawhosefociare(6,4)and(−4,4)andeccentricity2.

Ans.:

7. Findtheequationofthehyperbolawhosecentreis(1,0),onefocusis(6,0)andlengthoftransverseaxisis6.

Ans.:16x2−9y2−32x−128=0

8. Findtheequationofthehyperbolawhosecentreis(3,2),onefocusis(5,2)andonevertexis(4,

Page 492: Analytical Geometry: 2D and 3D

2).

Ans.:3x2−y2−18x−4y+20=0

9. Findtheequationofthehyperbolawhosecentreis(6,2),onefocusis(4,2)andeccentricity2.

Ans.:

10. Findthecentre,eccentricityandfociofhyperbola9x2−16y2=144.

Ans.:

11. Findthecentre,fociandeccentricityof12x2−4y2−24x+32y−127=0.Ans.:(1,4),(6,4)and(−4,4)

12. Findthecentre,fociandeccentricityofthehyperbola9x2−4y2−18x+16y−43=0.

Ans.:

13. IfSandS′arethefociofahyperbolaandpisanypointonthehyperbola,showthatS′P−SP=2a.

14. Findthelatusofthehyperbola .

Ans.:

15. Findtheequationofthehyperbolareferredtoitsaxisastheaxisofcoordinateiflengthoftransverseaxisis5andconjugateaxisis4.

Ans.:

16. Findthelatusrectumofthehyperbola4x−9y2=36.

Page 493: Analytical Geometry: 2D and 3D

Ans.:

17. Findthecentre,eccentricityandfociofthehyperbolax2−2y2−2x+8y−1=0.

Ans.:

18. Findthecentre,eccentricity,focianddirectrixofthehyperbola16x2−9y2+32x+36y−164=0.

Ans.:

19. Thehyperbola passesthroughtheintersectionofthelines7x+13y−87=0and5x−

8y+7=0anditslatusrectumis Findaandb.

Ans.:

20. Tangentsaredrawntothehyperbola3x2−2y2=6fromthepointPandmakeθ1,θ2withx-axis.Ifthetanθ1tanθ2isaconstant,provethatlocusofPis

2x2−y2=7.

21. Findtheequationoftangentstothehyperbola3x2−4y2=15whichareparalleltoy=2x+k.Findthecoordinatesofthepointofcontact.

Ans.:

22. Tangentsaredrawntothehyperbolax2−y2=c2areinclinedatanangleof45°,showthatthe

locusoftheirintersectionis(x2+y2)2+4a2(x2−y2)=4a4.

23. Provethatthepolarofanypointontheellipse withrespecttothe will

touchtheellipseattheotherendoftheordinatethroughthepoint.

Page 494: Analytical Geometry: 2D and 3D

24. Ifthepolarofpoints(x1,y1)and(x2,y2)withrespecttohyperbolaareatrightanglesthenshow

thatb4x1x2+a4y1y2=0.

25. Findthelocusofpolesofnormalchordsofthehyperbola .

26. Chordsofthehyperbola subtendarightangleatoneofthevertices.Showthatthe

locusofpolesofallsuchchordsisthestraightlinex(a2+b2)=a(a2−b2).27. Ifchordsofthehyperbolaareataconstantdistancekfromthecentre,findthelocusoftheirpoles.

Ans.:

28. Obtainthelocusofthepointofintersectionoftangentstothehyperbola which

includesanangleβ.

Ans.:4(a2y2−b2x2+a2b2)=(x2+y2−a2+b2)tan2β

29. Ifavariablechordofthehyperbola isatangenttothecirclex2+y2=c2thenprove

thatthelocusofitsmiddlepointis

30. Showthattheconditionforthelinexcosα+ysinα=βtouchesthehyperbola isa2

cos2α−b2sin2α=p2.31. Provethatthetangentatanypointbisectstheanglebetweenfocaldistancesofthepoint.

32. Provethatthemidpointsofthechordsofthehyperbola paralleltothediametery=

mxbeonthediametera2my=b2x.33. IfthepolarofthepointAwithrespecttoahyperbolapassesthroughanotherpointB,thenshow

thatthepolarBpassesthroughA.

Page 495: Analytical Geometry: 2D and 3D

34. Ifthepolarsof(x1,y1)and(x2,y2)withrespecttothehyperbola areatrightangles,

thenprovethat.

35. Provethatthepolarofanypointon withrespecttothehyperbola touches

36. Obtaintheequationofthechordjoiningthepointsθandøonthehyperbolaintheform

.Ifθ−øisaconstantandequalto2α,showthatPQ

touchesthehyperbola

37. Ifacirclewithcentre(3α,3β)andofvariableradiuscutsthehyperbolax2−y2=9a2atthepoints

P,Q,RandSthenprovethatthelocusofthecentroidofthetrianglePQRis(x−2α)2−(y−2β)2=

a2.38. IfthenormalatPmeetsthetransverseaxisinrandtheconjugateaxisingandCFbe

perpendiculartothenormalfromthecentrethenprovethatPF·Pr=CB2andPF·Pg=CF2.39. Showthatthelocusofthepointsofintersectionoftangentsattheextremitiesofnormalchordsof

thehyperbola

40. Findtheequationandlengthofthecommontangentstohyperbolas

Ans.:

Page 496: Analytical Geometry: 2D and 3D

41. Tangentsaredrawnfromanypointonhyperbolax2−y2=a2+b2tothehyperbola .

Provethattheymeettheaxesinconjugatepoints.42. Provethatthepartofthetangentatanypointofahyperbolainterceptedbetweenthepointof

contactandthetransverseaxisisaharmonicmeanbetweenthelengthsoftheperpendicularsdrawnfromthefocionthenormalatthesamepoint.

43. Ifthechordjoiningthepointsαandβonthehyperbola isafocalchordthenprove

that wherek≠1.

44. LetthetangentandnormalatapointPonthehyperbolameetthetransverseaxisinTandG

respectively,provethatCT·CG=a2+b2.45. Ifthetangentatthepoint(h,k)tothehyperbolacutstheauxiliarycircleinpointswhoseordinates

arey1andy2thenshowthat

46. IfalineisdrawnparalleltotheconjugateaxisofahyperbolatomeetitandtheconjugatehyperbolainthepointsPandQthenshowthatthetangentsatPandQmeetonthecurve

47. Ifanellipseandahyperbolahavethesameprincipalaxesthenshowthatthepolarofanypointoneithercurvewithrespecttotheothertouchesthefirstcurve.

48. IfthetangentatanypointPonthehyperbola whosecentreisC,meetsthetransverse

andconjugateaxesinT1andT2,thenprovethat(i)CN·CT1=a2and(ii)CM·CT2=−b

2wherePMandPNareperpendicularsinthetransverseandconjugateaxes,respectively.

49. IfPisthelengthoftheperpendicularfromC,thecentreofthehyperbola onthe

tangentatapointPonitandCP=r,provethat

8.7ASYMPTOTES

Page 497: Analytical Geometry: 2D and 3D

Definition8.7.1Anasymptoteofahyperbolaisastraightlinethattouchesthehyperbolaatinfinitybutdoesnotliealtogetheratinfinity.

8.7.1EquationsofAsymptotesoftheHyperbola

Lettheequationofthehyperbolabe .Lety=mx+cbeanasymptote

ofthehyperbola.Solvingthesetwoequations,wegettheirpointsofintersection.Thexcoordinatesofthepointsofintersectionaregivenby

Ify=mx+cisanasymptote,thentherootsoftheaboveequationareinfinite.Theconditionsforthesearethecoefficientofx2=0andthecoefficientofx=0,b2−a2m2=0andmca2=0.

Theequationsoftheasymptotesare

Thecombinedequationoftheasymptotesis

Note8.7.1.1:

Page 498: Analytical Geometry: 2D and 3D

1. Theasymptotesoftheconjugatehyperbola arealsogivenby Therefore,

thehyperbolaandtheconjugatehyperbolahavethesameasymptotes.

2. Theequationofthehyperbolais

Theequationoftheasymptotesis

Theequationoftheconjugatehyperbolais

3. Theequationoftheasymptotesdiffersfromthatofthehyperbolabyaconstantandtheequationoftheconjugatehyperboladiffersfromthatoftheasymptotesbythesameconstantterm.Thisresultholdsgoodevenwhentheequationsofthehyperbolaanditsasymptotesareinthemostgeneralform.

4. Theasymptotespassthroughthecentre(0,0)ofthehyperbola.

5. Theslopesoftheasymptotesare and

Hence,theyareequallyinclinedtothecoordinateaxes,whicharethetransverseandconjugateaxes.

8.7.2AnglebetweentheAsymptotes

Let2θbetheanglebetweentheasymptotes.Then,

Page 499: Analytical Geometry: 2D and 3D

Hence,theanglebetweentheasymptotesis2sec−1(e).

Example8.7.1

Findtheequationoftheasymptotesofthehyperbola3x2−5xy−2y2+17x+y+14=0.

Solution

Thecombinedequationoftheasymptotesshoulddifferfromthatofthehyperbolaonlybyaconstantterm.∴Thecombinedequationoftheasymptotesis

Hence,theasymptotesare3x+y+l=0andx−2y+m=0.

Equatingthecoefficientsofthetermsxandyandtheconstantterms,weget

Solvingthesetwoequations,wegetl=2andm=5.

lm=k

Page 500: Analytical Geometry: 2D and 3D

∴k=10.Thecombinedequationoftheasymptotesis(3x+y+2)(x−2y+5)=0.

Example8.7.2

Findtheequationoftheasymptotesofthehyperbolaxy=xh+yk.

Solution

Thecombinedequationoftheasymptotesisxy=xh+yk+norxy−xh−yk−n=0.Theasymptotesarex+l=0andy+m=0.

(x+l)(y+m)=xy−xh−yk−n

Equatingthecoefficientsofthetermsxandyandtheconstantterms,weget

Hence,theequationoftheasymptotesis(x−h)(y−k)=0.

Example8.7.3

Findtheequationtothehyperbolathatpassesthrough(2,3)andhasforitsasymptotesthelines4x+3y−7=0andx−2y=1.

Solution

Thecombinedequationoftheasymptotesis(4x+3y−7)(x−2y−1)=0.Hence,theequationofthehyperbolais(4x+3y−7)(x−2y−1)+k=0.Thispassthrough(2,3).

Hence,theequationofthehyperbolais

Page 501: Analytical Geometry: 2D and 3D

Example8.7.4

Findtheequationofthehyperbolathathas3x−4y+7=0and4x+3y+1=0asasymptotesandpassesthroughtheorigin.

Solution

Thecombinedequationoftheasymptotesis

Hence,theequationofthehyperbolais(3x−4y+7)(4x+3y+1)+k=0.Thispassesthroughtheorigin(0,0).∴7+k=0ork=−7Hence,theequationofthehyperbolais

Example8.7.5

Findtheequationsoftheasymptotesandtheconjugatehyperbolagiventhatthe

hyperbolahaseccentricity ,focusattheoriginandthedirectrixalongx+y+

1=0.

Solution

Fromthefocusdirectrixproperty,theequationofthehyperbolais

Page 502: Analytical Geometry: 2D and 3D

Thecombinedequationoftheasymptotesis2xy+2x+2y+k=0,wherekisaconstant.Lettheasymptotesbe2x+l=0andy+m=0.Then,

Equatingliketerms,weget2m=2.∴m=1.Similarly,l=2.Aslm=k,wegetk=2.Therefore,theasymphtesofthecombinedequationoftheasymptotesis2xy+

2x+2y+2=0.Theequationoftheasymptotesoftheconjugatehyperbolashoulddifferby

thesameconstant.Theequationoftheasymptotesoftheconjugatehyperbolais2xy+2x+2y+1=0.

Example8.7.6

Derivetheequationsofasymptotes.

Solution

Theequationofthehyperbolais (i.e.)f(x1,y1)=b2x2−a2y2−a2b2=

0.Thisbeingasecond-degreeequation,itcanhavemaximumtwoasymptotes.Asthecoefficientsofthehighestdegreetermsinxandyareconstants,thereisnoasymptoteparalleltotheaxesofcoordinates.Takex=1andy=minthehighestdegreetermsϕ(m)=b2−a2m2.Similarlyϕ(m)=0.Theslopesofthe

obliqueasymptotesaregivenbyϕ2(m)=0.(i.e.)

Also,

Theequationsoftheasymptotesaregivenby

Page 503: Analytical Geometry: 2D and 3D

Therefore,thecombinedequationis

Exercises

1. Provethatthetangenttothehyperbolax2−3y2=3at whenassociatedwiththetwo

asymptotesformanequilateraltrianglewhoseareais squareunits.

2. Provethatthepolarofanypointonanyasymptoteofahyperbolawithrespecttothehyperbolaisparalleltotheasymptote.

3. Provethattherectanglecontainedbytheinterceptsmadebyanytangenttoahyperbolaonitsasymptotesisconstant.

4. Fromanypointofthehyperbolatangentsaredrawntoanotherwhichhasthesameasymptotes.Showthatthechordofcontactcutsoffaconstantareafromtheasymptotes.

5. Findtheequationofthehyperbolawhoseasymptotesarex+2y+3=0and3x+4y+5=0andwhichpassesthroughthepoint(1,−1)

Ans.:(x+2y−13)(3x+4y+3)−8=0

6. Findtheasymptotesofthehyperbola3x2−5xy−2y2+5x+11y−8=0.Ans.:x−2y+3=03x+y−4=0

7. Provethatthelocusofthecentreofthecirclecircumscribingthetriangleformedbythe

asymptotesofthehyperbola andavariabletangentis

8. Findtheequationoftheasymptotesofthehyperbola9y2−4x2=36andobtaintheproductofthe

perpendiculardistanceofanypointonthehyperbolafromtheasymptotes.

9. Showthatthelocusofthepointofintersectionoftheasymptoteswiththedirectricesofthe

hyperbola isthecirclex2+y2=a2.

10. LetCbethecentreofahyperbola.ThetangentatPmeetstheaxesinQandRandtheasymptotesinLandM.ThenormalatPmeetstheaxesinAandB.ProvethatLandMlieonthecircleOABandQandRareconjugatewithrespecttothecircle.

Page 504: Analytical Geometry: 2D and 3D

11. IfalinethroughthefocusSdrawnparalleltotheasymptotes ofthehyperbola

meetsthehyperbolaandthecorrespondingdirectrixatPandQthenshowthatSQ=2·

SP.

12. Findtheasymptotesofthehyperbola andshowthatthestraightlineparalleltoan

asymptotewillmeetthecurveinonepointatinfinity.13. Provethattheproductoftheinterceptsmadebyanytangenttoahyperbolaonitsasymptotesisa

constant.14. Ifaseriesofhyperbolasisdrawnhavingacommontransverseaxisoflength2athenprovethatthe

locusofapointPoneachhyperbola,suchthatitsdistancefromoneasymptoteisthecurve(x2−

b2)2=4x2(x2−a2).

8.8CONJUGATEDIAMETERS

Locusofmidpointsofparallelchordsofthehyperbolais

Let(x1,y1)bethemidpointofachordofthehyperbola

Thenitsequationis

Theslopeofthischordis

Letthischordbeparalleltoy=mx.

Then

Page 505: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1)is ,whichisastraightlinepassingthroughthe

origin.

Ify=m′xbisectsallchordsparalleltoy=mxthen By

symmetry,wenotethaty=mxwillbisectallchordsparalleltoy=m′x.

Definition8.8.1Twodiametersaresaidtobeconjugateifeachbisectschordsparalleltotheother.Theconditionofthediametersy=mxandy=m′xtobe

conjugatediametersis

Note8.8.2Thesediametersarealsoconjugatediametersoftheconjugate

hyperbola since

Property8.8.1

Ifadiametermeetsahyperbolainrealpoints,itwillmeettheconjugatehyperbolainimaginarypointsanditsconjugatediameterwillmeetthehyperbolainimaginarypointsandtheconjugatehyperbolainrealpointsandviceversa.

Proof

Lettheequationofthehyperbolabe

Page 506: Analytical Geometry: 2D and 3D

Thentheequationoftheconjugatehyperbolais

Lety=mxandy=m′xbeapairofconjugatediametersofthehyperbola(8.5).Then

Thepointsofintersectionofy=mxandthehyperbola(8.5)aregivenby

Sincethehyperbolameetsy=mxinrealpointsfrom(8.8)b2−a2m2>0.Thepointsofintersectionof(8.6)withy=mxaregivenby

Therefore,y=mxmeetstheconjugatehyperbolainimaginarypoints.Thepointsofintersectionofy=m′xwiththehyperbola(8.5)aregivenby

Page 507: Analytical Geometry: 2D and 3D

Theconjugatediametermeetsthehyperbolainimaginarypoints.Alsoitsintersectionwiththeconjugatehyperbolaisgivenby

y=m′xmeetstheconjugatehyperbolainrealpoints.

Property8.8.2

IfapairofconjugatediametersmeetthehyperbolaanditsconjugatehyperbolainPandD,respectivelythenCP2−CD2=a2−b2.

Proof

LetPbethepoint(asecθ,btanθ)ThenDwillhavecoordinates(−atanθ,−bsecθ).ThenCP2=a2sec2θ+b2tan2θCD2=a2tan2θ+b2sec2θCP2−CD2=a2(sec2θ−tan2θ)−b2(sec2θ−tan2θ)=a2−b2

Property8.8.3

Theparallelogramformedbythetangentsattheextremitiesofconjugatediametersofhyperbolahasitsverticeslyingontheasymptotesandisofconstantarea.

Page 508: Analytical Geometry: 2D and 3D

Proof

LetPandDbepoints(asecθ,btanθ)and(atanθ,bsecθ)onthehyperbolaanditsconjugate.

ThenD′andP′are(−atanθ,−bsecθ)and(−asecθ,−btanθ),respectively.Theequationsoftheasymptotesare

TheequationsofthetangentsatP,P′,D,D′are

respectively.ClearlythetangentsatPandP′areparallelandalsothetangentsatDandD′areparallel.Solving(8.9)and(8.11)wegetthecoordinatesofDare[a(secθ+tanθ),b[secθ+tanθ)].

Thisliesontheasymptote .

Similarlytheotherpointsofintersectionalsolieontheasymptotes.

Page 509: Analytical Geometry: 2D and 3D

TheequationsofPCP′andDCD′are

Lines(8.11),(8.12)and(8.13)areparallelandalsothelines(8.9),(8.10)and(8.11)areparallel.Therefore,areaofparallelogramABCD=4areaofparallelogramCPAD.

Example8.8.1

Ifapairofconjugatediametersmeethyperbolaanditsconjugate,respectivelyinPandDthenprovethatPDisparalleltooneoftheasymptotesandisbisectedbytheotherasymptote.

Solution

Lettheequationofthehyperbolabe

Theequationoftheconjugatehyperbolais

Theasymptotesofthehyperbola(1)are

Page 510: Analytical Geometry: 2D and 3D

LetPbethepoint(asecθ,btanθ).ThenDisthepoint(atanθ,bsecθ).

TheslopeofthechordPDis Theslopeofthe

asymptote(8.18)PDisparalleltotheasymptote(8.18).

ThemidpointofPDisa .Thispointliesonthe

asymptotesgivenby(8.17).Therefore,PDisbisectedbytheotherasymptote.

Example8.8.2

Inthehyperbola16x2−9y2=144findtheequationofthediameterconjugatetothediameterx=2y.

Solution

Theequationofthehyperbolais16x2−9y2=144

Theslopeofthelinex=2yis

Page 511: Analytical Geometry: 2D and 3D

Ifmandm′aretheslopesoftheconjugatediametersthen

Therefore,theequationoftheconjugatediameteris or32x−9y=0.

Example8.8.3

FindtheconditionthatthepairoflinesAx2+2Hxy+By2=0tobeconjugate

diametersofthehyperbola

Solution

LetthetwostraightlinesrepresentedbyAx2+2Hxy+By2=0bey=m1xandy=m2x.Then

Iftheselinesaretheconjugatediametersofthehyperbolathen

From(8.19)and(8.20)

Property8.8.4

Page 512: Analytical Geometry: 2D and 3D

Anytwoconjugatediametersofarectangularhyperbolaareequallyinclinedtotheasymptotes.

Proof

Lettheequationoftherectangularhyperbolabex2−y2=a2.Theequationoftheasymptotesisx2−y2=0.

Lety=mxand beapairofconjugatediametersoftherectangular

hyperbolabex2−y2=a3.Thenthecombinedequationoftheconjugatediametersis

Thecombinedequationofthebisectorsoftheanglesbetweenthesetwolinesis

Thisisthecombinedequationoftheasymptotes.Therefore,theasymptotesbisecttheanglebetweentheconjugatediameter.

8.9RECTANGULARHYPERBOLA

Definition8.9.1Ifinahyperbolathelengthofthesemi-transverseaxisisequaltothelengthofthesemi-conjugateaxis,thenthehyperbolaissaidtobearectanglehyperbola.

8.9.1EquationofRectangularHyperbolawithReferencetoAsymptotesasAxes

Page 513: Analytical Geometry: 2D and 3D

Inarectangularhyperbola,theasymptotesareperpendiculartoeachother.Sincetheaxesofcoordinatesarealsoperpendiculartoeachother,wecantaketheasymptotesasthex-andy-axes.Thentheequationsoftheasymptotesarex=0andy=0.Thecombinedequationoftheasymptotesisxy=0.Theequationofthehyperbolawilldifferfromthatofasymptotesonlybya

constant.Hence,theequationoftherectangularhyperbolaisxy=kwherekisaconstanttobedetermined.LetAA′bethetransverseaxisanditslengthbe2a.Then,AC=CA′=a.DrawALperpendiculartox-axis.Sincetheasymptotes

bisecttheanglebetweentheaxes,

ThecoordinatesofAare Sinceitliesontherectangularhyperbolaxy=

k,weget Hence,theequationoftherectangularhyperbolais orxy=

c2where

Note8.9.1.1:Theparametricequationsoftherectangularhyperbolaxy=c2arex

=ctand

Page 514: Analytical Geometry: 2D and 3D

8.9.2EquationsofTangentandNormalat(x1,y1)ontheRectangularHyperbolaxy=c2

Theequationofrectangularhyperbolaisxy=c2.Differentiatingwithrespecttox,weget

Theequationofthetangentat(x1,y1)is

since

x1y1=c2.

Theslopeofthenormalat(x1,y1)is

Theequationofthenormalat(x1,y1)is

8.9.3EquationofTangentandNormalat ontheRectangularHyperbola

Page 515: Analytical Geometry: 2D and 3D

xy=c2

Theequationoftherectangularhyperbolaisxy=c2.Differentiatingwithrespecttox,weget

slopeofthetangentat

Theequationofthetangentatis is

Theslopeofthenormalat‘t’is−t2.Theequationofthenormalat‘t’is

Dividingbyt,weget

8.9.4EquationoftheChordJoiningthePoints‘t1’and‘t2’ontheRectangularHyperbolaxy=c2andtheEquationoftheTangentatt

Page 516: Analytical Geometry: 2D and 3D

Thetwopointsare Theequationsofthechordjoiningthetwo

pointsare

Crossmultiplying,weget

Thischordbecomesthetangentat‘t’ift1=t2=t.Hence,theequationofthetangentat‘t’isx+yt2=2ct.

8.9.5Properties

Anytwoconjugatediametersofarectangularhyperbolaareequallyinclinedtotheasymptotes.

ProofLettheequationoftherectangularhyperbolabex2−y2=a2.The

equationoftheasymptotesisx2−y2=0.Lety=mxand beapairof

conjugatediametersoftherectangularhyperbolax2−y2=a2.Then,thecombinedequationoftheconjugatediametersis

Thecombinedequationofthebisectorsoftheanglesbetweenthesetwolinesis

whichisthecombinedequationoftheasymptotes.

Page 517: Analytical Geometry: 2D and 3D

Therefore,theasymptotesbisecttheanglebetweentheconjugatediameter.

8.9.6ResultsConcerningtheRectangularHyperbola

1. Theequationofthetangentat(x1,y1)ontherectangularhyperbolaxy=c2is

2. Theequationofthenormalat(x1,y1)is

3. Theequationofthepairoftangentsfrom(x1,y1)is(xy1+yx1−2c2)2=4(xy−c2)(x1y1−c

2).4. Theequationsofthechordhaving(x1,y1)asitsmidpointisxy1+yx1=2x1y1.

5. Theequationofthechordofcontactfrom(x1,y1)isxy1+yx1=2c2.

8.9.7ConormalPoints—FourNormalfromaPointtoaRectangularHyperbola

Let(x1,y1)beagivenpointandtbethefootofthenormalfrom(x1,y1)ontherectangularhyperbolaxy=c2.

Theequationofthenormalattis

Sincethisnormalpassesthrough(x1,y1),

Thisisafourth-degreeequationintandtherearefourvaluesoft(realorimaginary).Correspondingtoeachvalueoftthereisanormal,andhencetherearefournormalsfromagivenpointtotherectangularhyperbola.

Note8.9.7.1:Ift1,t2,t3andt4arethefourpointsofintersection,then

8.9.8ConcyclicPointsontheRectangularHyperbola

Page 518: Analytical Geometry: 2D and 3D

Lettheequationoftherectangularhyperbolabexy=c2.Lettheequationofthecirclebex2+y2+2gx+2fy+k=0.

Let beapointofintersectionofrectangularhyperbolaandthecircle.

Then,thepoint alsoliesonthecircle.Substituting inthe

equationofthecircleweget

Thisisafourthdegreeequationint.Foreachvalueoft,thereisapointofintersection(realorimaginary).Hence,therearefourpointsofintersectionforarectangularhyperbolawiththecircle.

Note8.9.8.1:Ift1,t2,t3andt4arethefourpointsofintersection,then

Example8.9.1

Showthatthelocusofpoleswithrespecttotheparabolay2=4axoftangentstothehyperbolax2−y2=a2istheellipse4x2+y2=4a2.

Solution

Let(x1,y1)bethepolewithrespecttotheparabolay2=4ax.Then,thepolarof

(x1,y1)is

Thisisatangenttotherectangularhypherbolax2−y2=a2.Theconditionfortangencyis

Page 519: Analytical Geometry: 2D and 3D

Theconditionfortangencyis

Thelocusof(x1,y1)is4x2+y2=4a2whichisanellipse.

Example8.9.2

Pisapointonthecirclex2+y2=a2andPQandPRaretangentstothehyperbolax2−y2=a2.ProvethatthelocusofthemiddlepointofQRisthecurve(x2−y2)2=a2(x2+y2).

Solution

LetP(x1,y1)beapointonthecirclex2+y2=a2

SincePQandPRaretangentsfromPtotherectangularhyperbolax2–y2=a2,QRisthechordofcontactsoftangentsfromP(x1,y1).Therefore,itsequationisxx1+yy1=a2.Let(h,k)bethemidpointofQR.Itsequationisxh–yk=h2–k2.Thesetwoequationsrepresentthesameline.Therefore,identifyingthem,weget

Since

Thelocusof(h,k)is(x2–y2)2=a2(x2+y2).

Page 520: Analytical Geometry: 2D and 3D

Example8.9.3

Provethatthelocusofpolesofallnormalchordsoftherectangularhyperbolaxy=c2isthecurve(x2–y2)+4c2xy=0.

Solution

Let(x1,y1)bethepoleofthenormalchordofrectangularhyperbolaxy=c2.Thepolesof(x1,y1)isxy1+yx1=2c2.Letthechordbenormalatt.The

equationofthenormalattis Thesetwoequationsrepresentthe

samestraightline.Identifyingthem,weget

Also

Thelocusof(x1,y1)is(x2–y2)2+4c2xy=0.

Example8.9.4

IfPisanypointontheparabolax2+16ay=0,provethatthepolesofPwithrespecttorectangularhyperbolaxy=2a2willtouchtheparabolay2=ax.

Page 521: Analytical Geometry: 2D and 3D

Solution

Let(x1,y1)beanypoint.ThepolarofPwithrespecttothehyperbolaisxy1+x1y

=4a2(i.e.) Thisisatangenttotheparabolay2=ax.Thecondition

is

Thelocusof(x1,y1)isx2+16ay=0.

Example8.9.5

Atangenttotheparabolax2=4aymeetsthehyperbolaxy=c2atPandQ.ProvethatthemiddlepointofPQliesonafixedparabola.

Solution

Let(x1,y1)bethemidpointofthechordPQoftherectangularhyperbolaxy=c2.TheequationofchordPQis

Thisisatangenttotheparabolax2=4ay.Therefore,theconditionis

(i.e.) Thelocusof(x1,y1)is2x2+ay=0,whichisafixed

parabola.

Page 522: Analytical Geometry: 2D and 3D

Example8.9.6

Findthelocusofmidpointsofchordsofconstantlength2loftherectangularhyperbolaxy=c2.

SolutionLetR(x1,y1)bethemidpointofthechordPQ.Lettheequationofthechord

Anypointonthislineisx=x1+rcosθ,y=y1+rsinθ.Ifthispointliesontherectangularhyperbolaxy=c2,weget(x1+rcosθ)(y1+rsinθ)=c2.

Thisisaquadraticequationinr.ThetwovaluesofrarethedistancesRPandRQwhichareequalinmagnitudebutoppositeinsign.Theconditionforthisisthecoefficientofrisequaltozero.

Then,equation(8.21)becomes

Fromequation(8.22),

Page 523: Analytical Geometry: 2D and 3D

Substitutingtheseinequation(8.23),weget

butr=l.

Therefore,thelocusof(x1,y1)is(x2+y2)(xy–c2)–l2xy=0.

Example8.9.7

IfPP'isadiameteroftherectangularhyperbolaxy=c2showthatthelocusoftheintersectionoftangentsatPwiththestraightlinethroughP′paralleltoeitherasymptoteisxy+3c2=0.

Solution

LetPbethepoint ThenP′isthepoint

TheequationofthetangentatPisx+yt2=2ct.

TheequationofthestraightlineP'Rparalleltox-axisis

Let(x1,y1)bethepointofintersectionofthesetwolines.Then

Page 524: Analytical Geometry: 2D and 3D

Substitutinginequation(8.24),

Thelocusof(x1,y1)isxy+3c2=0.

Example8.9.8

Thetangentstotherectangularhyperbolaxy=c2andtheparabolay2=4axattheirpointofintersectionsareinclinedatanglesαandβ,respectively,tothex-axis.Showthattanα+2tanβ=0.

Solution

Let(x1,y1)bethepointofintersectionoftherectangularhyperbolaxy=c2andtheparabolay2=4ax.Theequationoftangentat(x1,y1)totheparabolaisyy1=2a(x+x1).Theequationoftangenttotherectangularhyperbolaisxy1+yx1=2c2.

Theslopeofthetangenttotheparabolais

Theslopeofthetangenttothetangenttotherectangularhyperbolais

Page 525: Analytical Geometry: 2D and 3D

since(x1,y1)liesontheparabolay2=4ax.∴tanα+2tanβ=0

Example8.9.9

Ifthenormaltotherectangularhyperbolaxy=c2atthepointtasitintersecttherectangularhyperbolaatt1thenshowthatt3t1=–1.

Solution

Theequationofthenormalattis

Theequationofthechordjoiningthepointstandt1isx+ytt1=c(t+t1).Thesetwoequationsrepresentthesamestraightline.Identifyingthem,weget

Example8.9.10

Page 526: Analytical Geometry: 2D and 3D

Showthattheareaofthetriangleformedbythetwoasymptotesoftherectangularhyperbolaxy=c2andthenormalat(x1,y1)onthehyperbolais

Solution

Theequationofthenormalat(x1,y1)is

Whenthenormalmeetsthex-axis,y=0.

Whenthenormalmeetsy-axis,x=0

Theareaofthetriangle

Page 527: Analytical Geometry: 2D and 3D

(i.e.) sincex1y1=c2andignoringthenegativesign.

Example8.9.11

Iffourpointsbetakenonarectangularhyperbolasuchthatthechordjoininganytwoisperpendiculartothechordjoiningtheothertwoandα,β,γ,δaretheinclinationsofthestraightlinesjoiningthesepointstothecentre.provethattanαtanβtanγtanδ=1.

Solution

Lett1,t2,t3,andt4befourpointsP,Q,R,andSontherectangularhyperbolaxy=c2.Theequationofthechordjoiningt1andt2isx+yt1t2=c(t1+t2).

Theslopeofthischordis

Similarly,theslopeofthechordjoiningt3andt4is

Sincethesetwochordsareperpendicular,

TheslopeofthelineCPis

Similarly,

Page 528: Analytical Geometry: 2D and 3D

fromequation(8.26)

Example8.9.12

IfthenormalsatthreepartsP,QandRonarectangularhyperbolaintersectatapointSonthecurvethenprovethatthecentreofthehyperbolaisthecentroidofthetrianglePQR.

Solution

Ifthenormalattmeetsthecurveatt'thent2t'=–1.

Thisisacubicequationint.Ift1,t2andt3aretherootsofthisequationtheycanberegardedastheparametersofthepointsP,QandR,thenormalsatthesepointsmeetatt'whichisS.Fromequation(8.27),wegett1+t2+t3=0andt1t2+t2t3+t3t1=0.Let(h,k)bethecentroidofΔPQR.

Then

Thecentroidisthecentreoftherectangularhyperbola.

Example8.9.13

Showthatfournormalscanbedrawnfromapoint(h,k)totherectangularhyperbolaxy=c2andthatitsfeetformatriangleanditsorthocentre.

Solution

Page 529: Analytical Geometry: 2D and 3D

Theequationofthenormalattis

(i.e.)ct4–xt3+yt–c=0

Sincethispassesthrough(h,k),ct4–ht3+kt–c=0.Thisisafourthdegreeequationint.Itsrootsaret1,t2,t3andt4whicharethe

feetofthefournormalsfrom(h,k).

Ift1,t2,t3andt4arethepointsP,Q,RandSontherectangularhyperbolaxy=

c2,itcanbeshownthattheorthocentreofthetriangleis

Thispointis ist1t2t3t4=–1.

∴ThefourpointsP,Q,RandSformatriangleanditsorthocentre.

Example8.9.14

Provethatfromanypoint(h,k)fournormalscanbedrawntotherectangularhyperbolaxy=c2andthatifthecoordinatesofthefourfeetofthenormalsP,Q,RandSbe(xr,yr),r=1,2,3,4.Then(i)x1+x2+x3+x4=h,y1+y2+y3+y4=kand(ii)x1x2x3x4=y1y2y3y4=–c4.

Solution

Theequationofthenormalattis

Page 530: Analytical Geometry: 2D and 3D

Sincethispassesthrough(h,k)

Theformvaluesoftcorrespondtothefeetofthefournormalsfromthepoint(h,k).Ift1,t2,t3andt4arethefourfeetofthenormalsthentheyaretherootsoftheaboveequation.

Fromequation(8.28),c(t1+t2+t3+t4)=h

(i.e.)x1+x2+x3+x4=h

Dividingequation(8.30)byequation(8.31),weget

Example8.9.15

Provethatthefeetoftheconcurrentnormalsontherectangularhyperbolaxy=c2whichmeetsat(h,k)lieonanotherrectangularhyperbolawhichpasses

Page 531: Analytical Geometry: 2D and 3D

through(0,0)and(h,k).

Solution

Theequationofthenormalat(x1,y1)is

Sincethispassesthrough(h,k),

Thelocusof(x1,y1)isx2–y2–hx+ky=0.Clearlythisisarectangularhyperbolapassingthrough(0,0)and(h,k).

Example8.9.16

IfarectangularhyperbolawhosecentreisciscutbyanycircleofradiusrinfourpointsP,Q,R,SthenprovethatCP2+CQ2+CR2+CS2=4r2.

Solution

Lettheequationoftherectangularhyperbolabe

Lettheequationofthecirclebe

Solvingthesetwoequations,wegettheirpointsofintersections

Substitutinginequation(8.33),

Page 532: Analytical Geometry: 2D and 3D

Ifx1,x2,x3,x4aretheabscissaeofthefourpointsofintersectionx1+x2+x3+x4=–2g.

Example8.9.17

A,B,CandDarefourpointsofintersectionofacircleandarectangularhyperbola.IfABpassesthroughthecentreofthehyperbola,showthatCDpassesthroughthecentreofthecircle.

Solution

Lettheequationoftherectangularhyperbolabexy=c2.Lettheequationofthecirclebex2+y2+2gx+2fy+k=0.LetA,B,CandDbethepointst1,t2,t3andt4,respectively.Whenthecircleandrectangularhyperbolaintersectweknowthat

TheequationofthechordABisx+yt1t2=c(t1+t2).SinceABpassesthrough(0,0),weget

t1+t2=0(8.38)

∴Fromequation(8.34),

Page 533: Analytical Geometry: 2D and 3D

usingequation(8.38)

[Fromequations(8.39)and(8.40)]

TheequationofthechordCDisx+yt3t4=c(t3+t4).

Thisstraightlinepassesthroughthepoint(–g,–f).Therefore,CDpassesthroughthecentreofthecircle.

Example8.9.18

ShowthatthroughanygivenpointPintheplaneofxy=c2,fournormalscanbedrawntoit.IfP1,P2,P3andP4arefeetofthesenormalsandCiscentrethen

showthat

Solution

Page 534: Analytical Geometry: 2D and 3D

Theequationofthenormalattis

Letpbethepoint(h,k).Sincethenormalpassesthrough(h,k),

Thisbringsafourthdegreeequation,therearefournormalsfromP.

Ift1,t2,t3andt4arethefeetofthenormalsthen

Example8.9.19

TheslopesofthesidesoftriangleABCinscribedinarectangularhyperbolaxy=c2aretanα,tanβandtanγ.IfthenormalsatA,BandCareconcurrentshowthatcot2α+cot2β+cot2γ=0.

Solution

LetA,B,Cbethepointst1,t2andt3respectively.

Page 535: Analytical Geometry: 2D and 3D

TheslopeofABis

Example8.9.20

Showthataninfinitenumberoftrianglescanbeinscribedinarectangularhyperbolaxy=c2whosesidestouchtheparabolay2=4ax.

Solution

LetABCbeatriangleinscribedintherectangularhyperbolaxy=c2.LetA,BandCbethepointst1,t2,andt3,respectively.SupposethesidesABandACtouchtheparabolay2=4ax.TheequationofthechordABisx+yt1t2=c(t1+t2).

Thistouchestheparabolay2=4ax.(i.e.)

(i.e.)c(t1+t2)+a(t1t2)2=0

(i.e.) SinceACalsotouchestheparabola,

Page 536: Analytical Geometry: 2D and 3D

Fromtheseequations,wenotethatt2,t3aretherootsoftheequation

TheequationofthechordBCisx+yt2t3=c(t2+t3).

ThisequationshowsthatBCtouchestheparabolay2=4ax.SinceABCisanarbitrarytriangleinscribedintherectangularhyperbolaxy=c2thereareinfinitenumberofsuchtrianglestouchingtheparabolay2=4ax.

Exercises

1. Provethattheportionofthetangentinterceptedbetweenbyitsasymptotesisbisectedatthepointofcontactandformatriangleofcontactarea.

2. Ifthetangentandnormaltoarectangularhyperbolamakeinterceptsa1anda2ononeasymptoteandb1andb2ontheotherthenshowthata1a2+b1b2=0.

3. PandQarevariablepointsontherectangularhyperbolaxy=c2suchthatthetangentatQpassesthroughthefootoftheordinateofP.ShowthatthelocusoftheintersectionofthetangentsatPandQisahyperbolawiththesameasymptotesasthegivenhyperbola.

4. Ifthelinesx–α=0andy−β=0areconjugatelineswithrespecttothehyperbolaxy=c2then

provethatthepoint(α,β)isonthehyperbolaxy–2c2=0.

5. Ifthechordsofthehyperbolax2−y2=a2touchtheparabolay2=4axthenprovethatthelocusof

theirmiddlepointsisthecurvey2(x–a)=x3.

6. IfPQandPRaretwoperpendicularchordsoftherectangularhyperbolaxy=c2thenshowthatQRisparalleltothenormalatP.

Page 537: Analytical Geometry: 2D and 3D

7. Ifthepolarofapointwithrespecttotheparabolay2=4axtouchestheparabolax2=4by,showthatthepointshouldlieonarectangularhyperbola.

8. Showthatthenormalattherectangularhyperbolaxy=c2atthepoint meetsthecurve

againatthepoint .ShowthatPQvariesasCP2whereCisthecentre.

9. IfPQisachordoftherectangularhyperbolaxy=c2whichisthenormalatPshowthat3CP2+

CQ2=PQ2whereCisthecentreoftheconic.10. Tworectangularhyperbolasaresuchthattheaxesofonearealongtheasymptotesoftheother.

Findthedistancebetweenthepointofcontactofacommontangenttothem.11. Provethatanylineparalleltoeitheroftheasymptotesofahyperbolashouldmeetitinonepointat

infinity.12. ThetangentatanypointofthehyperbolameetstheasymptotesatQandR.ShowthatCQ·CRisa

constant.13. Provethatthelocusofthecentreofthecirclecircumscribingthetriangleformedbythe

asymptotesofthehyperbola andavariabletangentis4(a2x2–b2y2)=a2+b2.

14. Showthatthecoordinatesofthepointofintersectionoftwotangentstoarectangularhyperbolaareharmonicmeansbetweenthecoordinatesofthepointofcontact.

15. IfthenormalsatA,B,CandDtotherectangularhyperbolaxy=c2meetinP(h,k)thenprovethat

PA2+PB2+PC2+PD2=3(h2+k2).

16. If(ctanϕ,ccotϕ)beapointontherectangularhyperbolaxy=c2thenshowthatthechordsthroughthepointsϕandϕ'whereϕ+ϕ'isaconstantpassesthroughafixedpointontheconjugateaxisofthehyperbola.

17. Provethatthepoleswithrespecttothecirclex2+y2=a2ofanytangenttotherectangular

hyperbolaxy=c2liesonrectangularhyperbola4c2xy=c2.18. Ifanormaltoarectangularhyperbolamakesanacuteangleθwithitstransverseaxisthenprove

thattheacuteangleatwhichitcutsthecurveagainiscot–1(2tan2θ).

19. Ifacirclecutstherectangularhyperbolaxy=c2infourpointsthenprovethattheproductofthe

abscissaeofthepointsisc4.

20. Lettherectangularhyperbolaxy=c2iscutbyacirclepassingthroughitscentreCinfourpoints

P,Q,RandS.Ifp,qbetheperpendicularsfromconPQ,RSthenshowthatpq=c2.

21. Ifatriangleisinscribedinarectangularhyperbolaxy=c2andtwoofitssidesareparalleltoy=

m1xandy=m2xthenprovethatthethirdsidetouchesthehyperbola4m1m2xy=c2(m1+m2)

2.

22. Ifacirclecutstherectangularhyperbolaxy=c2inP,Q,RandSandtheparametersofthesefourpointsbet1,t2,t3andt4,respectivelythenprovethatthecentreofthemeanpositionofthese

Page 538: Analytical Geometry: 2D and 3D

pointsbisectthedistancebetweenthecentresofthetwocurves.

23. Ifthreetangentsaredrawntotherectangularhyperbolaxy=c2atthepoints(xi,yi),i=1,2,3andformatrianglewhosecircumcirclepassesthroughthecentreofthehyperbolathenshowthat

andthatthecentreofthecircleliesonthehyperbola.

24. Ifacirclewithfixedcentre(3p,3q)andofvariableradiuscutstherectangularhyperbolax2–y2=

9c2atthepointsP,Q,RandSthenshowthatthelocusofthecentroidofthetrianglePQRisgiven

by(x–2p)2–(y–2q)2=a2.25. Showthatthesumoftheeccentricanglesofthefourpointsofintersectionofanellipseanda

rectangularhyperbolawhoseasymptotesareparalleltotheaxesoftheellipseisanoddmultipleofπ.

26. Iffromanypointonthelinelx+my+1=0tangentsPQ,PRaredrawntotherectangular

hyperbola2xy=c2andthecirclePQRcutsthehyperbolaagaininTandT'thenprovethatTT'

touchestheparabola(l2+m2)(x2+y2)=(lx+my+1)2.27. Ifacirclecutstwofixedperpendicularlinessothateachinterceptisofgivenlengththenprove

thatthelocusofthecentreofthecircleisarectangularhyperbola.28. IfAandBarepointsontheoppositebranchesofarectangularhyperbola.ThecircleonABas

diametercutsthehyperbolaagainatCandDthenprovethatCDisadiameterofthehyperbola.

29. IfA,BandCarethreepointsontherectangularhyperbolaxy=d2whoseabscissaearea,bandc

respectivelythenprovethattheareais andtheareaofthetriangle

enclosedbytangentsatthesepointsis

30. Iffourpointsonarectangularhyperbolaxy=c2lieonacircle,thenprovethattheproductoftheir

abscissaeisc4.31. Ifx1,x2,x3andx4betheabscissaeoftheangularpointsandtheorthocentreofatriangle

inscribedinxy=c2thenprovethatx1x2x3x4=–c4.

32. Showthatthelengthofthechordoftherectangularhyperbolaxy=c2whichisbisectedatthe

point(h,k)is

33. ProvethatthepointofintersectionoftheasymptotesofarectangularhyperbolawiththetangentatanypointPandoftheaxeswiththenormalatPareequidistantfromP.

34. IfPisanypointonarectangularhyperbolawhoseverticesareAandA'thenprovethatthebisectorsofangleAPA'areparalleltotheasymptotesofthecurve.

35. LetQCQ'isadiameterofarectangularhyperbolaandPisanypointonthecurve.ProvethatPQ,

Page 539: Analytical Geometry: 2D and 3D

PQ'areequallyinclinedtotheasymptotesofthehyperbola.36. ThroughthepointP(0,b)alineisdrawncuttingthesamebranchoftherectangularhyperbolaxy=

c2inQandRsuchthatPQ=QR.Showthatitsequationis9c2y+2b2x=9bc2.

37. Ifarectangularhyperbolaxy=c2iscutbyacirclepassingthroughitscentreOinpointsA,B,CandDwhoseparametersaret1,t2,t3andt4thenshowthat(t1+t2)(t3+t4)+t1t2+t3t4=0and

deducethattheproductoftheperpendicularfromOonABandCDisc2.

Page 540: Analytical Geometry: 2D and 3D

Chapter9

PolarCoordinates

9.1INTRODUCTION

Acoordinatesystemrepresentsapointinaplanebyanorderedpairofnumberscalledcoordinates.EarlierweusedCartesiancoordinateswhicharedirecteddistancesfromtwoperpendicularaxes.NowwedescribeanothercoordinatesystemintroducedbyNewtoncalledpolarcoordinateswhichismoreconvenientforsomespecialpurposes.

9.2DEFINITIONOFPOLARCOORDINATES

Wechooseapointintheplaneanditiscalledthepole(ororigin)andisdenotedbyO.Thenwedrawaray(halfline)startingatOcalledpolaraxis.Thisisusuallydrawnhorizontallytotherightandcorrespondstopositivex-axisinCartesiancoordinates.

LetPbeanypointintheplaneandrbethedistancefromOtoP.Letθbetheangle(usuallymeasuredinradians)betweenthepolaraxisandthelineOP.ThenthepointPisrepresentedbytheorderedpair(r,θ)and(r,θ)arecalledthepolarcoordinatesofthepointP.Weusetheconventionthatanangleispositiveifmeasuredintheanti-clockwisedirectionfromthepolaraxisandnegativeintheclockwisedirection.

Page 541: Analytical Geometry: 2D and 3D

IfPcoincideswithOthenr=θ.Then(r,θ)representthecoordinatesofthepoleforanyvalueofθ.Letusnowextendthemeaningofpolarcoordinates(r,θ)whenrisnegative,agreeingthatthepoints(−r,θ)and(r,θ)lieonthesamelinethroughOandatthesamedistance|r|fromObutonoppositesidesofO.Ifr>0,thepoint(r,θ)liesonthesamequadrantasθ.Ifr<0,thenitliesinthequadrantoftheoppositesideofthepole.Wenotethatthepoint(r,θ)representsthesamepointas(r,θ+π)

Example9.2.1

Representthefollowingpolarcoordinatesinthepolarplane:

Solution

Thecoordinates, and arerepresentedbypointsin

thefollowingdiagram:

Page 542: Analytical Geometry: 2D and 3D

InCartesiansystemofcoordinates,everypointhasonlyonerepresentation.Butinpolarcoordinatessystemeachpointhasmanyrepresentations,for

example,point isalsorepresentedby ,etc.

Ingeneral,thepoint(r,θ)isalsorepresentedby(r,θ+2nπ)or(−r,θ+2n+1π)wherenisanyinteger.

9.3RELATIONBETWEENCARTESIANCOORDINATESANDPOLARCOORDINATES

If(x,y)istheCartesiancoordinatesand(r,θ)arethepolarcoordinatesofthe

pointP,then and

Therefore,thetransformationsfromonesystemtoanotheraregivenbyx=rcosθ,y=rsinθ.Tofindrfromxandy,weusetherelationr2=x2+y2andθisgivenby

Page 543: Analytical Geometry: 2D and 3D

Wehavealreadystudiedthedistancebetweentwopoints,areaofatriangle,equationsofastraightline,equationstoacircleandequationofconicsinCartesiancoordinatessystem.Letusnowderivetheresultsinpolarcoordinatesystem.

9.4POLAREQUATIONOFASTRAIGHTLINE

ThegeneralequationofastraightlineinCartesiancoordinatesisAx+By+C=0,whereA,BandCareconstants.Let(r,θ)bepolarcoordinatesofapointandthex-axisbetheinitialline.Thenforanypoint(x,y)onthestraightlinex=rcosθ,y=rsinθ.Substitutingtheseintheequationofstraightline,weget

Thiscanbewrittenintheform

whereA,Bandlareconstants.Therefore,equation(9.1)isthegeneralequationofastraightlineinpolarcoordinates.

9.5POLAREQUATIONOFASTRAIGHTLINEINNORMALFORM

Lettheoriginbethepoleandthex-axisbetheinitialline.DrawONperpendiculartothestraightline.LetON=pand∠XON=α.

Page 544: Analytical Geometry: 2D and 3D

Thisisthepolarequationoftherequiredstraightline.

Note9.5.1:Polarequationofthestraightlineperpendicularto

isoftheform

or ,wherekisaconstant.

Note9.5.2:Thepolarequationofthestraightlineparallelto

is ,wherekisaconstant.

Note9.5.3:Theconditionforthestraightlines and

Page 545: Analytical Geometry: 2D and 3D

tobeperpendiculartoeachotherisAA1+BB1=0.Thisresult

canbeeasilyseenfromtheircartesianequations.

Note9.5.4:Ifthelineisperpendiculartotheinitiallinethenα=0orπ.Therefore,theequationofthestraightlineisrcosθ=porrcosθ=−p.

Note9.5.5:Ifthelineisparalleltotheinitiallinethen or .Inthiscase

theequationofthelineis

Example9.5.6

FindtheequationofthestraightlinejoiningthetwopointsP(r1,θ1)andQ(r2,θ2).

Solution

LetR(r,θ)beanypointonthelinejoiningthepointsPandQ.TheareaofthetriangleformedbythepointsP(r1,θ1),Q(r2,θ2)and(r3,θ3)is

Takingr3=randθ3=θ,weget

SincethepointsP,QandRarecollinear,Δ=0.

Page 546: Analytical Geometry: 2D and 3D

Dividingbyrr1r2,weget

Thisistheequationoftherequiredstraightline.

Example9.5.7

Findtheslopeofthestraightline

Solution

Theequationofthestraightlineis

Therefore,theslopeofthestraightlineis

Example9.5.8

Findthepointofintersectionofthestraightlines and

.

Solution

Theequationsofthestraightlinesare

Page 547: Analytical Geometry: 2D and 3D

Solvingequations(9.2)and(9.3),weget

Therefore,theonlypossibilityis .

Thenfromtheequationofthefirststraightline,weget

Hence,thepointofintersectionofthetwogivenlinesis

Example9.5.9

Findtheequationofthelinejoiningthepoints and anddeducethat

thislinealsopassesthroughthepoint .

Solution

Page 548: Analytical Geometry: 2D and 3D

Theequationofthelinejoiningthepoints(r1,θ1)and(r2,θ2)is

Therefore,theequationofthelinejoiningthepoints and is

Hence,thepoint liesonthestraightline.

Example9.5.10

Showthatthestraightlinesr(cosθ+sinθ)=±1andr(cosθ−sinθ)=±1encloseasquareandcalculatethelengthofthesidesofthissquare.

Solution

ConvertingintoCartesianformthefourlinesare

Page 549: Analytical Geometry: 2D and 3D

Thesefourlinesformaparallelogramandinx+y=±1,x−y=±1theadjacentlinesareperpendicularandhenceABCDisarectangle.

AlsothedistancebetweenABandCD= .

ThedistancebetweenADandBC= .

Therefore,thesefourlinesformasquare.

Example9.5.11

Findtheanglebetweenthelines and

Solution

Exercises

1. Findtheanglebetweenthelines

Page 550: Analytical Geometry: 2D and 3D

i. rcosθ=p,rsinθ=p1

ii.

Ans.:

2. Showthatthepoints and arecollinear.

3. Showthattheequationofanylineparallelto throughthepoleis

4. Findtheequationofthelineperpendicularto andpassingthroughthepoint

(r1,θ1).

Ans.:

9.6CIRCLE

9.6.1PolarEquationofaCircle

LetObethepoleandOXbetheinitialline.LetC(c,α)bethepolarcoordinatesofthecentreofthecircle.LetP(r,θ)beanypointonthecircle.Then∠COP=θ−α.Letabetheradiusofthecircle.

Page 551: Analytical Geometry: 2D and 3D

Thisisthepolarequationoftherequiredcircle.

Note9.6.1.1:Ifthepoleliesonthecircumferenceofthecirclethenc=a.Thentheequationofthecirclebecomes,

Note9.6.1.2:Theequationofthecircler=2acos(θ−α)canbewrittenintheformr=Acosθ+BsinθwhereAandBareconstants.

Note9.6.1.3:Ifthepoleliesonthecircumferenceofthecircleandtheinitiallinepassesthroughthecentreofthecirclethentheequationofthecirclebecomes,r=2acosθsinceα=0.

Page 552: Analytical Geometry: 2D and 3D

Note9.6.1.4:Supposetheinitiallineisatangenttothecircle.Thenc=acosecα.Therefore,fromequation(9.4)theequationofthecirclebecomes,a2=a2

cosec2α+r2–2arcosecαcos(θ–α)

(i.e.)r2–2racosecαcos(θ–α)+a2cot2α=0

Note9.6.1.5:Supposetheinitiallineisatangentandthepoleisatthepointofcontact.Inthiscaseα=90°.Theequationofthecirclebecomes,r2−2rasinθ=0(or)r=2asinθ.

9.6.2EquationoftheChordoftheCircler=2acosθontheLineJoiningthePoints(r1,θ1)and(r2,θ2).

LetPQbethechordofthecircler=2acosθ.

Page 553: Analytical Geometry: 2D and 3D

LetPandQbethepoints(r1,θ1)and(r2,θ2).SincethepointsPandQlieonthecircle

LettheequationofthelinePQbe

SincethepointsPandQlieonthisline

Fromequations(9.6)and(9.7),weget

Hence,fromequation(9.6),wegetp=2acosθ1cosθ2.Hence,fromequation(9.5)theequationofthechordis2acosθ1cosθ2=

.

Page 554: Analytical Geometry: 2D and 3D

Note9.6.2.1:Thischordbecomesthetangentatαifθ1=θ2=α.Therefore,theequationofthetangentatαis2acos2α=rcos(θ–2α).

9.6.3EquationoftheNormalatαontheCircler=2αcosθ

SinceONisperpendiculartoPN,

Theequationofthenormalisp=rcos(θ–α).

9.6.4EquationoftheCircleontheLineJoiningthePoints(a,α)and(b,β)astheendsofaDiameter

Page 555: Analytical Geometry: 2D and 3D

Since∠APB=90°

Example9.6.1

Showthatthelocusofthefootoftheperpendiculardrawnfromthepoletothetangenttothecircler=2acosθisr=a(l+cosθ).

Solution

LetPbethepoint(r,α).DrawONperpendiculartothetangentatP.

TheequationofthetangentatPis

rcos(θ−2α)=2acos2α

Page 556: Analytical Geometry: 2D and 3D

SinceONistheperpendiculardistancefromOonthelinePN,fromthenormalformofthestraightline,weget

ON=p=2acos2αLetthecoordinatesofNbe(r1,θ1),then

Example9.6.2

Showthatthefeetoftheperpendicularsfromtheoriginonthesidesofthetriangleformedbythepointswithvectorialanglesα,β,γandwhichlieonthecircler=2acosθlieonthestraightline2acosαcosβcosγ=rcos(π–α–β–γ).

Solution

Theequationofthecircleisr=2acosθ.LetthevectorialanglesofP,Q,Rbeα,β,γrespectively.TheequationsofthechordPQ,QRandRPare

LetL,MandNbethefeetoftheperpendicularsfromOonthelinesPQ,QRandRPThenfromtheaboveequations,weinferthatthecoordinatesofL,MandN

are

Page 557: Analytical Geometry: 2D and 3D

Thesethreepointssatisfytheequation

2acosαcosβcosγ=rcos(θ−α−β−γ)HenceL,MandNliesontheaboveline.

Example9.6.3

Showthatthestraightline touchesthecircler=2acosθifa2

B2+2alA=l2.

Solution

Theequationofthecircleis

Theequationofthestraightlineis

Solvingthesetwoequationswegettheirpointofintersection.

Dividingbycosθ,weget

Page 558: Analytical Geometry: 2D and 3D

Iftheline(9.9)isatangentto(9.8)thenthetwovaluesoftanθoftheequation(9.10)areequal.Theconditionforthatisthediscriminantisequaltozero.

Exercises

1. Showthatr=Acosθ+Bsinθrepresentsacircleandfindthepolarcoordinatesofthecentre.

2. Showthattheequationofthecircleofradiusawhichtouchesthelinesθ=0, isr2–2ar(cos

θ+sinθ)+a2=0.Showthatlocusoftheequationr2−2racos2θsecθ−2a2=0consistsofastraightlineandacircle.

3. Findthepolarequationsofcirclespassingthroughthepointswhosepolarcoordinatesare

andtouchingthestraightlineθ=0.

Ans.:r2−r[(a+b)Sinθ±2bcosθ]+c2=0

4. Acirclepassesthroughthepoint(r,θ)andtouchestheinitiallineatadistancecfromthepole.

Showthatitspolarequationis

5. Showthatr2−krcos(θ−α)+kd=0representsasystemofgeneralcirclesfordifferentvaluesofk.Findthecoordinatesofthelimitingpointsandtheequationofthecommonradicalaxis.

6. Findtheequationofthecirclewholecentreis andradiusis2.

Ans.:

Page 559: Analytical Geometry: 2D and 3D

7. Findthecentreandradiusofthecircler2–10rcosθ+9=0.Ans.:(5,0);4

8. Provethattheequationtothecircledescribedonthelinejoiningthepoints and as

diameteris

9. Findtheconditionthattheline maybea

i. tangentii. anormaltothecircler=2cosθ.

10. Findtheequationofthecirclewhichtouchestheinitialline,thevectorialangleofthecentrebeingαandtheradiusofthecirclea.

11. Acirclepassesthroughthepoint(r1,θ1)andtouchestheinitiallineatadistancecfromthepole.Showthatitspolarequationis

9.7POLAREQUATIONOFACONIC

Earlierwedefinedparabola,ellipseandhyperbolaintermsoffocusdirectrix.Nowletusshowthatitispossibletogiveamoreunifiedtreatmentofallthesethreetypesofconicusingpolarcoordinates.Furthermore,ifweplacethefocusattheoriginthenaconicsectionhassimplepolarequation.LetSbeafixedpoint(calledthefocus)andXM,afixedstraightline(called

thedirectrix)inaplane.Letebeafixedpositivenumber(calledthe

eccentricity).ThenthesetofallpointsPintheplanesuchthat iscalleda

conicsection.Theconicis

i. anellipseife<1.ii. aparabolaife=1.iii. ahyperbolaife>1.

9.7.1PolarEquationofaConic

Page 560: Analytical Geometry: 2D and 3D

LetSbefocusandXMbethedirectrix.DrawSXperpendiculartothedirectrix.LetSbethepoleandSXbetheinitialline.LetP(r,θ)beanypointontheconic;thenSP=r,∠XSP=θ.DrawPMperpendiculartothedirectrixandPNperpendiculartotheinitialline.

LetLSL′bethedoubleordinatethroughthefocus(latusrectum).Thefocusdirectrixpropertyis

Thisistherequiredpolarequationoftheconic.

Note9.7.1.1:Iftheaxisoftheconicisinclinedatanangleαtotheinitialline

thenthepolarequationofconicis

Page 561: Analytical Geometry: 2D and 3D

Totracetheconic,

cosθisaperiodicfunctionofperiod2π.Therefore,totracetheconicitisenoughifweconsiderthevariationofθfrom

–πtoπ.Sincecos(–θ)=cosθthecurveissymmetricalabouttheinitialline.Henceitisenoughifwestudythevariationofθfrom0toπ.Letusdiscussthevariouscasesfordifferentvaluesofθ.Case1:Lete=0.Inthiscase,theconicbecomesr=lwhichisacircleofradiuslwithitscentreatthepole.

Case2:Lete=1.Inthiscase,theequationoftheconicbecomes, Whenθ

variesfrom0toπ,1+cosθvariesfrom2to0.

and variesfrom to∞

Theconicinthiscaseisaparabolaandisshownbelow.

Case3:Lete<1.

Asθvariesfrom0toπ,1+ecosθdecreasesfrom1+eto1–e.rincreasesfrom to

Thecurveisclearlyclosedandissymmetricalabouttheinitialline.Theconicisanellipse.

Page 562: Analytical Geometry: 2D and 3D

Case4:Lete>1.

Asθvariesfrom0to ,1+ecosθdecreasesfrom(1+e)to1andhencerincreasesfrom tol.

Asθvariesfrom toπ,1+ecosθdecreasesfrom1to(1–e).

Therefore,thereexistsanangleαsuchthat <α<πatwhich1+ecosθ>0.(i.e.)

Hence,asθvariesfrom toα,rincreasesfrom1to∞.Asθvariesfromαtoπ,1+ecosθremains

negativeandvariesfrom0to(1−e).

rvariesfromto−∞to .

Theconicisshownaboveandisahyperbola.

9.7.2EquationtotheDirectrixCorrespondingtothePole

LetQbeanypointonthedirectrix.Letitscoordinatesbe(r,θ).ThenSX=rcosθ

Page 563: Analytical Geometry: 2D and 3D

or Sincethisistrueforallpoints(r,θ)onthedirectrix,the

polarequationofthedirectrixis

Note9.7.2.1:Theequationofthedirectrixoftheconic is

.

Thepolarequationoftheconicfordifferentformofdirectrixisgivenbelow.

Page 564: Analytical Geometry: 2D and 3D

Note9.7.2.2:Theaboveconicisanellipseife<1,parabolaife=1andhyperbolaife>1.

9.7.3EquationtotheDirectrixCorrespondingtoFocusOtherthanthePole

Let(r,θ)bethecoordinatesofapointonthedirectrixX′M′.

Then

But

Thisistherequiredequationoftheotherdirectrix.

9.7.4EquationofChordJoiningthePointswhoseVectorialAnglesareα−β

Page 565: Analytical Geometry: 2D and 3D

andα+βontheConic

Lettheequationoftheconicbe .

LettheequationofthechordPQbe .

Thischordpassesthroughthepoint(SP,α−β)and(SQ,α+β).

Alsothesetwopointslieontheconic ,

Fromequations(9.11)and(9.13),weget

Fromequation(9.12)and(9.14),weget

Subtracting,weget

Page 566: Analytical Geometry: 2D and 3D

Fromequation(9.15),weget

TheequationofthechordPQis

9.7.5TangentatthePointwhoseVectorialAngleisαontheConic

Theequationofthechordjoiningthepointswithvectorialanglesα−βandα+

βis .

Thischordbecomesthetangentatαifβ=0.

Theequationoftangentatαis .

9.7.6EquationofNormalatthePointwhoseVectorialAngleisαontheConic

Theequationoftheconicis

Theequationoftangentatαontheconic is

Page 567: Analytical Geometry: 2D and 3D

Theequationofthelineperpendiculartothistangentis

.

IfthisperpendicularlineisnormalatP,thenitpassesthroughthepoint(SP,α).

Sincethepoint(SP,α)alsoliesontheconic wehave

Fromequation(9.17),weget .

Hence,theequationofthenormalatαis

Page 568: Analytical Geometry: 2D and 3D

9.7.7AsymptotesoftheConicis

Theequationoftheconicis

Theequationofthetangentatαis

Thistangentbecomesanasymptoteifthepointofcontactisatinfinity,thatis,thepolarcoordinatesofthepointofcontactare(∞,α).Sincethispointhastosatisfytheequationoftheconic(9.18)wehavefromequation(9.18),

Theequation(9.19)canbewrittenas

Substituting and wegettheequationofthe

asymptotesas

Page 569: Analytical Geometry: 2D and 3D

9.7.8EquationofChordofContactofTangentsfrom(r1,θ1)totheConic

LetQRbethechordofcontactoftangentsfromP(r1,θ1).LetvectorialanglesofQandRbeα−βandα+β.TheequationofthechordQRis

TheequationsoftangentsatQandRare

Thesetwotangentsintersectat(r1,θ1).

Fromtheabovetwoequations,weget

Substitutingthisinequation(9.24),weget

Substitutingequation(9.26)in(9.21),weget

Page 570: Analytical Geometry: 2D and 3D

Thisistheequationofthechordofcontact.

9.7.9EquationofthePolarofanyPoint(r1,θ1)withRespecttotheconic

ThepolarofapointwithrespecttoaconicisdefinedasthelocusofthepointofintersectionoftangentsattheextremitiesofavariablechordpassingthroughthepointP(r1,θ1).

LetthetangentsatQandRintersectT.SinceQRisthechordofcontactoftangentsfromT(R,ϕ),itsequationis

SincethispassesthroughthepointP(r1,θ1)wehave

NowthelocusofthepointT(R,ϕ)ispolarofthe(r1,θ1).

Page 571: Analytical Geometry: 2D and 3D

Thepolarof(r1,θ1)fromequation(9.28)is

Example9.7.1

Findtheconditionthatthestraightline maybeatangenttothe

conic

Solution

Lettheline touchestheconicatthepoint(r,α).

Thentheequationoftangentat(r,α)is

However,theequationoftangentisgivenas

Equations(9.30)and(9.31)representthesameline.

Page 572: Analytical Geometry: 2D and 3D

Identifyingequations(9.30)and(9.31),weget

Squaringandadding,weget(A−e)2+B2=1Thisistherequiredcondition.

Example9.7.2

Showthatinaconic,semilatusrectumistheharmonicmeanbetweenthesegmentsofafocalchord.

Solution

LetPQbeafocalchordoftheconic LetPandQhavethepolar

coordinates(SP,α)and(SQ,α+π).

SincePandQlieontheconic .

Wehave

Addingequations(9.32)and(9.33)

Page 573: Analytical Geometry: 2D and 3D

SP,l,SQareinHP(i.e.)listheHMbetweenSPandSQ.

Example9.7.3

Showthatinanyconicthesumofthereciprocalsoftwoperpendicularfocalchordsisaconstant.

Solution

LetPP′andQQ′beperpendicularfocalchordsoftheconic

LetPbethepoint(SP,α).ThevectorialanglesofQ,P′,Q′are

.

SincethepointsP,P′,Q,Q′lieontheconic,

wehave

Page 574: Analytical Geometry: 2D and 3D

Example9.7.4

IfachordPQofaconicwhoseeccentricityeandthesemilatusrectuml

subtendsarightangleatthefocusSPthenprovethat

Solution

Lettheequationoftheconicbe .LetthevectorialangleofPbeα.

ThevectorialangleofQis .

Page 575: Analytical Geometry: 2D and 3D

SincePandQlieontheconic,

Similarly,

Squaringandadding,weget

Example9.7.5

LetPSQandPS′RbetwochordsofanellipsethroughthefociSandS′.Show

that isaconstant.

Solution

LetthevectorialangleofPbeα.ThenthevectorialangleofQisα+π.SinceP

andQlieontheconic

Page 576: Analytical Geometry: 2D and 3D

Similarly,consideringtheotherfocalchordPS′R

Multiplyequation(9.37)by ,weget

Similarlyfromequation(9.38),weget

Addingequations(9.39)and(9.40),weget

Page 577: Analytical Geometry: 2D and 3D

Example9.7.6

Provethattheperpendicularfocalchordsofarectangularhyperbolaareequal.

Solution

LetPSP′andQSQ′andbetwoperpendicularfocalchordsofarectangularhyperbola.ThenthevectorialanglesofPandP′areα.

SinceP′liesontheotherbranchofthehyperbola,thepolarequationoftheconic

is

Page 578: Analytical Geometry: 2D and 3D

Similarly,

Fromequations(9.41)and(9.42),wegetPP′=QQ′.Thatis,inaRH,perpendicularfocalchordsareofequallength.

Example9.7.7

ThetangentstoaconicatPandQmeetatT.ShowthatifSisafocusthenSTbisects∠PSQ.

Solution

Lettheequationoftheconicbe TheequationofthetangentatP

withvectorialangleαis

Page 579: Analytical Geometry: 2D and 3D

TheequationofthetangentatQwithvectorialangle

Atthepointofintersectionofthesetwotangents,

Example9.7.8

IfthetangentsattheextremitiesofafocalchordthroughthefocusSoftheconic

meettheaxisthroughSinTandT′showthat

Solution

LetPSQbeafocalchord.LetthevectorialanglesofPandQbeαandα+π.ThentheequationsoftangentsatPandQare

Page 580: Analytical Geometry: 2D and 3D

Whenthetangentsmeettheaxis,atthosepointsθ=0.

Example9.7.9

Ifachordofaconic subtendsanangle2αatthefocusthenshowthat

thelocusofthepointwhereitmeetstheinternalbisectoroftheangleis

Solution

LetPQbeachordoftheconic subtendinganangle2αatthefocus.

LettheinternalbisectorofPSQmeetsPQatT.LetthevectorialanglesofPandQbeβ−αandβ+α.LetthepolarcoordinatesofTbe(r1,β).

Page 581: Analytical Geometry: 2D and 3D

TheequationofthechordPQis

ThispassesthroughthepointT(r1,β).

Thelocusof(r1,β)is

Example9.7.10

ThetangentsattwopointPandQoftheconicmeetinTandPQsubtendsa

constantangle2αatthefocus.Showthat isaconstant.

Solution

Lettheequationoftheconicbe LetthevectorialanglesofPandQ

beβ−αandβ+α.

Page 582: Analytical Geometry: 2D and 3D

SincethepointsPandQlieontheconic,

AlsotheequationofchordPQis

PQisalsothepolarofthepointTandsoitsequationis

Identifyingequations(9.48)and(9.49),weget

Fromequations(9.46)and(9.47)and(9.50),weget

Page 583: Analytical Geometry: 2D and 3D

Example9.7.11

Ifafocalchordofanellipsemakesanangleαwiththemajoraxisthenshowthat

theanglebetweenthetangentsatitsextremitiesis

Solution

Lettheequationoftheconicbe

TheequationofthetangentatPis

TheequationofthetangentatQis

Page 584: Analytical Geometry: 2D and 3D

Transformingintocartesiancoordinatesbytakingx=rcosθ,y=sinθEquations(9.53)and(9.54)becomes,

Theslopesofthetangentsare

Ifθistheanglebetweenthetangentsthen

Theacuteanglebetweenthetangentsisgivenby

Example9.7.12

AfocalchordSPofanellipseisinclinedatanangleαtothemajoraxis.ProvethattheperpendicularfromthefocusonthetangentatPmakeswiththeaxisan

Page 585: Analytical Geometry: 2D and 3D

angle

Solution

Lettheequationoftheconicbe

TheequationoftangentatPis

TheequationoftheperpendicularlinetothetangentatPis

Iftheperpendicularpassesthroughthefocusthenk=0

Example9.7.13

i. IfAcirclepassingthroughthefocusofaconicwhoselatusrectumis2lmeetstheconicinfour

Page 586: Analytical Geometry: 2D and 3D

pointswhosedistancesfromthefocusare,r1,r2,r3,r4thenprovethat

ii. AcircleofgivenradiuspassingthroughthefocusSofagivenconicintersectsinA,b,CandD.ShowthatSA·SB·SC·SDisaconstant.

Solution

Lettheequationsoftheconicbe

Letabetheradiusofthecircleandαbetheanglethediametermakeswiththeinitialline.Thentheequationofthecircleis

Eliminatingθbetweenequations(9.59)and(9.60)wegetanequationwhoserootsarethedistancesofthepointofintersectionfromthefocus.Formequation(9.60),wegetr=2α(cosθcosα+Sinθsinα).

Fromequation(9.59),weget

Estimatingθ,weget

Page 587: Analytical Geometry: 2D and 3D

Dividingbyr4andrewritingtheequationinpowerof weget

Ifr1,r2,r3,r4arethedistancesofthepointsofintersectionfromthefocusthen

aretherootsoftheaboveequation.

Formequation(9.61),weget

(i.e.)SA·SB·SC·SDisaconstant.

Example9.7.14

Page 588: Analytical Geometry: 2D and 3D

Ifachordoftheconic subtendsaconstantangle2βatthepolethen

showthatthelocusofthefootoftheperpendicularfromthepoletothechord(e2

−sec2β)r2−elrcosθ+l2=0.

Solution

LetthevectorialanglesofPandQbeα−βandα+β.

TheequationofthechordPQis

Theequationofthelineperpendiculartothischordis

ThislinepassesthroughthefocusSandsok=0.

Fromequation(9.63),weget

Fromequation(9.65),weget

Squaringandadding(9.66)and(9.67),weget

Page 589: Analytical Geometry: 2D and 3D

Example9.7.15

Avariablechordofconicsubtendsaconstantangle2βatthefocusoftheconic

Showthatthechordtouchesanotherconichavingthesamefocus

anddirectrix.Showalsothatthelocusofpolesofsuchchordsoftheconicisalsoasimilarconic.

Solution

LetPQbeachordoftheconic subtendingaconstantangle2αatthe

focus.

LetT(r1,θ)bethepointofintersectionoftangentsatPandQ.ThenPQisthepolarofTandTisthepoleofPQ.LetthevectorialanglesofPandQbeα−βandα+β.ThentheequationofchordPQis

Page 590: Analytical Geometry: 2D and 3D

whereL=ecosβandE=esecθ.ThislineisatangenttotheconicC′.

Thisequationhasthesamefocusas Hence,theconicC′hasthesame

focusandthesameinitiallineasC.Forthegivenconic .

FortheconicC′,

∴SX=SX′.HenceX′coincideswithX.Hence,boththeconicshavethesamefocusandthesamedirectrix.Theequation

oftangentsatPandQare and

ThesetwotangentsintersectatT(r1,θ1)

Fromequations(9.68)and(9.69),weget

Page 591: Analytical Geometry: 2D and 3D

Substitutingθ1=αinequation(9.68),weget

Thelocusof(r1,θ1)is

Thelocusofpolesistheconichavingthesamefocusandsamedirectrixasthegivenconic.

Example9.7.16

Showthatthelocusofthepointofintersectionoftangentsattheextremitiesofavariablefocalchordisthecorrespondingdirectrix.

Solution

Lettheequationoftheconicbe

Theequationoftangentatαis

Theequationoftangentatα+πis

Let(r1,θ1)bethepointofintersectionofthesetwotangents.Then,

Page 592: Analytical Geometry: 2D and 3D

Addingthesetwoequations,weget

Therefore,thelocusisthecorrespondingdirectrix

Example9.7.17

Showthatthelocusofthepointofintersectionofperpendiculartangentstoaconicisacircleorastraightline.

Solution

Lettheequationoftheconicbe

LetPandQbethepointsontheconicwhosevectorialanglesareαandβ.TheequationsoftangentsatPandQare

Page 593: Analytical Geometry: 2D and 3D

Let(r1,θ1)bethepointofintersectionoftangentsatPandQ.Then

Fromequations(9.73)and(9.74),weget

Butα=βisnotpossible.

Formequation(9.73),weget

Expandingequations(9.70)and(9.71),weget

Sincethesetwolinesareperpendicular,wehave

Substitutingfor and ,weget

Page 594: Analytical Geometry: 2D and 3D

Therefore,thelocusof(r1,θ1)is(1−e2)r2+2elrcosθ−2l2=0.

Example9.7.18

Provethatpointsontheconic whosevectorialanglesareαandβ,

respectively,willbetheextremitiesofadiameterif

Solution

Theequationoftheconicis

Letα,βbetheextremitiesofadiameteroftheconic .Thenthe

tangentsatαandβareparallelandhencetheirslopesareequal.Theequationoftangentatαis

Theslopeofthistangentis−

Sincetangentsatαandβareparallel,

Page 595: Analytical Geometry: 2D and 3D

Example9.7.19

Ifanormalisdrawnatoneextremityofthelatusrectum,provethatthedistance

fromthefocusoftheotherpointinwhichitmeetstheconicis

Solution

Theequationoftheconicis

Page 596: Analytical Geometry: 2D and 3D

Theequationofthenormalat is

Solvingequations(9.75)and(9.76),wegettheirpointofintersection

Ifcosθ=0then .ThiscorrespondstothepointL.

Attheotherendofthenormal

Substitutinginequation(9.75)weget,

Example9.7.20

IfthetangentsatthepointsPandQonaconicintersectinTandthechordPQmeetsthedirectrixatRthenprovethattheangleTSRisarightangle.

Solution

LetthevectorialanglesofPandQbeαandβ,respectively.LetthetangentsatPandQmeetatT(r1,θ1).

Page 597: Analytical Geometry: 2D and 3D

TheequationoftangentsatPandQare and

Sincethesetangentsmeetat(r1,θ1),wehave and

θ1–α=±(θ2−β)whichimplies

LetθbethevectorialangleofR.TheequationofchordPQis

Theequationofthedirectrix

Subtracting,wegetsec

Page 598: Analytical Geometry: 2D and 3D

Example9.7.21

AchordPQofaconicsubtendsaconstant2γatthefocusSandtangentsatPand

QmeetinT.Provethat

Solution

Lettheequationoftheconicbe

LetthevectorialanglesofPandQbeαandβ,respectively.

Sincethesepointslieontheconic, and

IfthetangentsatPandQintersectat(r1,θ1)then

SincePQsubtendsanangle2γatS,

Page 599: Analytical Geometry: 2D and 3D

Exercises

1. IfPSP′andQSQ′aretwofocalchordsofaconiccuttingeachotheratrightanglesthenprovethat

=aconstant.

2. Iftwoconicshaveacommonfocusthenshowthattwooftheircommonchordspassthroughthepointofintersectionoftheirdirectrices.

3. Showthat and representthesameconic.

4. InaparabolawithfocusS,thetangentsatanypointsPandQonitmeetatT.Provethat

i. SP·SQ=ST2

ii. ThetrianglesSPTandSQTaresimilar.5. IfSbethefocus,PandQbetwopointsonaconicsuchthattheanglePSQisconstant,provethat

thelocusofthepointofintersectionofthetangentsatPandQisaconicsectionwhosefocusisS.

6. Ifthecircler+2acosθ=0cutstheconic infourrealpointsfindtheequation

inrwhichdeterminesthedistancesofthesepointsfromthepole.Also,showthatiftheiralgebraic

Page 600: Analytical Geometry: 2D and 3D

sumequals2aandtheeccentricityoftheconicis2cosα.

7. Provethatthetwoconics and toucheachotherif

8. P,QandRarethreepointsontheconic TangentsatQmeetsSPandSRinMandN

sothatSM=AN=lwhereSisthefocus.ProvethatthechordPQtouchestheconic.9. Provethattheportionofthetangentinterceptedbetweenthecurveanddirectrixsubtendsaright

angleatthefocus.10. Provethatthelocusofthemiddlepointsofasystemoffocalchordsofaconicsectionisaconic

sectionwhichisaparabola,ellipseorhyperbolaaccordingastheoriginalconicisaparabolaellipseorhyperbola.

11. Twoequalellipsesofeccentricityehaveonefocuscommonandareplacedwiththeiraxesatright

angles.IfPQbeacommontangentthenprovethat

12. IfthetangentsatPandQofaconicmeetatapointTandSbethefocusthenprovethatST2=SP·SQiftheconicisaparabola.

13. Aconicisdescribedhavingthesamefocusandeccentricityastheconic andthetwo

conicstouchatθ=α.Provethatthelengthofitslatusrectumis

14. Provethatthreenormalscanbedrawnfromagivenpointtoagivenparabola.Ifthenormalatα,β,

γontheconic meetatthepoint(ρ,ϕ)provethat

15. Ifthenormalsatthreepointsoftheparabola whosevectorialanglesareα,β,γmeet

inapointwhosevectorialangleisϕthenprovethat2ϕ=α+β+γ−π.

16. Ifα,β,γbethevectorialanglesofthreepointson ,thenormalatwhichare

concurrent,provethat

17. IfthenormalatPtoaconiccutstheaxisinG,provethatSN=eSP.18. IfSMandSNbeperpendicularsfromthefocusSonthetangentandnormalatanypointonthe

conic and,STtheperpendicularonMNshowthatthelocustoTisr(e2−1)=elcos

Page 601: Analytical Geometry: 2D and 3D

θ.

19. Showthatifthenormalsatthepointswhosevectorialanglesareθ1,θ2,θ3andθ4on

meetatthepoint(r′,ɸ)thenθ1+θ2+θ3+θ4−2ɸ=(2n+1)π.20. Provethatthechordsofarectangularhyperbolawhichsubtendarightangleatafocustoucha

fixedparabola.21. Ifthetangentatanypointofanellipsemakeanangleawithitsmajoraxisandanangleβwiththe

focalradiustothepointofcontactthenshowthatecosα=cosβ

Ans.:A2+B2−2e(Acosγ+Bsinγ)+e2−1=0

22. Provethattheexterioranglebetweenanytwotangentstoaparabolaisequaltohalfthedifferenceofthevectorialanglesoftheirpointsofcontact.

23. Findtheconditionthatthestraightline maybeatangenttotheconic

24. Findthelocusofpolesofchordswhichsubtendaconstantangleatthefocus.25. Provethatifthechordsofaconicsubtendaconstantangleatthefocus,thetangentsattheendof

thechordwillmeetonafixedconicandthechordwilltouchanotherfixedconic.

26. Findthelocusofthepointofintersectionofthetangentstotheconic atPandQ,

where ,kbeingaconstant.

27. IfthetangentandnormalatanypointPofaconicmeetthetransverseaxisofTandG,

respectively,andifSbethefocusthenprovethat isaconstant.

Page 602: Analytical Geometry: 2D and 3D

Chapter10

TracingofCurves

10.1GENERALEQUATIONOFTHESECONDDEGREEANDTRACINGOFACONIC

Intheearlierchapters,westudiedstandardformsofaconicnamelyaparabola,ellipseandhyperbola.Inthischapter,westudytheconditionsforthegeneralequationoftheseconddegreetorepresentthedifferenttypesofconic.Inordertostudytheseproperties,weintroducethecharacteristicsofchangeoforiginandthecoordinateaxes,rotationofaxeswithoutchangingtheoriginandreducingtheseconddegreeequationwithoutxy-term.

10.2SHIFTOFORIGINWITHOUTCHANGINGTHEDIRECTIONOFAXES

LetOxandOybetwoperpendicularlinesonaplane.LetO′beapointinthexy-plane.ThroughO′,drawO′XandO′YparalleltoOxandOy,respectively.LetthecoordinatesofO′be(h,k)withrespecttotheaxesOxandOy.DrawO′LperpendiculartoOx.ThenOL=handO′L=k.

LetP(x,y)beanypointinthexy-plane.DrawPMperpendiculartoOxmeetingaxisatN.Then

Page 603: Analytical Geometry: 2D and 3D

10.3ROTATIONOFAXESWITHOUTCHANGINGTHEORIGIN

LetOxandOybetheoriginalcoordinateaxes.LetOxandOyberotatedthroughanangleθintheanticlockwisedirection.

LetP(x,y)beapointinthexy-plane.DrawPLperpendiculartoOx,PM

perpendiculartoOXandMNperpendiculartoLP.Then

Let(X,Y)bethecoordinatesofthepointPwithrespecttoaxesOXandOY.Then

From(10.1)and(10.2)weseethatX=xcosθ+ysinθ,Y=−xsinθ+ycosθ.

10.4REMOVALOFXY-TERM

Page 604: Analytical Geometry: 2D and 3D

Herewewanttotransformtheseconddegreeequationax2+2hxy+by2+22x+2fy+c=0intoaseconddegreecurvewithoutXY-term,wheretheaxesarerotatedthroughanangleθwithoutchangingtheoriginweget

IfXY-termhastobeabsentthen

Hence,byrotatingtheaxesthroughanangleθaboutOthegeneralseconddegreeexpressionwillresultintoaseconddegreeexpressionwithoutXY-terms.

10.5INVARIANTS

Wewillnowprovethattheexpressionax2+2hxy+by2willchangetoAx2+2hXY+By2if(i)a+b=A+Band(ii)ab−h2=AB−H2.

Proof:LetP(x,y)beanypointwithrespecttoaxes(ox,oy)and(X,Y)beitscoordinateswithrespectto(OX,OY).Thenx=Xcosθ−Ysinθ,y=Xsinθ+Ycosθ.Therefore,wegetx2+y2=X2+Y2

Page 605: Analytical Geometry: 2D and 3D

Supposeax2+2hxy+by2=AX2+2HXY+BY2.Thenax2+2hxy+by2+λ(x2+y2)=AX2+2HXY+BY2+δ(X2+Y2).IftheLHSisoftheform(px+qy)2thenitwillbechangedintotheform[p(Xcosθ−Ysinθ)+q(Xsinθ+Ycosθ)]2=(p1X+q1Y)2.

Thiswillbeaperfectsquareifh2=(a+λ)(b+λ)

RHSwillbeaperfectsquareif

Comparing(10.3)and(10.4),wegeta+b=A+B,ab−h2=AB−H2.

10.6CONDITIONSFORTHEGENERALEQUATIONOFTHESECONDDEGREETOREPRESENTACONIC

Thegeneralequationoftheseconddegree

Iftheaxesarerotatedthroughanangleθwiththeanticlockwisedirectionthen

Thentheequationtransformedwiththeseconddegreein(X,Y)is

Now,westudyseveralcasesbasedonthevaluesofAandB.Case1:Ifab–h2=0thenA=0orB=0.SupposeA=0thentheequation(10.6)takestheform

Page 606: Analytical Geometry: 2D and 3D

IfG=0thenthisequationwillrepresentapairofstraightlines.IfG≠0thenwehavefrom(3).

Shiftingtheorigintothepoint theaboveequationcanbewritten

intheform whichisaparabola.

Case2:Supposeab–h2≠0thenneitherA=0norB=0.Thenequation(10.6)canbewrittenas

Shiftingtheorigintothepoint theaboveequationtakestheform

IfB=0thenequation(10.8)representsaformofstraightlinesrealorimaginary.IfK≠0thenequation(10.8)canbeexpressedintheform

whichisanellipsedependingonAandB.

Page 607: Analytical Geometry: 2D and 3D

IfAandBareofoppositesigns,thatis,ab−h2<0thentheequation(10.9)willrepresentahyperbola.IfB=−A,thatis,a+b=0thenequation(10.9)willrepresentarectangularhyperbola.Hencewehavethefollowingconditionforthenatureoftheseconddegreeequation(10.3)torepresentindifferentforms.Theconditionsareasfollows:

1. Itwillrepresentapairofstraightlineifabc+2fgh−af2−bg2−ch2=0.2. Itwillrepresentacircleifa=bandh=0.

3. Itwillrepresentaparabolaifab−h2=0.

4. Itwillrepresentanellipseifab−h2>0.

5. Itwillrepresentahyperbolaifab−h2<0.6. Itwillrepresentarectangularhyperbolaifa+b=0.

10.7CENTREOFTHECONICGIVENBYTHEGENERALEQUATIONOFTHESECONDDEGREE

Thegeneralequationoftheseconddegreeinxandyis

Sincethisequationhasxandyterms,thecentreisnotattheorigin.Letussupposethecentreisat(x1,y1).Letusnowshifttheoriginto(x1,y1)withoutchangingthedirectionofaxes.ThenX=x+x1,Y=y+y1.Thenequation(10.10)takestheform

Sincetheoriginisshiftedtothepoint(x1,y1)withrespecttonewaxes,thecoefficientofXandYin(10.11)shouldbezero.

Solvingthesetwoequations,weget

Page 608: Analytical Geometry: 2D and 3D

Thenthecoordinatesofthecentreare

Ifab−h2=0,thentheconicisaparabola.

10.8EQUATIONOFTHECONICREFERREDTOTHECENTREASORIGIN

FromtheresultobtainedinSection10.7,theequationoftheconicreferredtocentreastheoriginisax2+2hxy+by2+C1=0,where,

Hence,theequationoftheconicreferredtocentreasoriginisax2+2hxy+by2+

C1=0where

Note10.8.1:Iff=ax2+2hxy+by2+2gx+2fy+c=0then

Page 609: Analytical Geometry: 2D and 3D

Therefore,thecoordinatesofthecentreoftheconicaregivenbysolvingthe

equations and

Example10.8.1

Findthenatureoftheconicandfinditscentre.Alsowritedowntheequationoftheconicreferredtocentreasorigin:

i. 2x2−5xy−3y2−x−4y+5=0

ii. 5x2−6xy+5y2+22x−26y+29=0

Solution

i. Given:2x2−5xy−3y2−x−4y+5=0

Here,

Therefore,theconicisahyperbola.

Thecoordinatesofthecentrearegivenby

Solvingthesetwoequations,weget

Therefore,thecoordinatesofthecentreare Theequationoftheellipsereferredto

centreasoriginis

Page 610: Analytical Geometry: 2D and 3D

Therefore,theequationoftheellipsereferredtothecentreis2x2−5xy−3y+7=0.ii.

Therefore,thegivenequationrepresentsanellipse.Thecoordinatesofthecentrearegivenby

Solvingtheseequationswegetthecentreas(1,2).Theequationoftheconicreferredtocentreasoriginis5x2−6xy+5y2+C1=0whereC1=gx1+fy1+c.

C1=11×(−1)−13(2)+29=−11−26+29=−8Therefore,theequationoftheellipseis5x2−6xy+5y−8=0or5x2−6xy+5y=8.

10.9LENGTHANDPOSITIONOFTHEAXESOFTHECENTRALCONICWHOSEEQUATIONIS

ax2+2hxy+by2=1

Given:

Theequationofthecircleconcentricwiththisconicandradiusris

Homogeneousingequation(10.15)withthehelpof(10.16)weget

Page 611: Analytical Geometry: 2D and 3D

Thetwolinesgivenbyabovehomogeneousequationwillbeconsideredonlyiftheradiusofthecircleisequaltolengthofsemi-majoraxisorsemiminoraxis.Theconditionforthatis

Thisisaquadraticequationinr2andsoithastworootsnamely For

anellipsethevalues arebothpositiveandthelengthsofthesemi-axes

are2r1and2r2.Forahyperbolaoneofthevaluesispositiveandtheotheris

negative,thatis,say ispositiveand isnegative.Thenthelengthof

transverseaxisis2r1andthelengthofconjugateaxisis

Usingequation(10.18)inequation(10.17),weget

Thentheequationsofaxesare

Page 612: Analytical Geometry: 2D and 3D

Theeccentricityoftheconiccanbedeterminedfromthelengthoftheaxes.

10.10AXISANDVERTEXOFTHEPARABOLAWHOSEEQUATIONISax2+2hxy+by2+2gx+2fy+c=0

Thisequationwillrepresentaparabolaifab−h2=0.Given:

Thenequation(10.20)canbeexpressedintheform

Wechooseλsuchthatand

and

areperpendiculartoeachother.

Nowequation(10.21)canbewrittenas

Page 613: Analytical Geometry: 2D and 3D

Sincetheaboveequationrepresentsaparabola,theaxisoftheparabolaispx+

qy+λ=0andthetangentatthevertexis andthe

lengthofthelatusrectumis where

Example10.10.1

Tracetheconic36x2+24xy+29y2−72x+126y+81=0.

Solution

Given:

Therefore,thegivenconicrepresentsanellipse.Thecoordinatesofthecentre

aregivenby and

Page 614: Analytical Geometry: 2D and 3D

Solvingequation(10.25)and(10.26)wegetx=2,y=−3.Therefore,thecentreoftheellipseis(2,−3).Theequationofthisellipseinstandardformis36x2+24xy+29y2+C1=0

whereC1=gx1+fy1+c.

Thelengthoftheaxesaregivenby

Solvingforr2wegetr2=9or4∴r1=3=Lengthofthesemi-majoraxisr2=2=Lengthofthesemiminoraxis

Theequationofthemajoraxisis

Theequationofminoraxisis

Referringtothecentretheequationofmajorandminoraxesare

Page 615: Analytical Geometry: 2D and 3D

Themajoraxis4x+3y+1=0meetstheaxesat and

Theminoraxismeetstheaxesatthepoint and(6,0).

Theconicmeetstheaxisatpointsaregivenby

whichareimaginary.

Therefore,theconicdoesnotmeetthex-axis.Similarly,bysubstitutingy=0inequation(10.24)weget29y2+126y+81=0.

Therefore,theconicintersectsy-axisinrealpoints.

Example10.10.2

Tracetheconicx2+4xy+y2−2x+2y−6=0.

Solution

ab−h2=1×1−4=−3<0.

Page 616: Analytical Geometry: 2D and 3D

Therefore,theconicisahyperbola.Thecoordinatesofthecentrearegivenby

(i.e.)2x+4y−2=0orx+2y−1=0

4x+2y+2=0or2x+y+1=0.Solvingthesetwoequationswegetthe

centre.Therefore,thecoordinatesofthecentreare(−1,1).Theequationoftheconicreferredtothecentreasoriginwithoutchangingthe

directionsoftheaxisisx2+4xy+y2+C1=0whereC1=gx+fy+c

Therefore,thelengthsoftheaxesaregivenby

Hence,thesemi-transverseaxisis

Thelengthofsemi-conjugateaxisis

Semi-latusrectum

Theequationofthetransverseaxisis

Page 617: Analytical Geometry: 2D and 3D

Theequationofconjugateaxesis

(i.e.)x+y=0

Thepointswherethehyperbolameetsthex-axisaregivenbyx2−2x−6=0.

Whenthecurvemeetsthey-axis,x=0∴y2+2y−6=0∴y=1.7or−3.7nearlyHence,thecurvepassesthroughthepoints(−1.7,0),(3.7,0),(0,1.7)and(0,

−3.7).Thecurveistracedinfollowingfigure:

Page 618: Analytical Geometry: 2D and 3D

Example10.10.3

Tracetheconicx2+2xy+y2−2x−1=0.

Solution

a=1,b=1,h=1,g=−1,f=0,c=−1Here,h2=abandabc+2fgh–af2−bg2−ch2≠0.Therefore,theconicisaparabola.Thegivenequationcanbewrittenas(x+y)2=2x+1.Theequationcanbewrittenas

whereλischosensuchthatx+y+λ=0and2(λ+1)x+2λy+(λ2+1)=0areperpendicular.

Nowequation(10.27)canbewrittenas

Page 619: Analytical Geometry: 2D and 3D

whichisoftheformy2=4ax.

Therefore,lengthsoflatusrectumoftheparabolais

Theaxisoftheparabolais

or2x+2y−1=0

Theequationofthetangentatthevertexis

Vertexoftheparabolais

Whentheparabolameetsthex-axis,y=0.

x2−2x−1=0∴x=2.4,−0.4Therefore,thepointsonthecurveare(−0.4,0)and(2.4,0).Whenthecurvemeetsthey-axis,x=0.

y2=1ory=±1Hence(0,−1)and(0,1)arepointsonthecurve.Thegraphofthecurveisgivenasfollows:

Page 620: Analytical Geometry: 2D and 3D

Exercises

Tracethefollowingconics:

1. 9x2+24xy+16y2−44x+108y−124=0

2. 5x2−6xy+5y2+22x−26y+29=0

3. 32x2+52xy−7y2−64x−52y−148=0

4. x2+24xy+16y2−86x+52y−139=0

5. 43x2+48xy+57y2+10x+180y+25=0

6. x2−4xy+4y2−6x−8y+1=0

7. x2+2xy+y2−4x−y+4=0

8. 5x2−2xy+5y2+2x−10y−7=0

9. 22x2−12xy+17y2−112x+92y+178=0.

Page 621: Analytical Geometry: 2D and 3D

Chapter11

ThreeDimension

11.1RECTANGULARCOORDINATEAXES

Tolocateapointinaplane,twonumbersarenecessary.Weknowthatanypointinthexyplanecanberepresentedasanorderedpair(a,b)ofrealnumberswhereaiscalledx-coordinateofthepointandbiscalledthey-coordinateofthepoint.Forthisreason,aplaneiscalledtwodimensional.Tolocateapointinspace,threenumbersarerequired.Anypointinspaceis

representedbyanorderedtriple(a,b,c)ofrealnumbers.Torepresentapointinspacewefirstchooseafixedpoint‘O’(calledtheorigin)andthenthreedirectedlinesthroughOwhichareperpendiculartoeachother(calledcoordinateaxes)andlabelledx-axis,y-axisasbeinghorizontalandz-axisasverticalandwetaketheorientationoftheaxes.Inordertodothis,wefirstchooseafixedpointO.Inlookingatthefigure,youcanthinkofy-andz-axesaslyingintheplaneofthepaperandx-axisascomingoutofthepapertowardsy-axis.Thedirectionofz-axisisdeterminedbytheneighbourhoodrule.Ifyoucurlthefingersofyourright-handaroundthez-axisinthedirectionofa90°counterclockwiserotationfromthepositivex-axistothepositivey-axisthenyourthumbpointsinthepositivedirectionofthez-axis.

Page 622: Analytical Geometry: 2D and 3D

Thethreecoordinateaxesaredeterminedbythethreecoordinateplanes.Thexy-planeistheplanethatcontainsxandy-axes,theyz-planecontainsyandz-axesandthexz-planecontainsx-andz-axes.

Thesethreecoordinateplanesdividethespaceintoeightpartscalledoctants.Thefirstoctantisdeterminedbythepositiveaxes.Lookatanybottomcornerofaroomandcallthecornerasorigin.

Thewallonyourleftisinthexz-plane.Thewallonyourrightisintheyz-plane.Thewallonthefloorisinthexy-plane.Thex-axisrunsalongthe

Page 623: Analytical Geometry: 2D and 3D

intersectionofthefloorandtheleftwall.They-axisrunsalongtheintersectionofthefloorandtherightwall.Thez-axisrunsupfromthefloortowardstheceilingalongtheintersectionofthetwowallsaresituatedinthefirstoctantandyoucannowimaginesevenotherroomssituatedintheothersevenoctants(threeonthesamefloorandfourthonthefloorbelow),allareconnectedbythecommonpointO.IfPisanypointinspace,andabethedirecteddistanceinthefirstoctant

fromtheyz-planetoP.Letthedirecteddistancefromthexz-planebebandletcbethedistancefromxy-planetoP.

WerepresentthepointPbytheorderedtriple(a,b,c)ofrealnumbersandwecalla,bandcthecoordinatesofP.aisthex-coordinate,bisthey-coordinateandcisthez-coordinate.Thus,tolocatethepoint(a,b,c)wecanstartattheoriginOandmoveaunitsalongx-axisthenbunitsparalleltoy-axisandcunitsparalleltothez-axisasshownintheabovefigure.

ThepointP(a,b,0)determinesarectangularboxasintheabovefigure.IfwedropaperpendicularfromPtothexy-planewegetapointC′withcoordinatesP(a,b,0)calledtheprojectionofPonthexy-plane.Similarly,B′(a,0,c)and

Page 624: Analytical Geometry: 2D and 3D

A′(0,b,c)aretheprojectionsofPonxz-planeandyz-plane,respectively.ThesetofallorderedtriplesofrealnumbersistheCartesianproductR×R×R={(x,y,z)|x,y,z∈R},whichisR3.Wehaveaone-to-onecorrespondencebetweenthepointsPinspaceandorderedtriples(a,b,c)inR3.Itiscalledathree-dimensionalrectangularcoordinatesystem.Wenoticethatintermsofcoordinates,thefirstoctantcanbedescribedastheset{(x,y,z)|x≥0,y≥0,z≥0}.

11.2FORMULAFORDISTANCEBETWEENTWOPOINTS

Considerarectangularbox,wherePandQaretheoppositecornersandthefacesoftheboxareparalleltothecoordinateplanes.IfA(x1,y1,z1)andB(x2,y2,z2)aretheverticesoftheboxindicatedintheabovefigure,then

|PA|=|x2–x1|,|AB|=|y2–y1|,BQ=|z2–z1|SincethetrianglesPBQandPABarebothrightangled,byPythagoras

theorem,

Page 625: Analytical Geometry: 2D and 3D

Example11.2.1

Findthedistancebetweenthepoints(2,1,–5)and(4,–7,6).

Solution

Thedistancebetweenthepoints(2,1,–5)and(4,–7,6)is

units

Aliter:LetP(x1,y1,z1)and(x2,y2,z2)betwopoints.DrawPA,QBperpendiculartoxy-plane.ThenthecoordinatesofAandBare(x1,y1,0)and(x2,y2,0).

(i.e.)(x1,y1)and(x2,y2)inthexy-plane.

∴AB2=(x2–x1)2+(y2–y1)2

DrawPCperpendiculartoxy-plane.PAandPBbeingperpendiculartoxy-plane,PAandQBarealsoperpendiculartoAB.

Page 626: Analytical Geometry: 2D and 3D

∴PABCisarectangleandsoPC=ABandPA=CB.

Fromtriangle

Example11.2.2

IfOistheoriginandPisthepoint(x,y,z)thenOP2=x2+y2+z2or

11.2.1SectionFormula

Thecoordinatesofapointthatdividesthelinejoiningthepoints(x1,y1,z1)and(x2,y2,z2)areintheratiol:m.LetR(x,y,z)dividethelinejoiningthepointsP(x1,y1,z1)andQ(x2,y2,z2)in

theratiol:m.

Page 627: Analytical Geometry: 2D and 3D

DrawPL,QCandRBperpendiculartothexy-plane.ThenACBisastraightlinesinceprojectionofastraightlineonaplaneisastraightline.ThroughRdrawastraightlineLRMparalleltoACBtomeetAP(produced)inAandCQinM.ThentrianglesLPRandMRQaresimilar.

However,

Therefore,from(11.1),

Similarly,bydrawingperpendicularsonxzandyzplaneswecanprovethat

Therefore,thecoordinatesofRare

Note11.2.1.1:IfR′dividesPQexternallyintheratiol:mthen,

Page 628: Analytical Geometry: 2D and 3D

∴Therefore,changeminto–mtogetthecoordinatesofR′,theexternalpointofdivision.Thecoordinatesofexternalpointofdivisionare

Note11.2.1.2:TofindthemidpointofPQtakel:m=1:1.

Thenthecoordinatesofmidpointare

11.3CENTROIDOFTRIANGLE

LetABCbeatrianglewithverticesA(x1,y1,z1),B(x2,y2,z2)andC(x3,y3,z3).

ThenthemidpointofBCisD

LetGbethecentroidofthetriangleABC.ThenGdividesADintheratio2:1.ThentheCoordinatesofGare

Hence,thecentroidofΔABCis

Page 629: Analytical Geometry: 2D and 3D

11.4CENTROIDOFTETRAHEDRON

LetOBCDbeatetrahedronwithvertices(xi,yi,zi),i=1,2,3,4.

ThecentroidofthetetrahedrondividesADintheratio3:1.Therefore,thecoordinatesofGare

11.5DIRECTIONCOSINES

Directioncosinesinthree-dimensionalcoordinategeometryplayarolesimilartoslopeintwo-dimensionalcoordinategeometry.

Definition11.5.1:Ifastraightlinemakesanglesα,βandγwiththepositivedirectionsofx-,y-andz-axesthencosα,cosβandcosγarecalledthedirectioncosinesoftheline.Thedirectionalcosinesaredenotedbyl,mandn.

∴l=cosα,m=cosβ,n=cosγ.Thedirectioncosinesofx-axisare1,0and0.Thedirectioncosinesofy-axisare0,1and0.Thedirectioncosinesofz-axisare0,0and1.

IfOistheoriginandP(x,y,z)beanypointinspaceandOP=r,thenthedirectioncosinesofthelinearelr,mr,nr.LetObetheoriginandP(x,y,z)isanypointinspace.DrawPNperpendiculartoXOYplane.DrawNL,NMparalleltoy-andx-axes.

Page 630: Analytical Geometry: 2D and 3D

ThenOL=x1,OM=y1,PN=z1.

Also,

Similarly,x=rcosαandz=rcosγ.ThenthecoordinatesofPare

Note11.5.2:ThedirectioncosinesofthelineOPare

Note11.5.3:IfOP=1unitthenthedirectioncosinesofthelineare(x,y,z).Thatis,thecoordinatesofthepointParethesameasthedirectioncosinesofthelineOP.

Note11.5.4:IfOP=1unitandPisthepoint(x,y,z)thenOP2=x2+y2+z2orx2+y2+z2=1.

∴l2+m2+n2=1Therefore,directioncosinessatisfythepropertycos2α+cos2β+cos2γ=1.

Page 631: Analytical Geometry: 2D and 3D

11.5.1DirectionRatios

Supposea,bandcarethreenumbersproportionaltol1,m1andn1(thedirectioncosinesofaline),then

Therefore,thedirectioncosinesofthelineare

wherethesamesignistakenthroughout.Herea,band

carecalledthedirectionratiosoftheline.If2,3and5arethedirectionratiosofalinethenthedirectioncosinesofthelineare

11.5.2ProjectionofaLine

TheprojectionofalinesegmentABonalineCDisthelinejoiningthefeetoftheperpendicularsfromAandBonCD.IfALmakesanangleθwiththelineCD

then whereALisparalleltoCD.

Page 632: Analytical Geometry: 2D and 3D

Therefore,theprojectionofABonCDisLM=ABcosθ.

Note11.5.2.1:TheprojectionofbrokenlinesAB,BCandCDonthelineCDisLM,MNandND.

∴Therefore,thesumoftheprojectionAB,BCandCDisLM+MN+ND=LP.

11.5.3DirectionCosinesoftheLineJoiningTwoGivenPoints

LetP(x1,y1,z1)andQ(x2,y2,z2)bethegivenpoints.WeeasilyseethattheprojectionofPQonx-,y-andz-axesarex2–x1,y2–y1andz2–z1.However,theprojectionsofPQonx-,y-andz-axesarealsoPQcosα,PQcosβandPQcosγ.

Inaddition, SincePQisofconstantlength,thedirectionratios

ofPQare

Page 633: Analytical Geometry: 2D and 3D

(x2–x1,y2–y1,z2−z1).

11.5.4AnglebetweenTwoGivenLines

Let(l1,m1,n1),(l2,m2,n2)linesnamelyABandCD.ThroughbethedirectioncosinesofthetwogivenOdrawlinesparalleltoABandCDandtakepointsPandQsuchthatOP=OQ=1unit.

SinceOPandOQareparalleltothetwogivenlinesthentheanglebetweenthetwogivenlinesisequaltotheanglebetweenthelinesOPandOQ.SinceOP=OQ=1unit,thecoordinatesofPandQare(l1,m1,n1)and(l2,m2,n2).Let

ThenPQ2=OP2+OQ2–2·OP·OQcosθ=1+1−2·1·1cosθ

Also,

Page 634: Analytical Geometry: 2D and 3D

From(11.2)and(11.3),

Note11.5.4.1:Ifthetwolinesareperpendicularthenθ=90°andcos90°=0.

∴from(11.3),l1l2+m1m2+n1n2=0

Note11.5.4.2:

Note11.5.4.3:

Note11.5.4.4:Ifa1,b1,c1anda2,b2,c2arethedirectionratiosofthetwolinesthen

Ifthetwolinesareparallelthensinθ=0.

Page 635: Analytical Geometry: 2D and 3D

Also,ifa1,b1,c1anda2,b2,c2arethedirectionratiosoftwoparallellinesthen

ILLUSTRATIVEEXAMPLES

Example11.1

Showthatthepoints(–2,5,8),(–6,7,4)and(–3,4,4)formaright-angledtriangle.

Solution

ThegivenpointsareA(–2,5,8),B(–6,7,4)andC(−3,4,4).

SinceBC2+AC2=AB2,thetriangleisrightangled.SinceBC=AC,thetriangleisalsoisosceles.

Page 636: Analytical Geometry: 2D and 3D

Example11.2

Showthatthepoints(3,2,5),(2,1,3),(–1,2,1)and(0,3,3)takeninorderformaparallelogram.

Solution

LetthefourpointsbeA(3,2,5),B(2,1,3),C(–1,2,1)andD(0,3,3).Then,

SinceAB=CDandBC=AD,thefourpointsformaparallelogram.

Aliter:ThemidpointofACis(1,2,3).ThemidpointofBDis(1,2,3).Therefore,inthefigureABCD,thediagonalsbisecteachother.HenceABCD

isaparallelogram.

Example11.3

Showthatthepoints(–1,2,5),(1,2,3)and(3,2,1)arecollinear.

Solution

ThethreegivenpointsareA(–1,2,5),B(1,2,3)andC(3,2,1).

Hence,thethreegivenpointsarecollinear.

Page 637: Analytical Geometry: 2D and 3D

Example11.4

Showthatthepoints(3,2,2),(–1,1,3),(0,5,6)and(2,1,2)lieonaspherewhosecentreis(1,3,4).Alsofinditsradius.

Solution

LetthegivenpointsbeS(2,1,2),P(3,2,2),Q(–1,1,3),R(0,5,6)andC(1,3,4).

Therefore,thepointsP,Q,RandSlieonaspherewhosecentreisC(1,3,4)andwhoseradiusis3units.

Example11.5

Findtheratioinwhichthestraightlinejoiningthepoints(1,–3,5)and(7,2,3)isdividedbythecoordinateplanes.

Solution

LetthelinejoiningthepointsP(1,–3,5)andQ(7,2,3)bedividedbyXY,YZandZXplanesintheratiol:1,m:1andn:1,respectively.WhenthelinePQmeetstheXYplanes,theZ-coordinatesofthepointofmeetis0.

(i.e.)TheratioinwhichPQdividestheplaneYZ-planeis1:7externally.

Page 638: Analytical Geometry: 2D and 3D

Similarly,

SinceXZ-planedividesPQintheratio3:2internally.

Also or Therefore,XY-planedividesPQintheratio5:3

externally.

Example11.6

PandQarethepoints(3,4,12)and(1,2,2).FindthecoordinatesofthepointsinwhichthebisectoroftheanglePOQmeetsPQ.

Solution

Weknowthat

RdividesPQinternallyintheratio13:3andSdividesPQexternallyintheratio13:3.

Therefore,thecoordinatesofRare

(i.e.)

Page 639: Analytical Geometry: 2D and 3D

(i.e.)

SdividesPQexternallyintheratio13:3.

Therefore,thecoordinatesofSare

(i.e.)

Example11.7

Provethatthethreelineswhichjointhemidpointsofoppositeedgesofatetrahedronpassthroughthesamepointandarebisectedatthatpoint.

Solution

LetABCDbeatetrahedronwithvertices(xi,yi,zi),i=1,2,3,4.Thethreepairsofoppositeedgesare(AD,BC),(BD,AC)and(CD,AB).Let(L,N),(P,Q)and(R,S)bethemidpointsofthethreepairsofoppositeedges.ThenListhepoint

Misthepoint

ThemidpointofLMis

Page 640: Analytical Geometry: 2D and 3D

Bysymmetry,thisisalsothemidpointofthelinesPQandRS.Therefore,thelinesLM,PQandRSareconcernedandarebisectedatthat

point.

Example11.8

Aplanetriangleofsidesa,bandcisplacedsothatthemidpointsofthesidesareontheaxes.Showthatthelengthsl,mandninterceptedontheaxesaregivenby8l2=b2+c2–a2,8m2=c2+a2–b2and8n2=a2+b2–c2andthatthecoordinatesoftheverticesofthetriangleare(–l,m,n),(l,–m,n)and(l,m,–n).

Solution

LetD,EandFbethemidpointsofthesidesBC,CAandAB,respectively.D,EandFarethepoints(l,0,0),(0,m,0),(0,0,n),respectively.LetA,BandCbethepoints(x1,y1,z1),(x2,y2,z2)and(x3,y3,z3),respectively.Then,

Page 641: Analytical Geometry: 2D and 3D

Similarly,

Therefore,theverticesare(–l,m,n),(l,–m,n)and(l,m,–n).

Page 642: Analytical Geometry: 2D and 3D

Example11.9

Adirectedlinemakesangles60°and60°withx-andy-axes,respectively.Findtheangleitmakeswithz-axis.

Solution

Ifalinemakesanglesα,βandγwithx-,y-andz-axes,respectivelythencos2α+cos2β+cos2γ=1.

Here,α=60°,β=60°

Example11.10

Findtheacuteanglebetweenthelineswhosedirectionratiosare2,1,–2and1,1,0.

Solution

Thedirectioncosinesofthetwolinesare

Ifθistheanglebetweenthelinesthen

Page 643: Analytical Geometry: 2D and 3D

Example11.11

Findtheanglebetweenanytwodiagonalsofaunitcube.

Solution

ThefourdiagonalsofthecubeareOO′,AA′,BB′andCC′.ThenthedirectionratiosofOO′andAA′are(1,1,1)and(−1,1,1).ThedirectioncosinesofOO′andAA′

are and Ifθistheanglebetweenthesetwodiagonals

then

Similarly,theanglebetweenanytwodiagonalsis

Page 644: Analytical Geometry: 2D and 3D

Example11.12

Ifα,β,γandδaretheanglesmadebyalinewiththefourdiagonalsofacube,

provethatcos2α+cos2β+cos2γ+cos2

Solution

ThefourdiagonalsareOO′,AA′,BB′andCC′(referfiguregiveninExample11.11).Letl,m,nbethedirectioncosinesofthelinemakinganglesα,β,γandδwiththefourdiagonals.Then,

Squaringandaddingthesefourresults,weget

Example11.13

Ifl1,m1,n1andl2,m2,n2arethedirectioncosinesoftwomutuallyperpendicularlines,showthatthedirectioncosinesofthelinesperpendiculartotheabovetwolinesare

m1n2–m2n1,n1l2−l1n2andl1m2–l2m1.

Solution

Letl,mandnbethedirectioncosinesofthelineperpendiculartothetwogivenlines.Thenll1+mm1+nn1=0;ll2,+mm2+nn2=0

Page 645: Analytical Geometry: 2D and 3D

But andsincethetwolinesareperpendicular

Therefore,thedirectioncosinesofthelineperpendiculartothegiventwolinesarem1n2–m2n1,n1l2–n2l1,l1m2–l2m1.

Example11.14

Showthatthreeconcurrentstraightlineswithdirectioncosinesl1,m1,n1;l2,m2,n2andl3,m3,n3arecoplanarif

Solution

Letl,mandnbethedirectioncosinesofthelinewhichisperpendiculartothegiventhreelines.Ifthelinesarecoplanarthenthelinewithdirectioncosinesl,mandnisnormaltothegivencoplanarline.

Page 646: Analytical Geometry: 2D and 3D

Eliminatingl,mandnweget

Example11.15

Provethatthestraightlineswhosedirectioncosinesaregivenbytheequations

al+bm+cn=0andfmn+gnl+hlm=0areperpendicularif

Solution

Thedirectioncosinesoftwolinesaregivenby

From(11.5),

Substitutingin(11.6),weget

Dividingbym2,weget|

Page 647: Analytical Geometry: 2D and 3D

Ifl1,m1,n1andl2,m2,n2arethedirectioncosinesofthetwogivenlinesthen

and aretherootsoftheequation(11.7),then

Similarly,

Butl1l2+m1m2+n1n2=0

Dividing

Example11.16

Iftwopairofoppositeedgesofatetrahedronareatrightanglesthenshowthatthethirdpairisalsoatrightangles.

Solution

Let(OA,BC),(OB,CA)and(OC,AB)bethreepairofoppositeedges.LetObetheorigin.LetthecoordinatesofA,BandCbe(x1,y1,z1),(x2,y2,z2)and(x3,y3,z3),respectively.ThenthedirectionratiosofOAandBCarex1,y1,z1andx2–x3,y2–y3,z2–z3.SinceOAisperpendiculartoBC,weget

Page 648: Analytical Geometry: 2D and 3D

SinceOBisperpendiculartoACweget

Adding(11.8)and(11.9),weget

ThisshowsthatOCisperpendiculartoAB.

Example11.17

Ifl1,m1,n1;l2,m2,n2andl3,m3,n3bethedirectioncosinesofthemutuallyperpendicularlinesthenshowthatthelinewhosedirectionratiosl1+l2+l3,m1+m2+m3andn1+n2+n3makeequalangleswiththem.

Solution

Ifl1,m1,n1;l2,m2,n2andl3,m3,n3arethedirectioncosinesofthreemutually

perpendicularlines also

Letθbetheanglebetweenthelineswiththedirectioncosinesl1,m1,n1anddirectionratiosl1+l2+l3,m1+m2+m3andn1+n2+n3.Then,

Similarly,theothertwoanglesareequaltothesamevalueofθ.Therefore,thelineswiththedirectionratiosl1+l2+l3,m1+m2+m3,n1+n2+n3areequallyinclinedtothelinewithdirectioncosinesl1,m1,n1;l2,m2,n2and

Page 649: Analytical Geometry: 2D and 3D

l3,m3,n3.

Example11.18

Showthatthestraightlineswhosedirectioncosinesaregivenbya2l+b2m+c2n=0,mn+nl+lm=0willbeparallelifa±b±c=0.

Solution

Giventhedirectioncosinesoftwogivenlinessatisfytheequations

From(11.11),

Substitutingthisvalueofnin(11.12),weget

Dividingby

Ifl1,m1,n1andl2,m2,n2arethedirectioncosinesofthetwogivenlinesthen

aretherootsoftheequation(11.13).

Also,ifthelinesareparallelthen thentherootsoftheequation(11.13)

areequal.Theconditionforthatisthediscriminantisequaltozero.

Page 650: Analytical Geometry: 2D and 3D

Example11.19

Theprojectionsofalineontheaxesare3,4,12.Findthelengthanddirectioncosinesoftheline.

Solution

Let(l,m,n)bethedirectioncosinesofthelineand(x1,y1,z1)and(x2,y2,z2)betheextremitiesoftheline.Thedirectioncosinesofx-,yandz-axesare(1,0,0),(0,1,0)and(0,0,1),respectively.Theprojectionofthelineontheaxisis3.

∴x2–x1=3.Similarly,y2–y1=4,z2–z1=12

Thendirectionratiosofthelineare3,4,12.

Therefore,thedirectioncosinesofthelineare

Exercises

1. Showthatthepoints(10,7,0),(6,6,–1)and(6,9,–4)formanisoscelesright-angledtriangle.2. Showthatthepoints(2,3,5),(7,5,–1)and(4,–3,2)formanisoscelestriangle.3. Showthatthepoints(1,2,3),(2,3,1)and(3,1,2)formanequilateraltriangle.

Page 651: Analytical Geometry: 2D and 3D

4. Showthatthepoints(4,0,5),(2,1,3)and(1,3,2)arecollinear.5. Showthatthepoints(1,–1,1),(5,–5,4),(5,0,8)and(1,4,5)formarhombus.6. Provethatthepoints(2,–1,0),(0,–1,–1),(1,1,–3)and(3,1,–2)formtheverticesofarectangle.7. Showthatthepoints(1,2,3),(–1,2,–1),(2,3,2)and(4,7,6)formaparallelogram.8. Showthatthepoints(–4,3,6),(–5,2,2),(–8,5,2),(–7,6,6)formarhombus.9. Showthatthepoints(4,–1,2),(0,–2,3),(1,–5,–1)and(2,0,1)lieonaspherewhosecentreis

(2,–3,1)andfinditsradius.10. Findtheratioinwhichthelinejoiningpoints(2,4,5)and(3,5,–4)isdividedbythexy-plane.

Ans.:(5,4)

11. ThelinejoiningthepointsA(–2,6,4)andB(1,3,7)meetstheYOZ-planeatC.FindthecoordinatesofC.

Ans.:(0,4,6)

12. ThreeverticesofaparallelogramABCDareA(3,–4,7),B(–5,3,–2)andC(1,2,–3).FindthecoordinatesofD.

Ans.:(9,–5,6)

13. Showthatthepoints(–5,6,8),(1,8,11),(4,2,9)and(–2,0,6)aretheverticesofasquare.14. ShowthatthepointsP(3,2,–4),Q(9,8,–10)andR(5,4,–6)arecollinear.Findtheratioinwhich

RdividesPQ.Ans.:(1,2)

15. Findtheratioinwhichthecoordinateplanesdividethelinejoiningthepoints(–2,4,7)and(3,–5,8).

Ans.:7:9;4:5;–7:–8

16. Provethatthelinedrawnfromtheverticesofatetrahedrontothecentroidsoftheoppositefacesmeetinapointwhichdividesthemintheratio3:1.

17. Findthecoordinateofthecircumcentreofthetriangleformedbythepointswithvertices(1,2,1),(–2,2,–1)and(1,1,0).

Ans.:

18. AandBarethepoints(2,3,5)and(7,2,4).FindthecoordinatesofthepointswhichthebisectorsoftheanglesAOBmeetAB.

19. FindthelengthofthemedianthroughAofthetriangleA(2,–1,4),B(3,7,–6)andC(–5,0,2).Ans.:7

20. Provethatthelocusofapoint,thesumofwhosedistancesfromthepoints(a,0,0)and(–a,0,0)

Page 652: Analytical Geometry: 2D and 3D

isaconstant2k,isthecurve

21. Whatarethedirectioncosinesofthelinewhichisequallyinclinedtotheaxes?

Ans.:

22. Findtheanglebetweenthelineswhosedirectionratiosare(2,3,4)and(1,–2,1).

Ans.:

23. Avariablelineintwoadjacentpositionshasdirectioncosines(l,m,n),(l+δl,m+δm,n+δn).

Provethatthesmallangleδθbetweentwopositivesisgivenbyδ2θ=(δl)2+(δm)2+(δn)2.24. FindtheanglebetweenthelinesABandCD,whereA,B,CandDarethepoints(3,4,5),(4,6,3),

(–1,2,4)and(1,0,5),respectively.

Ans.:

25. Provebydirectioncosinesthepoints(1,–2,3),(2,3,–4)and(0,–7,10)arecollinear.26. Findtheanglebetweenthelineswhosedirectionratiosare(2,1,–2)and(1,–1,0).

Ans.:

27. Showthatthelinejoiningthepoints(1,2,3)and(1,5,7)isparalleltothelinejoiningthepoints(–4,3,–6)and(2,9,2).

28. P,Q,RandSarethepoints(2,3,–1),(3,5,3),(1,2,3)and(2,5,7).ShowthatPQisperpendiculartoRS.

29. Provethatthethreelineswithdirectionratios(1,–1,1),(1,–3,0)and(1,0,3)lieinaplane.

30. Showthatthelineswhosedirectioncosinesaregivenbyal+bm+cn=0andal2+bm2+cn2=0

areparallelif

31. Showthatthelineswhosedirectioncosinesaregivenbytheequationsal+vm+wn=0andal2+

bm2+cn2=0areparallelifu2(b+c)+v2(c+a)+w2(a+b)=0andperpendicularif

32. Iftheedgesofarectangularparallelepipedarea,bandc,showthattheanglebetweenthefour

Page 653: Analytical Geometry: 2D and 3D

diagonalsaregivenbycos-1

33. Ifinatetrahedronthesumofthesquaresofoppositeedgesisequal,showthatitspairsofoppositesidesareatrightangles.

34. Findtheanglebetweenthelineswhosedirectioncosinesaregivenbytheequations:

i. l+m+n=0andl2+m2–n2=0ii. l+m+n=0and2lm–2nl–mn=0

Ans.:(i)

(ii)

35. If(l1,m1,n1)and(l2,m2,n2)arethedirectioncosinesoftwolinesinclinedatanangleq,showthattheactualdirectioncosinesofthedirectionbetweenthelinesare

36. AB,BCarethediagonalsofadjacentfacesofarectangularboxwithcentreattheoriginOitsedgesbeingparalleltoaxes.IftheanglesAOB,BOCandCOAareθ,ϕandω,respectivelythenprovethatcosθ+cosϕ+cosω=−1.

37. Iftheprojectionsofalineontheaxesare2,3,6thenfindthelengthoftheline.Ans.:7

38. ThedistancebetweenthepointsPandQandthelengthsoftheprojectionsofPQonthe

coordinateplanesared1,d2andd3,showthat

39. Showthatthethreelinesthroughtheoriginwithdirectionratios(1,–1,7),(1,–1,0)and(1,0,3)lieonaplane.

40. Showthattheanglebetweenthelineswhosedirectioncosinesaregivenbyl+m+n=0andfmn

+gnl+hlm=0is

Page 654: Analytical Geometry: 2D and 3D

Chapter12

Plane

12.1INTRODUCTION

Inthree-dimensionalcoordinategeometry,firstwedefineaplaneandfromaplanewedefineastraightline.Inthischapter,wedefineaplaneandobtainitsequationindifferentforms.Wealsoderiveformulatofindtheperpendiculardistancefromagivenpointtoaplane.Also,wefindtheratioinwhichaplanedividesthelinejoiningtwogivenpoints.

Definition12.1.1:Aplaneisdefinedtobeasurfacesuchthatthelinejoininganytwopointswhollyliesonthesurface.

12.2GENERALEQUATIONOFAPLANE

Everyfirstdegreeequationinx,yandzrepresentsaplane.Considerthefirstdegreeequationinx,yandzas

wherea,b,canddareconstants.LetP(x1,y1,z1)andQ(x2,y2,z2)betwopointsonthelocusofequation(12.1).Thenthecoordinatesofthepointsthatdivide

linejoiningthesetwopointsintheratioλ:1are If

thispointliesonthelocusofequation(12.1)then

Page 655: Analytical Geometry: 2D and 3D

SinceP(x1,y1,z1)andQ(x2,y2,z2)aretwopointsonthelocusoftheequation(12.1)thesetwopointshavetosatisfythelocusoftheequation(12.1).

Multiplying(12.4)byλandaddingwith(12.3),weget(ax1+by1+cz1+d)+λ(ax2+by2+cz2+d)=0whichistheequation(12.2).

Therefore,thepoint liesonthelocusofequation

(12.1).Hence,thisshowsthatiftwopointsliesonthelocusofequation(12.1)then

everypointonthislineisalsoapointonthelocusofequation(12.1).Hence,theequation(12.1)representsaplaneandthuswehaveshownthateveryfirstdegreeequationinx,yandzrepresentsaplane.

12.3GENERALEQUATIONOFAPLANEPASSINGTHROUGHAGIVENPOINT

Lettheequationoftheplanepassingthroughagivenpoint(x1,y1,z1)be

since(x1,y1,z1)liesontheplane(12.5).

Subtracting(12.6)from(12.5),wegeta(x–x1)+b(y–y1)+c(z–z1)=0.Thisisthegeneralequationoftheplanepassingthroughthegivenpoint(x1,y1,z1).

12.4EQUATIONOFAPLANEININTERCEPTFORM

Page 656: Analytical Geometry: 2D and 3D

Lettheequationofaplanebe

Letthisplanemakeinterceptsa,bandcontheaxesofcoordinates.Ifthisplanemeetsthex-,y-andz-axesatA,BandCthentheircoordinatesare(a,0,0),(0,b,0)and(0,0,c),respectively.SincethesepointslieontheplaneAx+By+Cz+D=0,thecoordinatesofthepointshavetosatisfytheequationAx+By+Cz+D=0.

ByreplacingthevaluesofA,BandC,weget

Thisequationiscalledtheinterceptformofaplane.

12.5EQUATIONOFAPLANEINNORMALFORM

Page 657: Analytical Geometry: 2D and 3D

LetaplanemeetthecoordinateaxesatA,BandC.DrawONperpendiculartotheplaneABCandletON=p.LetthedirectioncosinesofONbe(cosα,cosβ,cosγ).SinceON=p,thecoordinatesofNare(pcosα,pcosβ,pcosγ).Letp(x1,y1,z1)beanypointintheplaneABC.Ifalineisperpendiculartoaplanethenitisperpendiculartoeverylinetotheplane.Therefore,ONisperpendiculartoOP.SincethecoordinatesofPandNare(x1,y1,z1)and(pcosα,pcosβ,pcosγ)thedirectionratiosofNare(x1–pcosα,y1–pcosβ,z1–pcosγ)sinceNisperpendiculartoON.

Therefore,thelocusof(x1,y1,z1)isxcosα+ycosβ+zcosγ=p.Thisequationiscalledthenormalformofaplane.

Note12.5.1:Here,thecoefficientsofx,yandzarethedirectioncosinesofnormaltotheplaneandpistheperpendiculardistancefromtheoriginontheplane.

Note12.5.2:Reductionofaplanetonormalform:theequationofplaneingeneralformis

Page 658: Analytical Geometry: 2D and 3D

Itsequationinnormalformis

Identifying(12.8)and(12.9),weget

SincephastobepositivewhenDispositive,wehave

12.6ANGLEBETWEENTWOPLANES

Lettheequationoftwoplanesbe

Page 659: Analytical Geometry: 2D and 3D

Thedirectionratiosofthenormalstotheaboveplanesare

Theanglebetweentwoplanesisdefinedtobetheanglebetweenthenormalstothetwoplanes.Letθbetheanglebetweentheplanes.

Note12.6.1:Thepositivesignofcosθgivestheacuteanglebetweentheplanesandnegativesigngivestheobtuseanglebetweentheplanes.

Note12.6.2:Iftheplanesareperpendicularthenθ=90°.

∴a1a2+b1b2+c1c2=0

Note12.6.3:Iftheplanesareparallelthendirectioncosinesofthenormalsareproportional.

Note12.6.4:Theequationofplaneparalleltoax+by+cz+d=0canbeexpressedintheformax+by+cz+k=0.

12.7PERPENDICULARDISTANCEFROMAPOINTONAPLANE

Lettheequationoftheplanebe

Page 660: Analytical Geometry: 2D and 3D

andP(x1,y1,z1)bethegivenpoint.WehavetofindtheperpendiculardistancefromPtotheplane.Thenormalformoftheplane(12.12)is

DrawPMperpendicularfromPtotheplane(12.12).DrawtheplanethroughPtothegivenplane(12.12).Theequationofthisplaneis

wherep1istheperpendiculardistancefromtheorigintotheplane(12.13).Thisplanepassesthrough(x1,y1,z1).

∴lx1+my1+nz1=p1DrawBNperpendiculartotheplane(12.3)meetingtheplane(12.12)atM.

ThenON=p1andOM=p.

MN=OM–ON=p–p1=p–(lx1+my1+nz1).Comparingequations(12.12)and(12.13),

Page 661: Analytical Geometry: 2D and 3D

Therefore,theperpendiculardistancefrom(x1,y1,z1)is= .

Aliter:

LetPMbetheperpendicularfromPontheplaneax+by+cz+d=0.LetP(x1,y1,z1)andM(x2,y2,z2)beapointontheplane(12.12).ThenQMandPMare

perpendicular.Letθbethe ThedirectionratiosofPMandPNare(a,b,c)

and(x1–x2,y1–y2,z1–z2).

Page 662: Analytical Geometry: 2D and 3D

Note12.7.1:Theperpendiculardistancefromtheorigintotheplaneax+by+cz

+d=0is .

12.8PLANEPASSINGTHROUGHTHREEGIVENPOINTS

Let(x1,y1,z1),(x2,y2,z2)and(x3,y3,z3)bethreegivenpointsonaplane.Lettheequationoftheplanebe

Anyplanethrough(x1,y1,z1)is

Thisplanealsopassesthrough(x2,y2,z2)and(x3,y3,z3).

Eliminatinga,bandcfrom(12.6),(12.7)and(12.18),weget

Thisistheequationoftherequiredplane.

Aliter:Lettheequationoftheplanebe

Thisplanepassesthroughthepoints(x1,y1,z1),(x2,y2,z2)and(x3,y3,z3).

Page 663: Analytical Geometry: 2D and 3D

Eliminatinga,b,andcfrom(12.20),(12.21)and(12.22),weget

Thisistheequationoftherequiredplane.

12.9TOFINDTHERATIOINWHICHTHEPLANEJOININGTHEPOINTS(x1,y1,z1)AND(x2,y2,z2)ISDIVIDEDBYTHEPLANEax+by+cz+d=0.

Theequationoftheplaneis

LetthelinejoiningthepointsP(x1,y1,z1)andQ(x2,y2,z2)meettheplaneatR.LetRdividedPQintheratioλ:1.ThenthecoordinatesofRare

.Thispointliesontheplanegivenby(1).

Page 664: Analytical Geometry: 2D and 3D

Note12.8.1:If(ax1+by1+cz1+d)and(ax2+by2+cz2+d)areofthesamesignthenλisnegative.ThenthepointRdividesPQexternallyandsothepointsPandQlieonthesamesideoftheplane.

Note12.8.2:IfP(x1,y1,z1)andtheoriginlieonthesamesideoftheplaneax+by+cz+d=0ifax1+by1+cz1+danddofthesamesign.

12.10PLANEPASSINGTHROUGHTHEINTERSECTIONOFTWOGIVENPLANES

Letthetwogivenplanesbe

Thenconsidertheequation(ax1+by1+cz1+d1)+λ(ax2+by2+cz2+d2)=0.Thisbeingthefirstdegreeequationinx,yandz,representsaplane.Let(x1,y1,z1)bethepointonthelineoftheintersectionofplanesgivenbyequations(12.24)and(12.25).Then(x1,y1,z1)liesonthetwogivenplanes.

Then,clearly(a1x1+b1y1+c1z1+d1)+λ(a2x1+b2y1+c2z2+d2)=0.Fromthisequation,weinferthatthepoint(x1,y1,z1)liesontheplanegiven

by(12.26).Similarly,everypointinthelineofintersectionoftheplanes(12.24)and(12.25)lieontheplanes(12.24)and(12.25).

Page 665: Analytical Geometry: 2D and 3D

Hence,equation(12.26)istheplanepassingthroughtheintersectionofthetwogivenplanes.

12.11EQUATIONOFTHEPLANESWHICHBISECTTHEANGLEBETWEENTWOGIVENPLANES

Findtheequationoftheplaneswhichbisecttheanglebetweentwogivenplanes.Letthetwogivenplanesbe

LetP(x1,y1,z1)beapointoneitherofthebisectorsoftheanglebetweenthetwogivenplanes.ThentheperpendiculardistancefromPtothetwogivenplanesareequalinmagnitude.

Bytakingthepositivesign,wegettheequationofoneofthebisectorsandbytakingthenegativesign,wegettheequationtotheotherbisector.

Note12.11.1:Wecandeterminewhichofthetwoplanesbisectstheacuteanglebetweentheplanes.Forthis,wehavetofindtheangleθbetweenthebisectorplanesandoneofthetwogivenplanes.Iftanθ<1(θ<45°),thenthebisectorplanetakenistheinternalbisectorandtheotherbisectorplaneistheexternalbisector.Iftanθ>1thenthebisectorplanetakenistheexternalbisectorandtheotherbisectorplaneistheinternalbisector.

Note12.11.2:Wecanalsodeterminetheequationoftheplanebisectingtheanglebetweentheplanesthatcontaintheorigin.Supposetheequationofthetwoplanesarea1x+b1y+c1z+d1=0anda2x+b2y+c2z+d2=0whered1andd2

Page 666: Analytical Geometry: 2D and 3D

arepositive.LetP(x1,y1,z1)beapointonthebisectorbetweentheanglesoftheplanescontainingtheorigin.Thend1anda1x+b1y+c1z+dareofthesign.Sinced1ispositive,a1x+b1y+c1zisalsopositive.Similarly,a2x+b2y+c2z+d2isalsopositive.Therefore,theequationoftheplanebisectingtheangle

containingtheoriginis

Theequationofbisectorplanenotcontainingtheoriginis

12.12CONDITIONFORTHEHOMOGENOUSEQUATIONOFTHESECONDDEGREETOREPRESENTAPAIROFPLANES

Theequationthatrepresentsapairofplanesbeax2+by2+cz2+2fyz+2gzx+2hxy=0.Letthetwoplanesrepresentedbytheabovehomogenousequationofthe

seconddegreeinx,yandzbelx+my+nz=0andl1x+m1y+n1z=0.Then

Comparingtheliketermsonbothsides,weget

Page 667: Analytical Geometry: 2D and 3D

Thisistherequiredcondition.

Note12.12.1:Tofindtheanglebetweenthetwoplanes:

Letθbetheanglebetweenthetwoplanes.Then

Page 668: Analytical Geometry: 2D and 3D

Note12.12.2:Iftheplanesareperpendicularthenθ=90°andtheconditionforthatisa+b+c=0.

ILLUSTRATIVEEXAMPLES

Example12.1

Thefootoftheperpendicularfromtheorigintoaplaneis(13,–4,–3).Findtheequationoftheplane.

Solution

Thelinejoiningthepoints(0,0,0)and(13,–4,–3)isnormaltotheplane.Therefore,thedirectionratiosofthenormaltotheplaneare(13,–4,–3).Theequationoftheplaneisa(x–x1)+b(y–y1)+c(z–z1)=0

Example12.2

Page 669: Analytical Geometry: 2D and 3D

AplanemeetsthecoordinateaxesatA,BandCsuchthatthecentroidofthetriangleisthepoint(a,b,c).Findtheequationoftheplane.

Solution

Lettheequationoftheplanebe ThenthecoordinatesofA,BandC

are(α,0,0),(0,β,0)and(0,0,γ).ThecentroidofthetriangleABCis .

Butthecentroidisgivenas(a,b,c).

Therefore,theequationoftheplaneis

Example12.3

Findtheequationoftheplanepassingthroughthepoints(2,2,1),(2,3,2)and(–1,3,1).

Solution

Theequationoftheplanepassingthroughthepoint(2,2,1)isoftheforma(x–2)+b(y–2)+c(z–1)=0.Thisplanepassesthroughthepoints(2,3,2)and(–1,3,1).

∴0a+b+c=0and–3a+b+c=0

Solvingweget

Therefore,theequationoftheplaneis1(x–2)+3(y–2)–3(z–1)=0.

∴x+3y–3z–5=0

Page 670: Analytical Geometry: 2D and 3D

Example12.4

Findtheequationoftheplanepassingthroughthepoint(2,–3,4)andparalleltotheplane2x–5y–7z+15=0.

Solution

Theequationoftheplaneparallelto2x–5y–7z+15=0is2x–5y–7z+k=0.Thisplanepassesthroughthepoint(2,–3,4).

∴4+15–28+k=0ork=9Hence,theequationoftherequiredplaneis2x–5y–7z+9=0.

Example12.5

Findtheequationoftheplanepassingthroughthepoint(2,2,4)andperpendiculartotheplanes2x–2y–4z–3=0and3x+y+6z–4=0.

Solution

Anyplanepassingthrough(2,2,4)isa(x–2)+b(y–2)+c(z–4)=0.Thisplaneisperpendiculartotheplanes2x–2y–4z–3=0and3x+y+6z–

4=0.

Therefore,thedirectionratiosofthenormaltotherequiredplaneare1,3,–1.Therefore,theequationoftheplaneis(x–2)+0+(z–4)=0(i.e.)(x–2)+

3(y–2)–(z–4)=0.

x+3y–z–4=0

Example12.6

Page 671: Analytical Geometry: 2D and 3D

Determinetheconstantsksothattheplanesx–2y+kz=0and2x+5y–z=0areatrightanglesandinthatcasefindtheplanethroughthepoint(1,–1,–1)andperpendiculartoboththegivenplanes.

Solution

Theplanesx–2y+kz=0and2x+5y–z=0areperpendicular.Therefore,2–10–k=0∴k=–8.Anyplanepassingthrough(1,–1,–1)isa(x–1)+b(y+1)+C(x+1)=0.

Thisplaneisperpendiculartotheplanesx–2y–8z=0and2x+5y–z=0.

Therefore,theequationoftherequiredplaneis14(x–1)–5(y+1)+3(z+1)=0or14x–5y+3z–16=0.

Example12.7

AvariableplaneisataconstantdistancepfromtheoriginandmeetstheaxesinA,BandC.ShowthatthelocusofthecentroidofthetetrahedronOABCisx–2+y–2+z–2=16p–2.

Solution

Page 672: Analytical Geometry: 2D and 3D

LettheequationoftheplaneABCbe ThenthecoordinatesofO,A,B

andCare(0,0,0),(a,0,0),(0,b,0)and(0,0,c).LetthecentroidofthetetrahedronOABCbe(x1,y1,z1).Butthecentroidof

thetetrahedronis

TheperpendiculardistancefromOandtheplaneABCisp.

Thelocusof(x1,y1,z1)isx–2+y–2+z–2=16p–2.

Example12.8

Twosystemsofrectangularaxeshavethesameorigin.Ifaplanecutsthematdistances(a,b,c)and(a1,b1,c1)respectively,fromtheorigin,provethat

Solution

Let(o,x,y,z)and(O,X,Y,Z)bethetwosystemofcoordinateaxes.Theequationoftheplanewithrespectivefirstsystemofcoordinateaxisis

Page 673: Analytical Geometry: 2D and 3D

Theequationofthesameplanewithrespecttothesecondsystemofcoordinateaxesis

Theperpendiculardistancefromtheorigintotheplanegivenbytheequation(12.30)is

Theperpendiculardistancefromtheorigintotheplaneisgivenbytheequation

(12.31)is

Sincetheequations(12.30)and(12.31)representthesameplanethesetwoperpendiculardistancesareequal.

Example12.9

Avariableplanepassesthroughafixedpoint(a,b,c)andmeetsthecoordinateaxesinA,BandC.Provethatthelocusofthepointofintersectionofplanes

throughA,BandCparalleltothecoordinateplanesis

Page 674: Analytical Geometry: 2D and 3D

Solution

Lettheequationoftheplanebe

Thisplanepassesthroughthepoint(a,b,c).

ThentheequationoftheplanesthroughA,BandCparalleltothecoordinateplanesarex=α,y=βandz=γ.Let(x1,y1,z1)bethepointofintersectionoftheseplanes.Thenx1=α,y1=βandz1=γ

Therefore,fromequation(12.33),weget Thelocusof(x1,y1,z1)

is

Example12.10

Avariableplanemakesinterceptsonthecoordinateaxes,thesumofwhosesquaresisconstantandisequaltok2.Provethatthelocusofthefootoftheperpendicularfromtheorigintotheplaneis(x2+y2+z2)(x–2+y–2+z–2)=k2.

Solution

Lettheequationoftheplanebe

wherea,bandcaretheinterceptsonthecoordinateaxes.Giventhat

Page 675: Analytical Geometry: 2D and 3D

LetP(x1,y1,z1)bethefootoftheperpendicularfromOonthisplane.The

directionratiosofthenormalOPare Therefore,theequationofthe

normalOPareax=by=cz.Since(x1,y1,z1)liesonthenormal,ax1=by1+cz1=t(say).

From(12.34)and(12.35),weget

Thepoint(x1,y,z1)alsoliesontheplane.

Eliminatinga,b,cfrom(12.36)and(12.38)

Eliminatingtfrom(12.38)and(12.39)

Therefore,thelocusof(x1,y1,z1)is

Example12.11

FindtheequationoftheplanewhichcutsthecoordinateaxesatA,B,andCsuchthatthecentroidofΔABCisatthepoint(–1,–2,–4).

Solution

Page 676: Analytical Geometry: 2D and 3D

Lettheequationoftheplanebe ThenthecoordinatesofA,BandC

are(a,0,0),(0,b,0),(0,0,c).ThecentroidofΔABCis .Butthecentroid

isgivenas(–1,–2,–4).

∴a=–3,b=–6,c=–12

HencetheequationoftheplaneABCis

(i.e.)4x+2y+z+12=0

Example12.12

Findtheequationoftheplanepassingthroughthepoint(–1,3,2)andperpendiculartotheplanesx+2y+2z=5and3x+3y+2z=8.

Solution

Theequationoftheplanepassingthroughthepoint(–1,3,2)isA(x+1)+B(y–3)+C(z–2)=0.Thisplaneisperpendiculartotheplanesx+2y+2z=5and3x+3y+2z=8.Iftwoplanesareperpendicularthentheirnormalsareperpendicular.ThedirectionratiosofthenormaltotherequiredplaneareA,BandC.Thedirectionratiosofthenormalstothegivenplanesare1,2,2and3,3,2.

Page 677: Analytical Geometry: 2D and 3D

Therefore,thedirectionratiosofthenormaltotherequiredplaneare2,–4,3.Theequationoftherequiredplaneis2(x+1)–4(y–3)+3(z–2)=0(i.e.)2x–4y+3z+8=0.

Example12.13

Findtheequationoftheplanepassingthroughthepoints(9,3,6)and(2,2,1)andperpendiculartotheplane2x+6y+6z–9+0.

Solution

Anyplanepassingthroughthepoint(9,3,6)is

Theplanealsopassesthroughthepoint(2,2,1).

Theplane(12.40)isperpendiculartotheplane.

Therefore,theequationoftherequiredplaneis3(x–9)+4(y–3)–5(z–6)=0.

Page 678: Analytical Geometry: 2D and 3D

∴3x+4y–5z=9

Example12.14

Showthatthefollowingpoints(0,–1,0),(2,1,–1),(1,1,1)and(3,3,0)arecoplanar.

Solution

Theequationoftheplanepassingthroughthepoint(0,–1,0)isAx+B(y+1)+Cz=0.Thisplanepassesthroughthepoints(2,1,–1)and(1,1,1).

Therefore,theequationoftheplaneis4x–3(y+1)+2z=0.

∴4x–3y+2z–3=0.Substitutingx=3,y=3,z=0weget12–9–3=0whichistrue.Therefore,theplanepassesthroughthepoints(3,3,0)andhencethefour

givenpointsarecoplanar.

Example12.15

Findforwhatvaluesofλ,thepoints(0,–1,λ),(4,5,1),(3,9,4)and(–4,4,4)arecoplanar.

Solution

Theequationoftheplanepassingthroughthepoint(4,5,1)isA(x–4)+B(y–5)+C(z–1)=0.Thisplanepassesthroughthepoints(3,9,4)and(−4,4,4).

Page 679: Analytical Geometry: 2D and 3D

Therefore,theequationofplaneis5(x–4)–7(y–5)+11(z–1)=0.

Ifthisplanepassesthroughthepoint(0,–1,λ)then0+7+11λ+4=0.∴λ=–1

Example12.16

Avariableplanemovesinsuchawaythatthesumofthereciprocalsoftheinterceptsonthecoordinateaxesisaconstant.Showthattheplanepassesthroughafixedpoint.

Solution

Lettheequationoftheplanebe

Giventhatthesumofthereciprocalsoftheinterceptsisaconstant.

(12.44)–(12.45)gives

Page 680: Analytical Geometry: 2D and 3D

Thisplanespassesthroughthefixedpoint

Example12.17

ApointPmovesonfixedplane andtheplanethroughP

perpendiculartoOPmeetstheaxesinA,BandC.IftheplanesthroughA,BandCareparalleltothecoordinatesplanesmeetinapointthenshowthatthelocus

ofQis

Solution

Thegivenplaneis

LetPbethepoint(α,β,γ).TheplanepassesthroughP.

TheequationoftheplanenormaltoOPis

Theinterceptsmadebythisplaneonthecoordinateaxesare

Iftheseplanesmeetat(x1,y1,z1)then

Page 681: Analytical Geometry: 2D and 3D

Nowwehavetoeliminateα,β,γusing(12.47)and(12.49).From(12.49),

From(12.47)and(12.49),

Therefore,thelocusof(x1,y1,z1)is from(12.50)and

(12.51).

Example12.18

IffromthepointP(a,b,c)perpendicularsPL,PMbedrawntoYZ-andZX-planes,findtheequationoftheplaneOLM.

Solution

Pisthepoint(a,b,c).PLisdrawnperpendiculartoYZ-plane.Therefore,thecoordinatesofLare(0,b,0).PMisdrawnperpendiculartoZX-plane.Therefore,thecoordinatesofMare(0,0,c).WehavetofindtheequationoftheplaneOLM.Theequationoftheplanepassingthrough(0,0,0)isAx+By+Cz=0.Thisplanealsopassesthrough(0,b,c),(a,0,c).

Page 682: Analytical Geometry: 2D and 3D

TheequationoftheplaneOLMisbcx+cay–abz=0.

Example12.19

Showthat isthecircumcentreofthetriangleformedbythepoints(1,1,

0),(1,2,1)and(–2,2,–1).

Solution

A,BandCarethepoints(1,1,0),(1,2,1)and(–2,2,–1)andPisthepoint

ToprovethatPisthecircumcentreofthetriangleABC,wehaveto

showthat:

i. thepointsP,A,BandCarecoplanarandii. PA=PB=PC.

Theequationoftheplanethroughthepoint(1,1,0)isA(x–1)+b(y–1)+C(z–0)=0.Thisplanealsopassesthrough(1,2,1)and(–2,2,–1).

Therefore,theequationoftheplaneABCis–2(x–1)–3(y–1)+3z=0.

Page 683: Analytical Geometry: 2D and 3D

Substitutingthecoordinatesof weget–1+6–0–5=0whichis

true.Therefore,thepointsP,A,BandCarecoplanar.Now

Therefore,PisthecircumcentreofthetriangleABC.

Example12.20

Findtheratioinwhichthelinejoiningthepoints(2,–1,4)and(6,2,4)isdividedbytheplanex+2y+3z+5=0.

Solution

Lettheplanex+2y+3z+5=0dividethelinejoiningthepointsP(2,–1,4)andQ(6,2,4)intheratioλ:1.

Thenthepointofdivisionis

Thispointliesontheplanex+2y+3z+5=0.

Page 684: Analytical Geometry: 2D and 3D

Therefore,theplanedividesthelineexternallyintheratio17:27.

Example12.21

Aplanetrianglewhosesidesareoflengtha,b,andcisplacedsothatthemiddlepointsofthesidesareontheaxes.Ifα,βandγareinterceptsontheaxesthen

showthattheequationoftheplaneis where

Solution

Theequationoftheplaneis

LettheplanemeettheaxesatL,M,Nrespectively.L(α,0,0),M(0,β,0),N(0,0,γ)

Page 685: Analytical Geometry: 2D and 3D

(12.52)+(12.53)–(12.54)gives,

Therefore,theequationoftheplane whereα,β,γaregivenby

(12.55),(12.56)and(12.57).Let(x1,y1,z1),(x2,y2,z2)and(x3,y3,z3)betheverticesoftheΔABC.Then

Page 686: Analytical Geometry: 2D and 3D

Addingweget2(x1+x2+x3)=2αorx1+x2+x3=α

Similarly,

Therefore,theverticesofthetriangleare(–α,β,γ)(α,–β,γ)and(α,β,–γ).

Example12.22

Findtheanglebetweentheplanes2x–y+z=6,x+y+2z=3.

Solution

Thedirectionratiosofthenormaltotheplanesare2,–1,1and1,1,2.The

directioncosinesofthenormalare .Ifθistheangle

betweentheplanes,then

Example12.23

Provethattheplanex+2y+2z=0,2x+y–2z=0areatrightangles.

Page 687: Analytical Geometry: 2D and 3D

Solution

Thedirectionratiosofthenormalstotheplanesare1,2,2and2,1,–2.Ifthelinesaretobeperpendicularthena1a2+b1b2+c1c2=0.Hence,a1a2+b1b2+c1c2=2+2–4=0.Therefore,thenormalsareperpendicularandhencetheplanesare

perpendicular.

Example12.24

Findtheequationoftheplanecontainingthelineofintersectionoftheplanesx+y+z–6=0,2x+3y+4z+5=0andpassingthroughthepoint(1,1,1).

Solution

Theequationofanyplanecontainingthelineisx+y+z–6=λ(2x+3y+4z+5)=0.Ifthislinepassesthroughthepoint(1,1,1)then,1+1+1–6+λ(2+3+4+5)=0.

Therefore,theequationoftherequiredplaneis

Example12.25

Findtheequationoftheplanewhichpassesthroughtheintersectionoftheplanes2x+3y+10z–8=0,2x–3y+7z–2=0andisperpendiculartotheplane3x–2y+4z–5=0.

Solution

Page 688: Analytical Geometry: 2D and 3D

Theequationofanyplanepassingthroughtheintersectionoftheplanes2x+3y+10z–8=0and2x–3y+7z–2=0is2x+3y+10z–8+λ(2x–3y+7z–2)=0.Thedirectionratiosofthenormaltothisplaneare2+2λ,3–3λ,10+7λ.The

directionratiosoftheplane3x–2y+4z–5=0are3,–2,4.Sincethesetwoplanesareperpendicular,3(2+2λ)–2(3–3λ)+4(10+7λ)=0.

Therefore,therequiredplaneis2x+3y+10z–8–(2x–3y+7z–λ)=0.

Example12.26

Theplanex–2y+3z=0isrotatedthrougharightangleaboutitslineofintersectionwiththeplane2x+3y–4z+2=0.Findtheequationoftheplaneinitsnewposition.

Solution

Theplanex–2y+3z=0isrotatedaboutthelineofintersectionoftheplanes

Thenewpositionoftheplane(12.58)passesthroughthelineofintersectionofthetwogivenplanes.Therefore,itsequationis

Theplane(12.60)isperpendiculartotheplane(12.58).

Page 689: Analytical Geometry: 2D and 3D

Therefore,theequationoftheplane(12.58)initsnewpositionis

Example12.27

Thelinelx+my=0isrotatedaboutitslineofintersectionwiththeplanez=0throughanangleα.Provethattheequationoftheplaneis

Solution

Anyplanepassingthroughtheintersectionoflx+my=0andz=0is

Theplanelx+my+λz=0isrotatedthroughanangleαalongtheplane(12.61).

Therefore,theequationoftheplaneinitsnewpositionisgivenby

Example12.28

Page 690: Analytical Geometry: 2D and 3D

Findtheequationoftheplanepassingthroughthelineofintersectionoftheplanes2x−y+5z−3=0and4x+2y−z+7=0andparalleltoz-axis.

Solution

Theequationoftheplanepassingthroughthelineofintersectionofthegivenplanesis2x−y+5z−3+λ(4x+2y−z+7)=0.Iftheplaneisparalleltoz-axis,itsnormalisperpendiculartoz-axis.Thedirectionsofthenormaltotheplaneare2+4λ,−1+2λ,5−λ.Thedirectionratiosofthez-axisare0,0,1.

Hence,theequationoftherequiredplaneis(2x−y+5z−3)+5(4x+2y−z+7)=0.

Example12.29

Findthedistanceofthepoints(2,3,−5),(3,4,7)fromtheplanex+2y−2z=9andprovethatthesepointslieontheoppositesidesoftheplane.

Solution

LetthelinejoiningthepointsP(2,3,−5)andQ(3,4,7)bedividedbytheplaneintheratioλ:1.

Therefore,thepointsPandQlieontheoppositesideoftheplane.Theperpendiculardistancefrom(2,3,−5)totheplanex+2y−2z−9=0is

Page 691: Analytical Geometry: 2D and 3D

Theperpendiculardistancefrom(3,4,7)totheplaneis

Note12.29.1:Sincep1andp2areofoppositesignsthepointsareontheoppositesidesoftheplane.

Example12.30

Provethatthepoints(2,3,−5)and(3,4,7)lieontheoppositesidesoftheplanewhichmeetstheaxesinA,BandCsuchthatthecentroidofthetriangleA,BandCisthepoints(1,2,4).

Solution

Lettheequationoftheplanebe .ThenthecoordinatesofA,BandC

are(a,0,0),(0,b,0)and(0,0,c).Thecentroidis Butthecentroidis

givenas(1,2,4).

Therefore,theequationoftheplaneABCis

Page 692: Analytical Geometry: 2D and 3D

LetthelinejoiningthepointsP(2,3,−5)andQ(3,4,7)bedividedbytheplaneintheratioλ:1.

Then

Therefore,thepointslieontheoppositesidesoftheplane.

Example12.31

Findthedistancebetweentheparallelplanes2x−2y+z+3=0,4x−4y+2z+5=0.

Solution

Let(x1,y1,z1)beapointontheplane2x−2y+z+3=0

Thenthedistancebetweentheparallelplanesisequaltothedistancefrom(x1,y1,z1)totheotherplane.

Note12.31.1:Thedistancebetweentheparallelplanesax+by+cz+d=0and

ax+by+cz+d1=0is

Ondividingtheequation4x−4y+2z+5=0by2,weget

Distancebetweentheplanes=

Page 693: Analytical Geometry: 2D and 3D

Example12.32

Aplaneisdrawnthroughthelineofx+y=1,z=0tomakeanangle

withtheplanex+y+z=0.Provethattwosuchplanescanbedrawn.Findtheir

equation.Showthattheanglebetweentheplanesis

Solution

Theequationoftheplanethroughtheline

Thedirectionratiosofthisplaneis1,1,λ.Alsothedirectionratiosoftheplanex+y+z=0are1,1,1.Ifθistheanglebetweenthesetwoplanesthen

From(12.63),theequationsoftherequiredplanesarex+y+2z=1and5x+

5y+2z−5=0.Ifθistheanglebetweenthesetwoplanesthen

Example12.33

Page 694: Analytical Geometry: 2D and 3D

Findthebisectorsoftheanglesbetweentheplanes2x−y+2z+3=0,3x−2y+6z+8=0;alsofindoutwhichplanebisectstheacuteangle.

Solution

Thetwogivenplanesare

Theequationsofthebisectorsare

Letθbetheanglebetweentheplanes(12.64)and(12.66)then

Henceθ>45°.Theplane5x−y−4z−3=0bisectstheobtuseanglebetweentheplanes(12.64)and(12.65).Therefore,23x−13y+32z+45=0bisectstheacuteanglebetweenthe

planes(12.64)and(12.65).

Example12.34

Provethattheequation2x2−2y2+4z2+2yz+6zx+3xy=0representsapairof

planesandanglebetweenthemis

Page 695: Analytical Geometry: 2D and 3D

Solution

Herea=2,b=−2,c=4,f=1,g=3,

Now,abc+2fgh−af2−bg2−ch2=0

⇒–16+9−2+18−9=0Hence,thegivenequationrepresentsapairofplanes.Letθbetheangle

betweentheplanes.Then

Exercises

SectionA

1. IfPisthepoint(2,3,−1),findtheequationoftheplanepassingthroughPandperpendiculartoOP.

Ans.:2x+3y−z−14=0

2. Thefootoftheperpendicularfromtheorigintoaplaneis(12,−4,−3).Finditsequation.Ans.:12x−4y−3z+69=0

3. Findtheinterceptsmadebytheplane4x−3y+2z−7=0onthecoordinateaxes.

Page 696: Analytical Geometry: 2D and 3D

Ans.:

4. AplanemeetsthecoordinateaxesatA,BandCsuchthatthecentroidofthetriangleisthepoint

(a,b,c).Showthattheequationoftheplaneis

5. Findtheequationoftheplanethatpassesthroughthepoint(2,−3,1)andisperpendiculartothelinejoiningthepoints(3,4,−1)and(2,−1,5).

Ans.:x+5y−6z+19=0

6. OistheorginandAisthepoint(a,b,c).FindtheequationoftheplaneperpendiculartoA.

Ans.:ax+by+cz−(a2+b2+c2)=0

7. Findtheequationoftheplanepassingthroughthepoints:i. (8,−2,2),(2,1,−4),(2,4,−6)ii. (2,2,1),(2,3,2),(−1,3,0)iii. (2,3,4),(−3,5,1),(4,−1,2)

Ans.:(i)2x−2y−2z=14,(ii)2x+3y−3z−7=0,(iii)x+y−z−1=0

8. Showthatthepoints(0,−1,−1),(4,5,1),(3,9,4)and(−4,4,4)lieonaplane.9. Showthatthepoints(0,−1,0),(2,1,−1),(1,1,1)and(−3,3,0)arecoplanar.10. Findtheequationoftheplanethroughthethreepoints(2,3,4),(−3,5,1)and(4,−1,2).Alsofind

theangleswhichthenormaltotheplanemakeswiththeaxesofreference.

Ans.:

11. Findtheequationoftheplanewhichpassesthroughthepoint(2,−3,4)andisparalleltotheplane2x−5y−7z+15=0.

Ans.:2x−5y−7z+9=0

12. Findtheequationoftheplanethrough(1,3,2)andperpendiculartotheplanesx+2y+2z−5=0and3x+3y+3z−8=0.

Ans.:2x−4y+3z+8=0

13. Findtheequationoftheplanewhichpassesthroughthepoint(2,2,4)andperpendiculartotheplanes2x−2y−4z+3=0and3x+y+6z−4=0.

Ans.:x−3y−z−4=0

Page 697: Analytical Geometry: 2D and 3D

14. Findtheequationoftheplanewhichpassesthroughthepoints(9,3,6)and(2,2,1)andperpendiculartotheplane2x+4y+6z−9=0.

Ans.:3x+4y−5z−9=0

15. Findtheequationofthestraightlinepassingthroughthepoints(−1,1,1)and(1,−1,1)andperpendiculartotheplanex+2y+2z−5=0.

Ans.:2x+2y−3z+3=0

16. Findtheequationoftheplanewhichpassesthroughthepoints(2,3,1),(4,−5,3)andareparalleltothecoordinateaxes.

Ans.:y+4z−7=0,x−z−1=0,4x+y−11=0

17. Findtheequationoftheplanewhichpassesthepoint(1,2,3)andparallelto3x+4y−5z=0.Ans.:3x+4y−5z+4=0

18. Findtheequationoftheplanebisectingthelinejoiningthepoints(2,3,−1)and(−5,6,3)atrightangles.

Ans.:x−y−z+7=0

19. AvariableplaneisataconstantdistancepfromtheoriginandmeetstheaxesinA,BandC.ShowthatthelocusofcentroidofthetetrahedronOABCis

x−2+y−2+z−2=16p−2.20. OABCisatetrahedroninwhichOA,OBandOCaremutuallyperpendicular.Provethatthe

perpendicularfromOtothebaseABCmeetsitatitsorthocentre.21. ThroughthepointP(a,b,c)aplaneisdrawnatrightanglestoOPtomeettheaxesinA,BandC.

ProvethattheareaofthetriangleABCis wherepisthelengthofOP.

22. AplanecontainsthepointsA(−4,9,−9)andB(5,−9,6)andisperpendiculartothelinewhichjoinsBandC(4,−6,k).Obtainkandtheequationoftheplane.

Ans.:

23. Findthedistancebetweentheparallelplanes2x+y+2z−8=0and4x+2y+4z+5=0.

Ans.:

24. Findthelocusofthepoint,thesumofthesquaresofwhosedistancesfromtheplanesx+y+z=

Page 698: Analytical Geometry: 2D and 3D

0,x=z=0,x−2y+z=0is9.

Ans.:x2+y2+z2=9

25. Findtheequationoftheplanewhichisatadistance1unitfromtheoriginandparalleltotheplane3x+2y−z+2=0.

Ans.:

26. Theplane meetsthecoordinateaxesinA,BandC,respectively.

ShowthattheareaofthetriangleABCis

27. Showthattheequationsby+cz+d=0,cz+ax+d=0,ax+by+d=0representplanesparalleltoOX,OYandOZ,respectively.

28. Showthatthepoints(2,3,−5)and(3,4,7)lieontheoppositesidesoftheplanemeetingtheaxesinA,BandCsuchthatthecentroidofthetriangleABCisthepoint(1,2,4).

29. Findthelocusofthepointsuchthatthesumofthesquaresofitsdistancesfromtheplanesx+y+z=0andx−2y+z=0isequaltoitsdistancefromtheplanex−z=0.

Ans.:y2−2xz=0

30. Findthelocusofthepointwhosedistancefromtheoriginis7timesitsdistancefromtheplane2x+3y−6z=2.

Ans.:3x2+8y2+53z2−36yz−24zx+12xy−8x−12y+24z+14=0

31. Provethattheequationoftheplanepassingthroughthepoints(1,1,1),(1,−1,1)and(−7,−3,−5)andisparalleltoaxisofy.

32. Determinetheconstantksothattheplanesx−2y+kz=0and2x+5y−z=0areatrightangles,andinthatcasefindtheplanethroughthepoint(1,−1,−1)andperpendiculartoboththegivenplanes.

Ans.:k=−8,14x−5y+3z−16=0

33. Provethat3x–y–z+11=0istheequationoftheplanethrough(−1,6,2)andperpendiculartothejoinofthepoints(1,2,3)and(−2,3,4).

34. A,BandCarepoints(a,0,0),(0,b,0)and(0,0,c).FindtheequationoftheplanethroughBCwhichbisectsOA.BysymmetrywritedowntheequationsoftheplanethroughCAbisectingOB

andthroughABbisectingOC.Showthattheseplanespassthrough

Page 699: Analytical Geometry: 2D and 3D

SectionB

1. Findtheequationoftheplanethroughtheintersectionoftheplanesx+3y+6=0and3x−y−4z=0whoseperpendiculardistancefromtheoriginisunity.

Ans.:2x+y−2z+3=0,x−2y−2z−3=0

2. Findtheequationoftheplanethroughtheintersectionoftheplanesx−2y+3z+4=0and2x−3y+4z−7=0andthepoint(1,−1,1).

Ans.:9x−13y−17z−39=0

3. Findtheequationoftheplanethroughtheintersectionoftheplanesx+2y+3z+4=0and4x+3y+3z+1=0andperpendiculartotheplanex+y+z+9=0andshowthatitisperpendiculartoxz-plane.

Ans.:x−z=2

4. Findtheequationoftheplanethroughthepoint(1,−2,3)andtheintersectionoftheplanes2x−y+4z−7=0andx+2y−3z+8=0.

Ans.:17x+14y+11z+44=0

5. Findtheequationoftheplanepassingthroughtheintersectionoftheplanesx+2y+3z+4=0and4x+3y+2z+1=0andthroughthepoint(1,2,3).

Ans.:11x+4y−3z−10=0

6. Findtheequationoftheplanepassingthroughthelineofintersectionoftheplanesx−2y−z+3=0and3x+5y−2z−1=0whichisperpendiculartotheyz-plane.

Ans.:11y+z−10=0

7. Theplanex+4y−5z+2=0isrotatedthrougharightangleaboutitslineofintersectionwiththeplane3x+2y+z+1=0.Findtheequationoftheplaneinitsnewposition.

Ans.:20x+10y+12z+5=0

8. Aretheplanesgivenbytheequations3x+4y+5z+10=0and9x+12y+15z+20=0parallel?Ifsofindthedistancebetweenthem.

Ans.:

9. Findtheequationoftheplanepassingthroughthelineofintersectionoftheplanes2x−y=0and3x−y=0anperpendiculartotheplane4x+3y−3z=8.

Ans.:24x−17y+15z=0

Page 700: Analytical Geometry: 2D and 3D

10. Findtheequationoftheplanepassingthroughthelineofintersectionoftheplanesax+by+cz+d=0anda1x+b1y+c1z+d1=0perpendiculartoxy-plane.

Ans.:(ac1−a1c)x+(bc1−b1c)y+(dc1−d1c)z=0

11. Findtheequationoftheplanepassingthroughthelineofintersectionoftheplanes2x+3y+10z−8=0,2x−3y+7z−2=0andisperpendiculartotheplane3x−2y+4z−5=0.

Ans.:2y+z−2=0

12. Obtaintheequationoftheplanesbisectingtheanglesbetweentheplanesx+2y−2z+1=0and12x−4y+3z+5=0.Alsoshowthatthesetwoplanesareatrightangles.

Ans.:23x−38y+35z+2=049x+14y−17z+28=0

13. Findtheequationoftheplanethatbisectstheanglebetweentheplanes3x−6y−2z+5=0and4x−12y+3z−3=0whichcontaintheorigin.Doesthisplanebisecttheacuteangle?

Ans.:yes,67x+162y+47z+44=0

14. Findtheequationoftheplanethatbisectstheacuteanglebetweentheplanes3x−4y+12z−26=0andx+2y−2z−9=0.

Ans.:22x+14y+10z−195=0

15. Findtheequationoftheplanethatbisectstheobtuseanglebetweentheplanes4x+3y−5z+1=0and12x+5y−13=0.

Ans.:8x−14y−13=0

16. Showthattheoriginliesintheacuteanglebetweentheplanesx+2y−2z−9=0,4x−3y+12z+13=0.Findtheplanesbisectingtheanglebetweenthemandfindtheplanewhichbisectstheacuteangle.

Ans.:x+35y−10z−156=0

17. Findtheequationoftheplanewhichbisectstheacuteanglebetweentheplanesx+2y+2z−3=0and3x+4y+12z+1=0.

Ans.:11x+19y+31z−18=0

18. Provethattheequation2x2−6y2–12z2+18yz+2zx+xy=0representsapairofplanesand

showthattheanglebetweenthemis

19. Provethattheequation representsapairofplanes.

20. Iftheequationɸ(x,y,z)=ax2+by2+cz2+2fyz+2gzx+2hxy=0representsapairofplanes

Page 701: Analytical Geometry: 2D and 3D

thenprovethattheproductofthedistancesoftheplanesfrom

Page 702: Analytical Geometry: 2D and 3D

Chapter13

StraightLine

13.1INTRODUCTION

TheintersectionoftwoplanesP1andP2isthelocusofallthecommonpointsonboththeplanesP1andP2.Thislocusisastraightline.Anygivenlinecanbeuniquelydeterminedbyanyofthetwoplanescontainingtheline.Thus,alinecanberegardedasthelocusofthecommonpointsoftwointersectingplanes.Letusconsiderthetwoplanes

Anysetofcoordinates(x,y,z)whichsatisfythesetwoequationssimultaneouslywillrepresentapointonthelineofintersectionofthesetwoplanes.Hencethesetwoequationstakentogetherwillrepresentastraightline.Itcanbenotedthattheequationofx–axisarey=0,z=0.Theequationofthey–axisisx=0,z=0andtheequationofthez–axisisx=0,y=0.Therepresentationofthestraightlinebytheequationsax+by+cz+d=0anda1x+b1y+c1z+d1=0iscallednon–symmetricalform.Letusnowderivetheequationsofastraightlineinthesymmetricalform.

13.2EQUATIONOFASTRAIGHTLINEINSYMMETRICALFORM

LetA(x1,y1,z1)beapointonthestraightlineandP(x,y,z)beanypointonthestraightline.Letl,m,nbethedirectioncosinesofthestraightline.LetOP=r.TheprojectionsofAPonthecoordinateaxesarex−x1,y−y1,z−z1.AlsotheprojectionsofAPonthecoordinateaxesaregivenbylr,mr,nr.Thenx−x1=lr,y−y1=mrandz−z1=nr.

Page 703: Analytical Geometry: 2D and 3D

Theseequationsarecalledthesymmetricalformofthestraightline.

Aliter:Wenowderivetheequationsinsymmetricalformfromthevectorequationofthestraightlinepassingthroughapointandparalleltoavector.

LetAbeagivenpointonastraightlineandPbeanypointonthestraight

line.Let beavectorparalleltotheline.LetObetheoriginand

Then

But

wheretisascalar.From(13.3)and(13.4),

Page 704: Analytical Geometry: 2D and 3D

ThisequationistrueforallpositionsofPonthestraightlineandthereforethisisthevectorequationofthestraightline.Let

Thenfromequation(13.4),wehave

Equatingthecoefficientsof , and ,wehave

Thesearethecartesianequationsofthestraightlineinsymmetricalform.

Note13.2.1:Toexpresstheequationsofastraightlineinsymmetricalformwerequire(i)thecoordinateofapointonthelineand(ii)thedirectioncosinesofthestraightline.

Note13.2.2:Anypointonthislineis(x1+lr,y1+mr,z1+nr).Evenifl,mandnarethedirectionratiosoftheline,(x1+lr,y1+mr,z1+nr)willrepresentapointonthelinebutrwillnotbedistancebetweenthepoints(x,y,z)and(x1,y1,z1).

13.3EQUATIONSOFASTRAIGHTLINEPASSINGTHROUGHTHETWOGIVENPOINTS

LetP(x1,y1,z1)andQ(x2,y2,z2)betwogivenpoints.Thedirectionratiosofthelinearex2−x1,y2−y1,z2−z1.

Therefore,theequationsofthestraightlineare .

Page 705: Analytical Geometry: 2D and 3D

Aliter:LetObetheoriginandPandQbethepointsonthestraightlineandRbeanypointonthestraightline.

Then

But

Thisisthevectorequationofthestraightline.

Let

Thenfrom(13.6),weget

Equatingthecoefficientsof , and ,weget

13.4EQUATIONSOFASTRAIGHTLINEDETERMINEDBYAPAIROFPLANESINSYMMETRICALFORM

Page 706: Analytical Geometry: 2D and 3D

Wehavealreadyseenthatastraightlineisdeterminedbyapairofplanesax+by+cz+d=0anda1x+b1y+c1z+d1=0wenowexpresstheseequationsinsymmetricalform.Tofinditweneedtofindthedirectioncosinesofthelineandthecoordinates

ofapointontheline.Letl,m,nbethedirectioncosinesoftheline.Thislineisperpendiculartothenormaltothetwogivenplanessincethelineliesontheplane.Thedirectionratiosofthetwonormalsarea1,b1,c1anda2,b2,c2.Thedirectioncosinesofthelinearel,m,n.Sincethenormalsareperpendiculartothelinewehave,

Solvingforl,m,nweget

Therefore,thedirectionratiosofthelineare

Tofindapointontheline,letusfindthepointwherethelinemeetstheplane.z=0anda1x+b1y+d=0anda1x+b1y+d1=0.Solvingthelasttwoequations,weget

Therefore,apointonthelineis

Thentheequationsofthestraightlinesare .

Note13.4.1:Wecanalsofindthepointwherethelinemeetstheyz–planeorzx–plane.

Page 707: Analytical Geometry: 2D and 3D

13.5ANGLEBETWEENAPLANEANDALINE

Lettheequationoftheplanebeax+by+cz+d=0.

Lettheequationofthelinebe .

Letθbetheanglebetweentheplaneandtheline.Thedirectionratiosofthenormaltotheplanearea,b,c.Thedirectionratiosofthelinearel,m,n.Sinceθ

istheanglebetweentheplaneandtheline, istheanglebetweenthe

normaltotheplaneandtheline.

Note13.5.1:Ifthelineisparalleltotheplane,θ=0.

∴al+bm+cn=0

13.6CONDITIONFORALINETOBEPARALLELTOAPLANE

Lettheequationoftheplanebe

Lettheequationofthelinebe

Ifthelineisparalleltotheplanethenthenormaltotheplaneisperpendiculartotheline.Theconditionforthisis

Page 708: Analytical Geometry: 2D and 3D

Since(x1,y1,z1)isapointonthelineanddoesnotlieontheplanegivenby(13.10).

∴ax1+by1+cz1+d≠0Hencetheconditionsfortheline(13.11)tobeparalleltotheplane(13.10)are

al+bm+cn=0andax1+by1+cz1+d≠0.

13.7CONDITIONSFORALINETOLIEONAPLANE

Lettheequationofthelinebe

Lettheequationoftheplanebe

Sincethelineliesontheplane,

Sincethelineliesontheplaneeverypointonthelineisalsoapointontheplane.(x1,y1,z1)isapointonthelineandthereforeitshouldalsolieontheplanegivenby(13.14).Hence,ax1+by1+cz1+d=0.Therefore,theconditionsfortheline(13.13)tobeparalleltotheplane(13.14)areal+bm+cn=0andax1+by1+cz1+d=0.

13.8TOFINDTHELENGTHOFTHEPERPENDICULARFROMAGIVENPOINTONALINE

LetthegivenpointbeP(p,q,r)andthegivenlineQRbe

Page 709: Analytical Geometry: 2D and 3D

ThenL(x1,y1,z1)isapointontheline.DrawPMperpendiculartotheline.

AlsoLMistheprojectionofPLonQR.

Thenfrom(13.17),

13.9COPLANARLINES

Findtheconditionforthelines and

tobecoplanarandalsofindtheequationoftheplane

containingthesetwolines.Considerequations,

Page 710: Analytical Geometry: 2D and 3D

Lettheequationoftheplanebe

Sincetheplanescontainslines(13.20),wehave

From(13.20)and(13.21),weget

Sincetheplanealsocontainstheline(13.21)thepoint(x2,y2,z2)liesontheplane(13.22).

Eliminatinga,b,cfromequation(13.24),(13.26)and(13.27),weget

Thisistherequiredconditionforthelines(13.20)and(13.21)tobecoplanar.Eliminatinga,b,cfromtheequation(13.23),(13.24)and(13.25),wegetthe

equationoftheplanecontainingthetwogivenlinesas

Aliter:Iftheplanesarecoplanartheymayintersect.Anypointontheline(13.20)isx1+l1r1,y1+m1r1,z1+n1r1.Anypointontheline(13.21)isx2+l2r2,y2+m2r2,z2+n2r2.Ifthetwolinesintersectthenthetwopointsarethesame.

Page 711: Analytical Geometry: 2D and 3D

Eliminatingr1andr2fromtheaboveequations,weget

Thisistherequiredconditionforcoplanarlines.

13.10SKEWLINES

Twonon–intersectingandnon–parallellinesarecalledskewlines.Therealsoexistsashortestdistancebetweentheskewlinesandthelineoftheshortestdistancewhichiscommonperpendiculartobothofthese.

13.10.1LengthandEquationsoftheLineoftheShortestDistance

Lettheequationoftheskewlinesbe

LetPQbethelineoftheshortestdistancebetweenlines(13.28)and(13.29).Letl,m,nbethedirectioncosinesofthelinesoftheshortestdistancePQ.

Page 712: Analytical Geometry: 2D and 3D

TheconditionforPQtobeperpendiculartoABandCDare

Solvingthesetwo,weget

Therefore,thedirectionratiosofthelinePQarem1n2−m2n1,n1l2−n2l1,l1m2−l2m1.Therefore,thedirectionratiosofthelineoftheSDare

l(x1,y1,z1)andm(x2,y2,z2)arepointsonthelines(13.28)and(13.29).ThenthelengthoftheSD=PQ=ProjectionofLMonPQ=(x1−x2)l+(y1−

y2)m+(z1−z2)n,wherel,m,narethedirectioncosinesofthelinePQ.

TheequationoftheplanecontainingthelinesABandPQis

Page 713: Analytical Geometry: 2D and 3D

TheequationoftheplanecontainingthelinesCDandPQis

Therefore,theequationofthelineoftheSDistheintersectionofthesetwoplanesanditsequationsaregivenby

Note13.10.1:Ifthelines(13.28)and(13.29)arecoplanarthentheSDbetweenthelinesiszero.Hencetheconditionforthelines(13.28)and(13.29)tobe

coplanar,from(13.30)is

Aliter:Letthevectorequationsofthetwolinesbe

wheretandsarescalars.

Page 714: Analytical Geometry: 2D and 3D

Ifthelines(13.33)and(13.34)arecoplanarthentheplaneisparalleltothe

vectors and .Thereby isperpendiculartotheplanecontaining and .

Alsoas and arethepointsontheplane, isalineontheplaneandis

perpendicularto .Theconditionforthisis or

Thescalarformoftheequationis .Thevector

equationoftheplanecontainingthetwolinesis or

But .

Therefore,thescalarequationoftheplaneis

Aliter:

Letthevectorequationofthetwolinesbe and

Let and , .

Page 715: Analytical Geometry: 2D and 3D

LetDQbetheSDbetweenthelinesABatCD.Then isperpendicularto

both and .Then isparallelto .Let and bethepositionvectorsof

pointsLandMonABandCD,respectively.

13.10.2EquationoftheLineofSD

TheequationofthelineoftheshortestdistanceistheequationofthelineofintersectionoftheplanesthroughthegivenlinesandtheSD.Theequationofthe

planecontainingtheline andtheSDPQisparallelto and

thereforeperpendicularto is

Page 716: Analytical Geometry: 2D and 3D

Similarlytheequationoftheplanecontainingtheline andPQis

TheequationofthelineofSDistheequationofthelineofintersectionof(13.35)and(13.36).(i.e.)

Inscalarforms,theequationofthelineare

13.11EQUATIONSOFTWONON-INTERSECTINGLINES

Wewillnowshowthattheequationsofanytwoskewlinescanbepartintotheformy=mx,z=candy=−mx,z=−c.

Page 717: Analytical Geometry: 2D and 3D

LetABandCDbetwoskewlines.LetLMbethecommonperpendiculartotheskewlines.LetLM=2candθbe

itsmiddlepoint.ChooseObetheoriginanddrawlinesOPandOQparallelto

ABandCD,respectively.Letthebisectorsof bechosenasaxesofxandy.

LetOEbetakenasz–axis.Let sothat .ThenthelineOP

makesangleθ, and withx−,y−,z−axes.Itsdirectioncosinesarecosα,

sinα,0.ThecoordinatesofLare(0,0,c).ABisastraightlinepassingthroughL

andparalleltoAB.TheequationsofthelineOPare ory=

xtanθ,z=c(i.e.)y=mx,z=cwherem=tanθ

ThelineOQmakesangles−θ, −θand withx-,y-,z-axes.

ThedirectioncosinesofthelineOQarecosθ,−sinθ,θ.ThecoordinatesofMare(0,0,−c).CDisastraightlinepassingthroughF

andparalleltoCD.Itsequationsare .

(i.e.)y=−mx,z=−cwherem=tanθ

Page 718: Analytical Geometry: 2D and 3D

Note13.11.1:AnypointonthelineABis(r1,mr1,c)andonaxis(r1,−mr1,−c).

13.12INTERSECTIONOFTHREEPLANES

Threeplanesmayintersectinalineorapoint.Letusfindtheconditionsforthreegivenplanestointersect(i)inalineand(ii)inapoint.

Lettheequationsofthreegivenplanesbe

Theequationofanyplanepassingthroughtheintersectionofplanes(13.37)and(13.38)is

Ifplanes(13.37),(13.38)and(13.39)intersectinalinethenequations(13.39)and(13.40)representthesameplaneforsamevaluesofλ.Identifyingequations(13.40)and(13.39),weget

Eliminatingλandμfromtheequationtakenthreeatatime,weget

Page 719: Analytical Geometry: 2D and 3D

Therefore,theconditionsforthethreeplanestointersectinalineareΔ1=0,Δ2=0,Δ3=0andΔ4=0.

Note13.12.1:Ofthesefourconditionsonlytwoareindependentsinceiftwoplaneshavetwopointsincommonthentheyshowthelinejoiningthesetwopointsshouldalsohaveincommon.Itcanbeprovedifanytwooftheseconditionsaresatisfied,thentheothertwowillalsosatisfy.

Aliter:Theequationsofthelineofintersectionof(13.37)and(13.38)aregivenby

Iftheplanes(13.37),(13.38)and(13.39)intersectinaplanethentheconditionsare(i)theline(13.41)mustbeparalleltotheplane(13.39)and(ii)thepoint

mustlieontheplanegivenby(13.39).Theconditionsfor

(13.37)is

Page 720: Analytical Geometry: 2D and 3D

Thecondition(ii)isgivenby

Therefore,theconditionsforplanestointersectinalineareΔ3=0andΔ4=0(ii)Conditionfortheplanetointersectatapoint:Solvingequations(13.37),(13.38)and(13.39),weget

IftheplanesintersectatapointthenΔ4≠0.HencetheconditionforaplanetointersectatapointisΔ4≠0.

Aliter:Iftheplanesmeetatapointthenthelineofintersectionofanytwoplanesisnon–paralleltothethirdplane.Letl,m,nbethedirectioncosinesoftheintersectionofplanes(13.37)and(13.38).Then

Solvingthetwoequationsforl,m,nweget,

Page 721: Analytical Geometry: 2D and 3D

Therefore,thedirectionratiosofthelinesareb1c2−b2c1,a2c1−a1c2,a1b2−a2b1.Alsothelineofintersectionwillnotbeparalleltothethirdplane.

Thisistherequiredcondition.

13.13CONDITIONSFORTHREEGIVENPLANESTOFORMATRIANGULARPRISM

Thelineofintersectionofplanes(13.37)and(13.38)isgivenby

Thethreeplanesformatriangularprismifthelineisparalleltothethirdplane.Theconditionsforthisarethelineisnormaltotheplane(13.39)andthe

point doesnotlieontheplane(13.39).

(i.e.)Δ4=0andΔ3≠0.Thesearetherequiredconditions.

ILLUSTRATIVEEXAMPLES

Example13.1

Page 722: Analytical Geometry: 2D and 3D

Findtheequationofthelinejoiningthepoints(2,3,5)and(−1,2,−4).

Solution

Thedirectionratiosofthelineare2+1,3−2,5+4(i.e.)3,1,9.Therefore,the

equationsofthelineare .

Example13.2

Findtheequationofthelinepassingthroughthepoint(3,2,−6)andperpendiculartotheplane3x−y−2z+2=0.

Solution

Thedirectionratiosofthelinearethedirectionratiosofthenormaltotheplane.Therefore,thedirectionratiosofthelineare3,−1,−2.Giventhat(4,2,−6)isapointontheplane.

Therefore,theequationsofthelineare .

Example13.3

Findtheequationsofthelinepassingthroughthepoint(1,2,3)andperpendiculartotheplanesx−2y−z+5=0andx+y+3z+6=0.

Solution

Letl,m,nbethedirectionratiosofthelineofintersectionoftheplanesx−2y−z+5=0andx+y+3z+6=0.Thenl−2m−n=0andl+m+3n=0

Page 723: Analytical Geometry: 2D and 3D

Sincethelinealsopassesthroughthepoint(−1,2,3),itsequationsis

Example13.4

Expressthesymmetricalformoftheequationsofthelinex+2y+z−3=0,6x+8y+3z−13=0.

Solution

Toexpresstheequationsofalineinsymmetricalformwehavetofind(i)thedirectionratiosofthelineand(ii)apointontheline.Letl,m,nbethedirectionratiosofline.Thenl+2m+n=0and6l+8m+3n

=0.

Letusfindthepointwherethelinemeetsthexy–plane(i.e.)z=0.

Page 724: Analytical Geometry: 2D and 3D

Therefore,theequationsofthelineare

Example13.5

Findtheperpendiculardistancefromthepoint(1,3,−1)totheline

Solution

Theequationsofthelineare

Anypointonthislineare(5r+13,−8r−8,r+31).DrawPQperpendiculartotheplane.Thedirectionratiosofthelineare(5r+12,−8r−11,r+32).SincethelinePQisperpendiculartoQR,wehave

Qisthepoint(3,8,29)andPis(1,3,−1)

Example13.6

Page 725: Analytical Geometry: 2D and 3D

Findtheequationofplanepassingthroughtheline andparallel

totheline .

Solution

Anyplanecontainingtheline

is

where

Alsothelineisparalleltotheplane

SolvingforA,BandCfrom(13.44)and(13.46),weget or

Therefore,theequationoftherequiredplaneis11(x−1)+2(y+1)−5(z−3)=0.

(i.e.)11x+2y−5z+6=0

Example13.7

Page 726: Analytical Geometry: 2D and 3D

Findtheimageofthepoint(2,3,5)ontheplane2x+y−z+2=0.

Solution

LetQbetheimageofthepointP(2,3,5)ontheplane2x+y−z+2=0.The

equationofthelinePQis

Anypointonthislineis(2r+2,r+3,−r+5).Whenthelinemeetstheplane,thispointliesontheplane2x+y−z+2=0.

Example13.8

Findtheimageoftheline intheplane2x−y+z+3=0.

Page 727: Analytical Geometry: 2D and 3D

Solution

Theequationsofthelineare

Anypointonthislineis(3r+1,5r+3,2r+4).Asthispointliesontheplane,

HencethecoordinatesofRare(−5,−7,0).TheequationsofthelinePLperpendiculartotheplaneare

Anypointonthislineis(2r1+1,−r1+3,r1+4).Ifthispointliesontheplane(13.48),weget2(2r1+1)−(−r1+3)+(r1+4)+3=0.

(i.e.)6r1+6=0orr1=−1.Therefore,thecoordinatesofLwherethislinemeetstheplane(13.47)are(−1,4,3).IfQ(x1,y1,z1)istheimageofPintheplane

Page 728: Analytical Geometry: 2D and 3D

HencetheequationsofthereflectionlineRQare .

Example13.9

Findtheequationofthestraightlinesthroughtheorigineachofwhichintersects

thestraightline andareinclinedatanangleof60°toit.

Solution

TheequationsofthelinePQare

ThepointPonthislineisP(2r+3,r+3,r).

ThedirectionratiosofOPare2r+3,r+3,r.Since ,

Page 729: Analytical Geometry: 2D and 3D

orr2+3r+2=0orr=−1,−2.Therefore,thecoordinatesofPandQare(1,−2,−1)and(−1,1,−2).

HencetheequationsofthelinesOPandOQare and .

Example13.10

Findthecoordinatesofthepointwherethelinegivenbyx+3y−z=6,y−z=4cutstheplane2x+2y+z=6.

Solution

Letl,m,nbethedirectioncosinesofthelinex+3y−z=6,y−z=4.Then

Therefore,thedirectionratiosofthelineare2,−1,−1.Whentheline

meetsthexy–planewhoseequationisz=0,wehavex+3y=6,y=4.Therefore,thepointwherethelinemeetsxy–planeis(−6,4,0).

Therefore,theequationsofthelineare

Anypointonthislineis(2r−6,−r+4,−r).Thispointliesontheplane2x+2y+z=0.

Page 730: Analytical Geometry: 2D and 3D

Hencetherequiredpointis(2,0,−4).

Example13.11

Findthedistanceofthepoint(1,−2,3)fromtheplanex−y+z=5measured

paralleltotheline

Solution

Theequationsofthelinethrough(1,−2,3)andparalleltotheline are

.Anypointonthislineis(2r+1,3r−2,−6r+3).Ifthispoint

liesontheplanex−y+z=5then(2r+1)−(3r−2)+(−6r+3)=5.

(i.e.)−7r+1=0or

Therefore,thepointPis .

Therefore,thedistancebetweenthepointsA(1,−2,3)and is

.

Example13.12

Page 731: Analytical Geometry: 2D and 3D

Provethattheequationofthelinethroughthepoints(a,b,c)and(a′,b′,c′)passesthroughtheoriginifaa′+bb′+cc′=pp′wherepandp′arethedistancesofthepointsfromtheorigin.

Solution

Theequationsofthelinethrough(a,b,c)and(a′,b′,c′)are

Ifthispassesthroughtheoriginthen

Letpandp′bethedistancesofthepoints(a,b,c)and(a′,b′,c′)fromtheorigin.

ByLagrange’sidentity,

Example13.13

Page 732: Analytical Geometry: 2D and 3D

IffromthepointP(x,y,z),PMisdrawnperpendiculartotheline andis

producedtoQsuchthatPM=MQthenshowthat

Solution

TheequationofthelineOAis .

Anypointonthislineis(lr,mr,nr).

IfMisthispointthen

ThedirectionratiosofthelineMParex−lr,y−mr,z−nr.SinceMPisperpendiculartoOA,

From(13.50),weget .

Example13.14

Page 733: Analytical Geometry: 2D and 3D

Reducetheequationsofthelinesx=ay+b,z=cy+dtosymmetricalformandhencefindtheconditionthatthelinebeperpendiculartothelinewhoseequationsarex=a′y+b′,z=c′y+d′.

Solution

Theline

canbeexpressedinthesymmetricalformas

Theline

insymmetricalformis

Ifthelines(13.51)and(13.52)areperpendicularthenaa′+bb′+cc′=0.Thisistherequiredcondition.

Example13.15

FindtheequationofthelinepassingthroughGperpendiculartotheplaneXYZrepresentedbytheequationlx+my+nz=pwherel2+m2+n2=1andcalculatethedistanceofGfromtheplane.

Solution

TheequationoftheplaneXYZis

wherel2+m2+n2=1.Whenthisplanemeetsthex–axis,y=0andz=0.

Page 734: Analytical Geometry: 2D and 3D

HenceXisthepoint .Similarly,Yis andZis .

ThecentroidofΔXYZis .

TheequationofthelinethroughGperpendiculartotheplaneXYZis

WhenthislinemeetstheYOZplane,x=0(13.56)

Then

Here,risthedistanceofGfromtheplane(13.55)sincepandl2arepositive,r=GA

Example13.16

Findtheperpendiculardistanceofangularpointsofacubefromadiagonalwhichdoesnotpassthroughtheangularpoint.

Solution

Page 735: Analytical Geometry: 2D and 3D

Letabethesideofthecube.BB′isadiagonalofthecubenotpassingthroughO.ThedirectionratiosofBB′area,−a,a.(i.e.)1,−1,1.Thedirectioncosinesof

BB′are .TheprojectionsofOB′onBB′

Example13.17

Provethattheequationsofthelinethroughthepoint(α,β,γ)andatrightangles

tothelines are .

Solution

Letl,m,nbethedirectioncosinesofthelineperpendiculartothetwogivenlines.Thenwehave

Page 736: Analytical Geometry: 2D and 3D

Therefore,thedirectionratiosofthelinearem1n2−m2n1,n1l2−n2l1,l1m2−l2m1.Thelinealsopassesthroughthepoint(x1,y1,z1).

Itsequationsare

Exercises1

1. Showthattheline isparalleltotheplane2x+3y−z+4=0.

2. Findtheequationoftheplanethroughtheline andthepoint(0,7,−7).Show

furthertheplanecontainstheline .

Ans.:x+y+z=0

3. Findtheequationoftheplanewhichpassesthroughtheline3x+5y+7z−5=0=x+y+z−3andparalleltotheline4x+y+z=0=2x−3y−5z.

Ans.:2x+4y+y+6z=2

4. Findtheequationsofthelinethroughthepoint(1,0,7)whichintersecteachofthelines

Ans.:7x−6y−z=0,9x−7y−z−2=0

5. Findtheequationoftheplanewhichpassesthroughthepoint(5,1,2)andisperpendiculartothe

line Findalsothecoordinatesofthepointinwhichthislinecutstheplane.

Ans.:x−2y−2z−1=0;(1,2,3)

Page 737: Analytical Geometry: 2D and 3D

6. Findtheequationoftheplanethrough(1,1,2)and(2,10,−1)andperpendiculartothestraight

line

Ans.:3x−y−7z+2=0

7. Findtheprojectionoftheline3x−y+2z=1,x+2y−z=2ontheplane3x+2y+z=0.Ans.:3x+2y+z=0,3x−8y+7z+4=0

8. Findtheprojectionofthelinex=3−6t,y=2t,z=3+2tintheplane3x+4y−5z−26=0.

Ans.:

9. Findtheequationoftheplanewhichcontainsthelineandisperpendiculartotheplanex+2y+z=12.

Ans.:9x−2y−5z+4=0

10. Findtheequationoftheplanewhichpassesthroughthez–axisandisperpendiculartotheline

.

Ans.:xcosα+ysinα=0

11. Findtheequationsoftwoplanesthroughtheoriginwhichareparalleltotheline

anddistant fromit.Showalsothatthetwoplanesareperpendicular.

Ans.:x+2y−2z=0,2x+2y+z=0

12. Findtheequationstothelineofthegreatestslopethroughthepoint(1,2,−1)intheplanex−2y+3z=0assumingthattheaxesaresoplacedthattheplane2x+3y−4z=0ishorizontal.

Ans.:

13. Assumingtheline asvertical,findtheequationofthelineofthegreatestslopeinthe

plane2x+y−5z=12andpassingthroughthepoint(2,3,−1).

Page 738: Analytical Geometry: 2D and 3D

Ans.:

14. Withthegivenaxesrectangulartheline isvertical.Findthedirectioncosinesofthe

lineofthegreatestslopeintheplane3x−2y+z=0andtheangleofthislinemakeswiththehorizontalplane.

Ans.:

15. Showthatthelines willbecoplanarif

16. Showthattheequationoftheplanethroughtheline andwhichisperpendiculartothe

planecontainingthelines and is∑(m−n)x=0.

17. Showthattheline and willlieinaplaneifα=βorβ=γ

orγ=α.

18. Findtheequationoftheplanepassingthroughtheline andperpendiculartothe

planex+2y+z=12.Ans.:9x−2y+5z+4=0

19. Findtheequationsofthelinethrough(3,4,0)andperpendiculartotheplane2x+4y+7z=8.

Ans.:

20. Findtheequationoftheplanepassingthroughtheline areparalleltotheline

Page 739: Analytical Geometry: 2D and 3D

.

Ans.:4y−3z+1=0,2x−7z+1=0,3x−2y+1=0.

21. Showthattheequationoftheplanesthroughthelinewhichbisecttheanglebetweenthelines

(wherel,m,nandl′,m′,n′aredirectioncosines)andperpendiculartothe

planecontainingthemare(l+l′)x+(m+m′)y+(n+n′)z=0.

22. Findtheequationoftheplanethroughtheline andparalleltothecoordinate

planes.Ans.:xcosθ+ysinθ=0

23. Provethattheplanethroughthepoint(α,β,γ)andthelinex=py+q=zx+risgivenby

.

24. ThelineLisgivenby .FindthedirectioncosinesoftheprojectionsofLonthe

plane2x+y−3z=4andtheequationoftheplanethroughLparalleltotheline2x+5y+3z=4,x−y−5z=6.

Ans.:

Exercises2

1. Findtheequationofthelinejoiningthepointsi. (2,3,5)and(−1,2,−4)ii. (1,−1,3)and(3,3,1)

Ans.:

2. Findtheequationsofthelinepassingthroughthepoint(3,2,−8)andisperpendiculartotheplane3x−y−2z+2=0.

Ans.:

Page 740: Analytical Geometry: 2D and 3D

3. Findtheequationsofthelinepassingthroughthepoint(3,1,−6)andparalleltoeachoftheplanesx+y+2z−4=0and2x−3y+z+5=0.

Ans.:

4. Findtheequationsofthelinethroughthepoint(1,2,3)andparalleltothelineofintersectionoftheplanesx−2y−z+5=0,x+y+3z−6=0.

Ans.:

5. Findthepointatwhichtheline meetstheplane2x+4y−z+1=0.

Ans.:

6. Findthecoordinatesofthepointatwhichtheline meetstheplane2x+3y+z=0.

Ans.:

7. Provethattheequationsofthenormaltotheplaneax+by+cz+d=0throughthepoint(α,β,γ)

are

8. Expressinsymmetricalformthefollowinglines:i. x+2y+z=3,6x+8y+3z=13ii. x−2y+3z−4=0,2x−3y+4z−5=0iii. x+3y−z−15=0,5x−2y+4z+8=0

Ans.:

9. Provethatthelines3x+2y+z−5=0,x+y−2z−3=0and8x−4y−4z=0,7x+10y−8z=0areatrightangles.

Page 741: Analytical Geometry: 2D and 3D

10. Provethatthelinesx−4y+2z=0,4x−y−3z=0andx+3y−5z+9=0,7x−5y−z+7=0areparallel.

11. Findthepointatwhichtheperpendicularfromtheoriginonthelinejoiningthepoints(−9,4,5)and(11,0,−1)meetsit.

Ans.:(1,2,2).

12. Provethatthelines2x+3y−4z=0,3x−4y+7=0and5x−y−3z+12=0,x−7y+5z−6=0areparallel.

13. Findtheperpendicularfromthepoint(1,3,9)totheline

Ans.:21

14. Findthedistanceofthepoint(−1,−5,−10)fromthepointofintersectionoftheline

andtheplanex−y+z=5.

Ans.:13

15. Findthelengthoftheperpendicularfromthepoint(5,4,−1)totheline .

Ans.:

16. Findthefootoftheperpendicularfromthepoint(−1,11,5)totheline

Ans.:

17. Obtainthecoordinatesofthefootoftheperpendicularfromtheoriginonthelinejoiningthepoints(−9,4,5)and(11,0,−1).

18. Findtheimageofthepoint(4,5,−2)intheplanex−y+3z−4=0.Ans.:(6,3,4)

19. Findtheimageofthepoint(1,3,4)intheplane2x−y+z+3=0.Ans.:(1,0,7)

20. Findtheimageofthepoint(2,3,5)intheplane2x+y−z+2=0.

Page 742: Analytical Geometry: 2D and 3D

Ans.:

21. Findtheimageofthepoint(p,q,r)intheplane2x+y+z=6andhencefindtheimageoftheline

.

Ans.:

22. Findthecoordinatesofthefootoftheperpendicularfrom(1,0,2)totheline

Alsofindthelengthoftheperpendicular.

Ans.:

23. Findtheequationinsymmetricalformoftheprojectionoftheline ontheplane

x+2y+z=12.

Ans.:

24. Provethatthepointwhichtheline meetstheplane2x+35y−39z+12=0is

equidistantfromtheplanes12x−15y+16z=28and6x+6y−7z=8.

25. Findtheequationoftheprojectionofthestraightline ontheplanex+y+2z=5

insymmetricalform.

Ans.:

26. Provethattwolinesinwhichtheplanes3x−7y−5z=1and5x−13y+3z+2=0cuttheplane8x−11y+2z=0includearightangle.

27. Reducetosymmetricalformthelinegivenbytheequationsx+y+z+1=0,4x+y−2z+2=0.Hencefindtheequationoftheplanethrough(1,1,1)andperpendiculartothegivenline.

Page 743: Analytical Geometry: 2D and 3D

Ans.:

28. Showthatthelinex+2y−z−3=0,x+3y−z−4=0isparalleltothexz–planeandfindthecoordinatesofthepointwhereitmeetsyz–plane.

Ans.:(0,1,−1)

29. Findtheanglebetweenthelinesx−2y+z=0,x+y−z−3=0,andx+2y+z−5=0,8x+12y+5z=0.

Ans.:

30. Findtheequationoftheplanepassingthroughtheline andparalleltotheline

.

Ans.:11x+2y−5z+6=0

31. Theplane meetstheaxesinA,BandC.Findthecoordinatesoftheorthocentreofthe

ΔABC.

Ans.:

32. TheequationtoalineABare .ThroughapointP(1,2,3),PNisdrawnperpendicularto

ABandPQisdrawnparalleltotheplane2x+3y+4z=0tomeetABinQ.FindtheequationsofPNandPQandthecoordinatesofNandQ.

Ans.:

ILLUSTRATIVEEXAMPLES(COPLANARLINESANDSHORTESTDISTANCE)

Example13.18

Page 744: Analytical Geometry: 2D and 3D

Provethatthelines and arecoplanarandfind

theequationoftheplanecontinuingthesetwolines.

Solution

(−1,−10,1)isapointonthefirstlineand−3,8,2arethedirectionratiosofthefirstline.(−3,−1,4)isapointonthesecondlineand−4,7,1arethedirection

ratiosofthesecondline.Ifthelinesarecoplanarthen

Therefore,thetwolinesarecoplanar.Theequationoftheplanecontainingthe

linesis

Example13.19

Showthatthelines and intersect.Findthepointof

intersectionandtheequationoftheplanecontainingthesetwolines.

Page 745: Analytical Geometry: 2D and 3D

Solution

Thetwogivenlinesare

Anypointonthefirstlineis(−3r−1,2r+3,r−2).Anypointonthesecondlineis(r1,−3r1+7,2r1−7).Ifthetwolinesintersectthenthetwopointsareoneandthesame.

Solving(13.60)and(13.61),wegetr=−1andr1=2.Thesevaluessatisfyequation(13.59).Thepointofintersectionis(2,1,−3).Theequationoftheplanecontainingthetwolinesis

Example13.20

Page 746: Analytical Geometry: 2D and 3D

Showthatthelines andx+2y+3z−8=0,2x+3y+4z−11=0

arecoplanar.Findtheequationoftheplanecontainingthesetwolines.

Solution

Thetwolinesare

Anyplanecontainingthesecondlineis

Ifthelinegivenby(13.62)liesonthisplanethenthepoint(−1,−1,−1)alsoliesontheplane.

Theequationoftheplane(13.64)is

Alsothenormaltothisplaneshouldbeperpendiculartotheline(13.62).Thedirectionratiosofthenormaltotheplaneare4,1,−2.Thedirectionratiosoftheline(13.62)are1,2,3.Alsoll1+mm1+nn1=4+2−6=0whichistrue.Hence,theplanecontainingthetwogivenlinesis4x+y−2z+3=0.Anypointonthefirstlineis(r−1,2r−1,3r−1).Ifthetwogivenlinesintersectatthispointthenitshouldlieonthesecondlineandhenceontheplanex+2y+3z−8=0.

Page 747: Analytical Geometry: 2D and 3D

Therefore,thepointofintersectionofthetwogivenlinesis(0,1,2).

Example13.21

Showthatthelinesx+2y+3z−4=0,2x+3y+4z−5=0and2x+3y+3z−5=0,3x−2y+4z−6=0arecoplanarandfindtheequationoftheplanecontainingthetwolines.

Solution

Letusexpressthefirstlineinsymmetricalform.Letl,m,nbethedirectioncosinesofthefirstline.Thenthislineisperpendiculartothenormalsoftheplanesx+2y+3z−4=0and2x+3y+4z−5=0.

Solving,weget

Therefore,thedirectionratiosofthefirstlineare1,−2,1.TofindapointonthefirstlineletusfindwherethislinemeetstheXOYplane

(i.e.)z=0.

Solvingthesetwoequationswegetthepointas(−2,3,0).Therefore,theequationsofthefirstlineare

Anyplanecontainingthesecondlineis

Page 748: Analytical Geometry: 2D and 3D

Iftheplanecontainsthesecondlinethenthepoint(−2,3,0)shouldlieontheplane(13.67).

Hencetheequationsoftheplane(13.67)becomes

Alsoitshouldsatisfythecondition.Thatthenormaltotheplaneshouldbeperpendiculartotheline(13.66).Thedirectionratiosofthenormaltotheplane(13.68)are1,1,1.Thedirectionratiosofthelineare1,−2,1.Also1−2+1=0whichis

satisfied.Hencetheequationoftherequiredplaneisx+y+z−1=0.

Example13.22

Provethatthelinesx=ay+b=cz+dandx=αy+β=γz+δarecoplanarif(r−c)(αβ−bd)−(α−a)(αδ−δγ)=0.

Solution

Firstletusexpressthegivenlinesinsymmetricalform.Thetwogivenlines

Thentwolinesarecoplanarif

Page 749: Analytical Geometry: 2D and 3D

Example13.23

Provethatthelinesa1x+b1y+c1z+d1=0=a2x+b2y+c2z+d2anda3x+b3y

+c3z+d3=0=a4x+b4y+c4z+d4arecoplanarif .

Solution

Letthetwolinesintersectat(x1,y1,z1).Then(x1,y1,z1)shouldlieontheplanescontainingtheselines.

Eliminating(x1,y1,z1)fromtheaboveequationsweget

Thisistherequiredcondition.

Example13.24

Page 750: Analytical Geometry: 2D and 3D

Findtheshortestdistanceandtheequationtothelineofshortestdistance

betweenthetwolines and .

Solution

Thetwogivenlinesare and .

ThecoordinatesofanypointPonthefirstlineare(3r−7,4r−4,−2r−3).ThecoordinatesofanypointQonthesecondlineare(6r1+21,−4r1−5,−r+

2).ThedirectionratiosofthelinePQare3r−6r1−28,4r+4r1+1,−2r+r1−

5.IfPQisthelineoftheshortestdistancethenthetwolinesareperpendicular.

Thedirectionratiosofthetwolinesare3,4,−2and6,−4,−1.Then3(3r−6r1−28)+4(4r+4r1+1)−2(−2r+r1−5)=0and6(3r−6r1−2r)−4(4r+4r1+1)−1(−2r+r1−8)=0

Solvingforrandr1,weget

ThecoordinatesofPandQaregivenbyP(−1,4,−7)andQ(3,7,5).

Page 751: Analytical Geometry: 2D and 3D

Theequationsofthelineoftheshortestdistanceare (i.e.)

Example13.25

Showthattheshortestdistancebetweenz–axisandthelineofintersectionofthe

plane2x+3y+z−1=0with3x+2y+z−2=0is units.

Solution

Theequationsoftheplanecontainingthegivenlineis

Thedirectionratiosofthenormaltothisplaneare2+3λ,3+2λ,4+λ.Thedirectionratiosofthez-axisare0,0,1.Ifz-axisisparalleltothelinethen

0(2+3λ),0(3+2λ)+1(4+λ)=0.

∴λ=−4Therefore,theequationoftheplane(13.69)is2x+3y+4z−1−4(3x+2y+z−2)=0

Page 752: Analytical Geometry: 2D and 3D

Example13.26

Findthepointsonthelines and whicharenearest

toeachother.Hencefindtheshortestdistancebetweenthelinesandalsoitsequation.

Solution

Thegivenlinesare

Anypointontheline(13.71)isP(3r+6,−r+7,r+4).Anypointontheline(13.72)isQ(−3r1,2r1−9,4r1+2).ThedirectionratiosofPQare(3r+3r1+6,−r−2r1+16,r−4r1+2).SincePQisperpendiculartothetwogivenlines.

Therefore,thepointsPandQare(3,8,3)and(−3,−7,6).TheSDisthedistancePQ.

ThedirectionratiosofPQare6,15,−3(i.e.)2,5,−1.Pis(3,8,3).

Therefore,theequationsofthelineofSDare .

Page 753: Analytical Geometry: 2D and 3D

Example13.27

Findtheshortestdistancebetweenthelines and

.Findalsotheequationofthelineoftheshortestdistance.

Solution

Letl,m,nbethedirectionratiosofthelineoftheSD.Sinceitisperpendiculartoboththelines

Solvingforl,m,n,weget

ThedirectionratiosofthelineofSDare2,3,6.Thedirectioncosinesofthe

lineofSDare

ThelengthofthelineoftheSD=|(x1−x2)l+(y1−y2)m+(z1−z2)n|where(x1,y1,z1)and(x2,y2,z2)arethedirectioncosinesofthelineofSD.

TheequationoftheplanecontainingthefirstlineandthelineofSDis

Page 754: Analytical Geometry: 2D and 3D

TheequationoftheplanecontainingthesecondlineandthelineofSDis

Therefore,theequationsofthelineofSDare117x+4y+71z−490=0,63x−28y+7z−238=0.

Example13.28

If2distheshortestdistancebetweenthelinesx=0, andy=0,

thenprovethat .

Solution

Thetwogivenlinesare

Theequationofanyplanecontainingthefirstlineis

Theequationofthesecondlineinsymmetricalformis

Page 755: Analytical Geometry: 2D and 3D

Theplanegivenbyequation(13.75)isparalleltotheline(13.76).If

Hencefrom(13.75),theequationoftheplanecontainingline(13.73)and

paralleltotheplane(13.74)is .

ThentheSDbetweenthegivenlines=theperpendiculardistancefromanypointontheline(13.74)totheplane(13.75).(0,0,−c)isapointontheline(13.76).

Example13.29

Showthattheshortestdistancebetweenanytwooppositeedgesofthetetrahedronformedbytheplanesy+z=0,z+x=0,x+y=0andx+y+z=a

is andthethreelinesoftheshortestdistanceintersectatthepointx+y+z=

a.

Solution

Theequationsoftheedgedeterminedbytheplanesy+z=0,z+x=0is

Page 756: Analytical Geometry: 2D and 3D

Theequationoftheoppositeedgesarex+y=0,x+y+z=a

Letl,m,nbethedirectioncosinesofthelineoftheSDbetweentwolines.Thenl+m−n=0,l−m+0.n=0.

Solvingforl,m,nweget .

Therefore,thedirectioncosinesofthelineoftheSDare .

Theequationoftheplanecontainingtheedgegivenby(13.77)andthelineof

theSDis .

Therefore,theequationsoftheSDaregivenby

Page 757: Analytical Geometry: 2D and 3D

Thislinepassesthroughthepoint(a,a,a).Similarly,bysymmetrywenotethattheothertwolinesofSDalsopassthroughthepoint(a,a,a).

Example13.30

AsquareABCDofdiagonal2aisfoldedalongthediagonalAC,sothattheplanesDAC,BACareatrightangles.FindtheshortestdistancebetweenDCandAB.

Solution

Letabethesideofthesquare.LetustakeOB,OC,ODastheaxesofcoordinates.ThecoordinatesofB,C,DandAare(a,0,0),(0,a,0),(0,0,a),(0,0,−a).

TheequationsofABare

TheequationsofCDare

Theequationsoftheplanepassingthroughthestraightline(13.80)andparallel

to(13.81)is .

Page 758: Analytical Geometry: 2D and 3D

Therefore,therequiredshortestdistance=perpendicularfromthepoint(0,a,0)totheplane(13.82).

Example13.31

Provethattheshortestdistancebetweenthediagonalofrectangular

parallelepipedandtheedgenotmeetingitis wherea,b,c

aretheedgesoftheparallelepiped.

Solution

LetOA,OBandOCbethecoterminousedgesofarectangularparallelepiped.ThediagonalsareOO′,AA′,BB′andCC′.ThecoordinatesofO′are(a,b,c).ThecoordinatesofBandC′are(a,0,0)and(a,b,0).

TheequationsofOO′are

TheequationsofBCare .

Letl,m,nbethedirectioncosinesofthelineoftheSD.Then

Page 759: Analytical Geometry: 2D and 3D

Hence,l,m,nare−c,o,a.

ThedirectioncosinesofthelineoftheSDare

SimilarlywecanprovethattheothertwoSDare, and .

Exercises3

1. Provethatthelines and arecoplanarandfindtheequationof

theplanecontainingtheline.Ans.:x−y+z=0

2. Provethatthelines and intersect.Findthepointof

intersectionandtheplanecontainingtheline.

Ans.:

3. Showthatthelines and intersectandfindtheequationof

theplanecontainingthelines.Ans.:(5,−7,6)

Page 760: Analytical Geometry: 2D and 3D

4. Provethattheline and arecoplanar.Findalsothepointof

intersectionandtheequationoftheplanethroughthem.Ans.:(−1,5,8),4x−11y+7z+3=0

5. Showthatthelines and arecoplanar.Findtheequationof

theplanecontainingtheline.Ans.:x−2y+z=0

6. Showthatthelines and arecoplanar.Findthepointof

intersectionandtheequationoftheplanecontainingthem.Ans.:(1,3,2),17x−47y−24z+172=0

7. Showthatthelines and arecoplanarandfindtheequation

oftheplanecontainingthem.Ans.:x−2y+z=0

8. Showthatthelines and arecoplanarandfindthe

equationoftheplanecontainingthem.Ans.:6x−5y−z=0

9. Showthatthelines and intersectandfindtheequationof

theplanecontainingtheselines.

Ans.:

10. Showthatthelines and3x+2y+z−2=0,x−3y+2z−13=0intersect.

Findalsotheequationoftheplanecontainingthem.

Page 761: Analytical Geometry: 2D and 3D

Ans.:(−1,2,3),6x−5y−z=0.

11. Showthatthelinesx−3y+2z+4=0,2x+y+4z+1=0and3x+2y+5z−1=0,2y+z=0arecoplanar.Findtheirpointofintersectionandtheequationoftheplanecontainingtheselines.

Ans.:(3,1,−2),3x+4y+6z−1=0.

12. Showthatthelinesx+y+z−3=0,2x+3y+4z−5=0and4x−y+5z−7=0,2x−5y−z−3=0arecoplanar.Findtheequationoftheplanecontainingtheselines.

Ans.:x+2y+3z−2=0.

13. Showthatthelines7x−4y+7z+16=0,4x+3y−2z+3=0andx−3y+4z+6=0,x−y+z+1=0arecoplanar.

14. Showthatthelines7x−2y−2z+3=0,9x−6y+3=0and5x−4y+z=0,6y−5z=0arecoplanar.Findtheequationoftheplaneinwhichtheylie.

Ans.:x−2y+z=0

15. Showthatthelines andx+2y+z+2=0,4x+5y+3z+6=0arecoplanar.

Findthepointofintersectionofthesetwolines.

Ans.:

16. Showthatthelines andx+2y+3z−14=0,3x+4y+5z−26=0are

coplanar.Findtheirpointofintersectionandtheequationoftheplanecontainingthem.Ans.:(1,2,3),11x+2y−7z+6=0.

17. Showthatthelines3x−y−z+2=0,x−2y+3z−6=0and3x−4y+3z−4=0,2x−2y+z−1=0arecoplanar.Findtheirpointofintersectionandtheequationoftheplanecontainingtheselines.

Ans.:(1,2,3),x−z+2=0

18. Showthatthelines2x−y−z−3=0,x−3y+2z−4=0andx−y+z−2=0,4x+y−6z−3=0arecoplanarandfindtheequationoftheplanecontainingthesetwolines.

Ans.:(1,−1,0),x−z−1=0

19. Showthatthelinesx+2y+3z−4=0;2x+3y+4z−5=0and2x−3y+3z−5=0,3x−2y+4z−6=0arecoplanar.Findtheequationoftheplanecontainingthesetwolines.

Ans.:x+y+z−1=0

Page 762: Analytical Geometry: 2D and 3D

20. Showthattheequationoftheplanethroughtheline andwhichisperpendiculartothe

planecontainingthelines and is(m−n)x+(n−l)y+(l−m)z=0.

21. Provethatthelines andax+by+cz+d=0,a1x+b1y+c1z+d1=0,are

coplanarif .

22. Showthatthelines and arecoplanarif

.

23. A,A′;B,B′andC,C′arepointsontheaxes,showthatthelinesofintersectionoftheplanes(A′BC,AB′C′),(B′CA,BC′A′)and(C′AB,CA′B′)arecoplanar.

24. Findtheshortestdistancebetweenthelines and andalsothe

equationsofthelineoftheSD.

Ans.: ,4x+y−5z=0,9x+y−8z−31=0

25. Findtheshortestdistancebetweenthelines and andfind

theequationofthelineoftheshortestdistance.

Ans.: ,4x−5y−17z+79=0,22x−5y+19z−83=0

26. Findtheshortestdistancebetweenthelines and Findalso

theequationofthelineofSDandthepointswherethelineofSDintersectthetwogivenlines.

Ans.: ,(3,5,7),(–1,–1,–1)

27. Showthattheshortestdistancebetweenz–axesandthelineofintersectionoftheplane2x+3y+

Page 763: Analytical Geometry: 2D and 3D

4z−1=0with3x+2y+z−2=0is .

28. Showthattheshortestdistancebetweenthelines and is

anditsequationare11x+2y−7z+6=0,7x+y−3z+7=0.

29. Findthelengthoftheshortestdistancebetweenthelines and2x+3y−6z−6=0,

3x−2y−z+5=0.

Ans.:

30. Findtheshortestdistancebetweenz–axisandthelineax+by+cz+d=0,a′x+b′y+c′z+d′=0.

Ans.:

31. Findtheshortestdistancebetweenanedgeofacubeandadiagonalwhichdoesnotmeetit.

Ans.:

32. Alinewithdirectioncosinesproportionalto1,7,−5isdrawntointersectthelines

and .Findthecoordinatesofthepointofintersectionand

thelengthinterceptedonit.

Ans.:(2,8,−3),(0,1,2),

33. Alinewithdirectioncosinesproportionalto2,7,−5isdrawntointersectthelines

Findthecoordinatesofthepointsofintersectionandthe

lengthinterceptedonit.

Ans.:(2,8,−3),(0,1,2);

Page 764: Analytical Geometry: 2D and 3D

34. Thetwolines and arecutbyathirdlinewhose

directioncosinesareλ,μ,γ.Showthatthelengthinterceptedonthethirdlineisgivenby

÷ andshowthatthelengthoftheshortestdistanceis

35. Thelengthsoftwooppositeedgesofatetrahedronarea,b,c;theshortestdistanceisequaltod

andtheanglebetweenthemisθ.Provethatthevolumeofthetetrahedronis abdsinθ.

36. Showthattheequationoftheplanecontainingthelinex=0, andparalleltotheliney=

0, is .Ifdistheshortestdistancebetweenthelinesthenshowthat

.

37. Showthattheshortestdistancebetweenthelinesy=az+b,z=αx+βandy=a′z+b,z=α′x+

β′yis .

38. Findtheshortestdistancebetweenthelinesx=2z+3,y=3z+4andx=4z+5,y=5z+6.Whatconclusiondoyoudrawfromyouranswer?

Ans.:Zero;Coplanarlines

Page 765: Analytical Geometry: 2D and 3D

Chapter14

Sphere

14.1DEFINITIONOFSPHERE

Thelocusofamovingpointinspacesuchthatitsdistancefromafixedpointisconstantiscalledasphere.Thefixedpointiscalledthecentreofthesphere.Theconstantdistanceiscalledtheradius.

14.2THEEQUATIONOFASPHEREWITHCENTREAT(a,b,c)ANDRADIUSr

LetP(x,y,z)beanypointonthesphere.LetC(a,b,c)bethecentre.

Then,

Thisistheequationoftherequiredsphere.

Showthattheequationx2+y2+z2+2ux+2vy+2wz+d=0alwaysrepresentsasphere.Finditscentreandradius.

Addu2+v2+w2tobothsides.

Page 766: Analytical Geometry: 2D and 3D

Thisequationshowsthatthisisthelocusofapoint(x,y,z)movingfromthe

fixedpoint(–u,–v,–w)keepingaconstantdistance fromit.

Therefore,thelocusisaspherewhosecentreis(–u,–v,–w)andwhoseradius

is .

Note14.2.1:Ageneralequationofseconddegreeinx,y,zwillrepresentasphereif(i)coefficientsofx2,y2,z2arethesameand(ii)thecoefficientsofxy,yz,zxarezero.

14.3EQUATIONOFTHESPHEREONTHELINEJOININGTHEPOINTS(x1,y1,z1)AND(x2,y2,z2)ASDIAMETER

Findtheequationofthesphereonthelinejoiningthepoints(x1,y1,z1)and(x2,y2,z2)astheextremitiesofadiameter.

A(x1,y1,z1)andB(x2,y2,z2)betheendsofadiameter.Let(x,y,z)beanypointonthesurfaceofthesphere.Then∠APB=90°Therefore,APisperpendiculartoBP.ThedirectionratiosofAParex–x1,y–y1,z–z1.ThedirectionratiosofBParex–x2,y–y2,z–z2.SinceAPisperpendiculartoBP,

Page 767: Analytical Geometry: 2D and 3D

Thisistheequationoftherequiredsphere.

14.4LENGTHOFTHETANGENTFROMP(x1,y1,z1)TOTHESPHEREx2+y2+z2+2ux+2vy+

2wz+d=0

FindthelengthofthetangentfromP(x1,y1,z1)tothespherex2+y2+z2+2ux+2vy+2wz+d=0.

Thecentreofthesphereis(–u,–v,–w).

Theradiusofthesphereis .

Note14.4.1:IfPT2>0,thepointPliesoutsidethesphere.IfPT2=0,thenthepointPliesonthesphere.IfPT2<0,thenthepointPliesinsidethesphere.

14.5EQUATIONOFTHETANGENTPLANEAT(x1,y1,z1)TOTHESPHEREx2+y2+z2+2ux+

2vy+2wz+d=0

Page 768: Analytical Geometry: 2D and 3D

Findtheequationofthetangentplaneat(x1,y1,z1)tothespherex2+y2+z2

+2ux+2vy+2wz+d=0.

Thecentreofthesphereis(–u,–v,–w).P(x1,y1,z1)isapointonthesphereandtherequiredplaneisatangentplane

tothesphereatP.Therefore,thedirectionratiosofCParex1+u,y1+v,z1+w.

Therefore,theequationofthetangentplaneat(x1,y1,z1)is(x1+u)(x–x1)+(y1+v)(y–y1)+(z1+w)(z–z1)=0.

Addingux1+vy1+wz1+dtobothsides,weget

Therefore,theequationofthetangentplaneat(x1,y1,z1)isxx1+yy1+zz1+u(x+x1)+v(y+y1)+w(z+z1)+d=0.

14.6SECTIONOFASPHEREBYAPLANE

LetCbethecentreofthesphereandPbeanypointonthesectionofthespherebytheplane.DrawCNperpendiculartotheplane.ThenNisthefootoftheperpendicular

fromPontheplanesection.JoinCP.SinceCNisperpendiculartoNP,CNPisarightangledtriangle.

Page 769: Analytical Geometry: 2D and 3D

SinceCPandCNareconstants,NP=constantshowsthatthelocusofPisacirclewithcentreatNandradiusequaltoNP.

Note14.6.1:Iftheradiusofthecircleislessthantheradiusofthespherethenthecircleiscalledasmallcircle.Inotherwords,acircleofthespherenotpassingthroughthecentreofthesphereiscalledasmallcircle.

Note14.6.2:Iftheradiusofthecircleisequaltotheradiusofthespherethenthecircleiscalledagreatcircleofthesphere.Inotherwords,acircleofthespherepassingthroughthecentreofthesphereiscalledagreatcircle.

14.7EQUATIONOFACIRCLE

Thesectionofaspherebyaplaneisacircle.Supposetheequationofthesphereis

andtheplanesectionis

Thenanypointonthecirclelieonthesphere(14.1)aswellastheplanesection(14.2).Hence,theequationsofthecircleofthespherearegivenbyx2+y2+z2+2ux+2vy+2wz+d=0andax+by+cz+k=0.

14.8INTERSECTIONOFTWOSPHERES

Thecurveofintersectionoftwospheresisacircle.

Page 770: Analytical Geometry: 2D and 3D

Thecurveofintersectionoftwospheresisacircle.

Letthetwospheresbe

Equation(14.3)isalinearequationinx,y,zandthereforerepresentsaplaneandthisplanepassesthroughthepointofintersectionofthegiventwospheres.Inaddition,weknowthatsectionofthespherebyaplaneisacircle.Hence

thecurveofintersectionofthespheresisgivenbyS1−S2=0.

14.9EQUATIONOFASPHEREPASSINGTHROUGHAGIVENCIRCLE

LetthegivencirclebeS=x2+y2+z2+2ux+2vy+2wz+d=0and

ConsidertheequationS+λP=0.

Thisequationrepresentsasphere.Suppose(x1,y1,z1)isapointonthegivencircle.Then

Equations(14.6)and(14.7)showthatthepoint(x1,y1,z1)liesonthespheregivenbyequation(14.5).Since(x1,y1,z1)isanarbitrarypointonthecircle,itfollowsthateverypoint

onthecircleisapointonthespheregivenby(14.5).Henceequation(14.5)representstheequationofaspherepassingthroughthe

circle(14.4).

14.10CONDITIONFORORTHOGONALITYOFTWOSPHERES

Letthetwogivenspheresbe

Page 771: Analytical Geometry: 2D and 3D

ThecentresofthespheresareA(–u,–v,–w)andB(–u1,–v1,–w1).Theradius

Twospheresaresaidtobeorthogonal,ifthetangentplanesatthispointofintersectionareatrightangles.

(i.e.)Theradiidrawnthroughthepointofintersectionareatrightangles.

Thisistherequiredcondition.

14.11RADICALPLANE

Thelocusofapointwhosepowerswithrespecttotwospheresareequaliscalledtheradicalplaneofthetwospheres.

14.11.1ObtaintheEquationstotheRadicalPlaneofTwoGivenSpheres

Letthetwogivenspheresbe

Page 772: Analytical Geometry: 2D and 3D

Let(x1,y1,z1)beapointsuchthatthepowerofthispointwithrespecttospheres(14.10)and(14.11)beequal.Then

Thelocusof(x1,y1,z1)is

Thisisalinearequationinx,yandzandhencethisequationrepresentsaplane.Henceequation(14.12)istheequationtotheradicalplaneofthetwogiven

spheres.

Note14.11.1.1:Whentwospheresintersect,theplaneoftheirintersectionistheradicalplane.

Note14.11.1.2:Whenthetwospherestouch,thecommontangentplanethroughthepointofcontactistheradicalplane.

14.11.2PropertiesofRadicalPlane

1. Theradicalplaneoftwospheresisperpendiculartothelinejoiningtheircentres.Proof:Lettheequationsofthetwospheresbe

Thecentresofthetwospheresare

C1(–u1,–v1,–w1)andC2(–u2,–v2,–w2).Thedirectionratiosofthelineofcentresareu1–u2,v1–v2,w1–w2.

Page 773: Analytical Geometry: 2D and 3D

Theradicalplaneofspheres(14.13)and(14.14)is2(u1–u2)x+2(v1–v2)y+2(w1–w2)z+(d1–d2)=0.Thedirectionratiosofthenormaltotheplaneareu1–u2,v1–v2,w1–w2.Therefore,thelineofcentreisparalleltothenormaltotheradicalplane.Hence,theradicalplaneoftwospheresisperpendiculartothelinejoiningthecentres.

2. Theradicalplanesofthreespherestakeninpairspassthroughaline.Proof:LetS1=0,S2=0,S3=0betheequationsofthethreegivenspheresineachofwhichthe

coefficientsofx2,y2andz2areunity.ThentheequationsoftheradicalplanestakeninpairsareS1–S2=0,S2–S3=0,S3–S1=0.TheseequationshowthattheradicalplanesofthethreespherespassthroughthelineS1=S2=

S3.Hencetheresultisproved.

Note14.11.2.1:Thelineofconcurrenceofthethreeradicalplanesiscalledradicallineofthethreespheres.

3. Theradicalplanesoffourspherestakeninpairsmeetinapoint.Proof:LetS1=0,S2=0,S3=0andS4=0betheequationsofthefourgivenspheres,ineachofwhich

thecoefficientsofx2,y2,z2areunity.

Thentheequationsoftheradicalplanestakentwobytwoare

TheseequationsshowthattheradicalplanesofthefourspheresmeetinatapointgivenbyS1=S2=S3=S4.

Note14.11.2.2:Thepointofconcurrenceoftheradicalplanesoffourspheresiscalledtheradicalcentreofthefourspheres.

14.12COAXALSYSTEM

Definition14.12.1:Asystemofspheresissaidtobecoaxalifeverypairofspheresofthesystemhasthesameradicalplane.

14.12.1GeneralEquationtoaSystemofCoaxalSpheres

LetS=x2+y2+z2+2ux+2vy+2wz+d=0andS1=x2+y2+z2+2u′x+2v′y+2w′z+d′=0betheequationofanytwospheres.Nowconsidertheequation

Page 774: Analytical Geometry: 2D and 3D

Nowconsidertheequation

whereλisaconstant.Clearlythisequationrepresentsasphere.Considertwodifferentspheresofthissystemfortwodifferentvaluesofλ.

Thecoefficientsofx2,y2,z2termsin(14.15)are1+λ.

representtwospheresofthesystemwithunitcoefficientsforx2,y2,z2terms.Therefore,theequationoftheradicalplaneof(14.18)and(14.19)is

Sinceλ2≠λ1,S–S′=0whichistheequationtotheradicalplaneofspheres(14.16)and(14.17).Sincethisequationisindependentofλ,everypairofthesystemofspheres

(14.15)hasthesameradicalplane.Henceequation(14.15)representsthegeneralequationtothecoaxalsystemofthespheres.

14.12.2EquationtoCoaxalSystemistheSimplestForm

Inacoaxalsystemofspheres,thelineofcentresisnormaltothecommonradicalplane.

Page 775: Analytical Geometry: 2D and 3D

Therefore,letuschoosethex-axisasthelineofcentresandthecommonradicalplaneastheyz-plane,thatis,(x=0).Lettheequationtoasphereofthecoaxalsystembex2+y2+z2+2ux+2vy+

2wz+d=0.Sincethelineofcentresisthex-axis,isyandzcoordinatesarezerov=0,w=

0.Thentheequationoftheabovespherereducestotheformx2+y2+z2+2ux+

d=0.Letusnowconsidertwosphereofthissystemsay,x2+y2+z2+2ux+d=0

andx2+y2+z2+2u1x+d1=0.Theradicalplaneofthesetwospheresis

Buttheequationoftheradicalplaneisx=0.Therefore,from(14.20),d–d1=0ord1=d

Hencetheequationtoanysphereofthecoaxalsystemisoftheformx2+y2+z2

+2λx+d=0whereλisavariableanddisaconstant.

14.12.3LimitingPoints

Limitingpointsaredefinedtobethecentresofpointspheresofthecoaxalsystem.Lettheequationtoacoaxalsystembe

Centreis(–λ,0,0)andradiusis

Forpointsphereradiusiszero.

Page 776: Analytical Geometry: 2D and 3D

Therefore,thelimitingpointsofthesystemofspheresgivenby(14.21)are(

,0,0)and(– ,0,0).

Note14.12.3.1:Limitingpointsarerealorimaginaryaccordingasdispositiveornegative.

14.12.4IntersectionofSpheresofaCoaxalSystem

Lettheequationtoacoaxalsystemofspherebex2+y2+z2+2λx+d=0.Nowconsidertwospheresofthesystemsay

Nowconsidertwospheresofthesystemsay

TheintersectionofthesetwospheresisS1–S2=0.

(i.e.)2(λ1–λ2)x=0(i.e.)x=0sinceλ1≠λ2substitutingx=0in(14.22)or(14.23)weget,

Therefore,thisequationisacircleintheyz-planeandalsoitisindependentofλ.Henceeverysphereofthesystemmeetstheradicalplanewithsamecircle.

Note14.12.4.1:Thiscircleiscalledthecommoncircleofthecoaxalsystem.

Note14.12.4.2:Ifd<0,thecommoncircleisrealandthesystemofspheresaresaidtobeintersectingtype.Ifd=0,thecommoncircleisapointcircleandinthiscaseanytwospheresofthesystemtoucheachother.

Page 777: Analytical Geometry: 2D and 3D

Ifd>0,thecommoncircleisimaginaryandthespheresaresaidtobeofnon-intersectingtype.

ILLUSTRATIVEEXAMPLES

Example14.1

Findtheequationofthespherewithcentreat(2,–3,–4)andradius5units.

Solution

Theequationofthespherewhosecentreis(a,b,c)andradiusris(x–a)2+(y–b)2+(z–c)2=r2.Therefore,theequationofthespherewhosecentreis(2,–3,–4)andradius5is(x–2)2+(y+3)2+(z–4)2=52.

Example14.2

Findthecoordinateofthecentreandradiusofthesphere16x2+16y2+16z2–16x–8y–16z–35=0.

Solution

Theequationofthesphereis16x2+16y2+16z2–16x–8y–16z–35=0.

Dividingby16,

Centreofthesphereis .

Page 778: Analytical Geometry: 2D and 3D

Example14.3

Findtheequationofthespherewiththecentreat(1,1,2)andtouchingtheplane2x–2y+z=5.

Solution

Theradiusofthesphereisequaltotheperpendiculardistancefromthecentre(1,1,2)ontheplane2x–2y+z–5=0.

Theequationofthespherewithcentreat(1,1,2)andradius1unitis(x–1)2+(y–1)2+(z–2)2=1.

(i.e.)x2+y2+z2–2x–2y–4z+5=0

Example14.4

Findtheequationofthespherepassingthroughthepoints(1,0,0),(0,1,0),(0,0,1)and(0,0,0).

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thispassesthroughthepoints(1,0,0),(0,1,0),(0,0,1)and(0,0,0).

Page 779: Analytical Geometry: 2D and 3D

Theequationofthesphereisx2+y2+z2–x–y–z=0.

Example14.5

Findtheequationofthespherewhichpassesthroughthepoints(1,0,0),(0,1,0)and(0,0,1)andhasitscentreontheplanex+y+z=6.

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thisspherepassesthroughthepoints(1,0,0),(0,1,0)and(0,0,1).

Thecentreofthesphereis(–u,–v,–w).Thisliesontheplanex+y+z–6=0.

Theequationofthesphereisx2+y2+z2–4x–4y–4z+4=0.

Example14.6

Findtheequationofthespheretouchingtheplane2x+2y–z=1andconcentricwiththesphere2x2+2y2+2z2+x+2y–z=0.

Solution

Page 780: Analytical Geometry: 2D and 3D

Centreis .

Thespheretouchestheplane2x+2y–z–1=0.

Theequationofthesphereis

Example14.7

Findtheequationofthespherewhichpassesthroughthepoints(2,7,–4)and(4,5,–1)hasitscentreonthelinejoiningthethesetwopointsasdiameter.

Solution

Aliter:Thetwogivenpointsaretheextremitiesofadiameterofthesphere.

Page 781: Analytical Geometry: 2D and 3D

Therefore,theequationofthesphereis

Example14.8

Theplane cutsthecoordinateaxesinA,BandC.Findtheequationof

thespherepassingthroughA,B,CandO.Findalsoitscentreandradius.

Solution

Theplane cutsthecoordinatesofA,BandC.ThecoordinatesofA,B

andCare(a,0,0),(0,b,0)and(0,0,c).

LettheequationofthespherepassingthroughA,BandCbex2+y2+z2+2ux+2vy+2wz+d=0.SincethispassesthroughoriginO,d=0.SincethispassesthroughA,Band

C.

Hencetheequationofthesphereisx2+y2+z2–2ax–2by–2cz=0.

Centreofthesphereis(a,b,c)andradiusofthesphere=

Example14.9

Page 782: Analytical Geometry: 2D and 3D

Findtheequationofthespherecircumscribingthetetrahedronwhosefacesare

and

Solution

Thefacesofthetetrahedronare

Noweasilyseenthattheverticesofthetetrahedronare(0,0,0),(a,b,–c),(a,–b,c)and(–a,b,c).Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thisspherepassesthroughthepoints(0,0,0),(a,b,–c,),(a,–b,c)and(–a,b,

c).

Adding(14.28)and(14.29),2(a2+b2+c2)+4ua=0

Similarly,

Page 783: Analytical Geometry: 2D and 3D

Therefore,theequationofthesphereisx2+y2+z2–(a2+b2+c2)

Example14.10

Asphereisinscribedinatetrahedronwhosefacesarex=0,y=0,z=0and2x+6y+3z=14.Findtheequationofthesphere.Alsofinditscentreandradius.

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Sincethespheretouchestheplanex=0,theperpendiculardistancefromthe

centre(–u,–v,–w)onthisplaneisequaltotheradius.

∴–u=r,–v=r,–w=r.Alsothespheretouchestheplane2x+6y+3z–14=0.

When ,theequationofthesphereis

Page 784: Analytical Geometry: 2D and 3D

Forthissphere,centreis andradius= .

When ,

Example14.11

Findtheequationofthespherepassingthroughthepoints(1,0,–1),(2,1,0),(1,1,–1)and(1,1,1).

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thisspherepassesthrough(1,0,–1),(2,1,0),(1,1,–1)and(1,1,1).

Page 785: Analytical Geometry: 2D and 3D

From(14.31),–2+d=–2⇒d=0.Therefore,therequiredequationofthecircleisx2+y2+z2–2x–y=0.

Example14.12

Findtheequationofthespherewhichtouchesthecoordinateaxes,whosecentreliesinthepositiveoctantandhasaradius4.

Solution

Lettheequationofthespherebex2+y2+z2+2xu+2vy+2wz+d=0.

Theequationofthex-axisis .

Anypointonthislineis(t,0,0).Thepointliesonthegivenspheret2+2ut+d=0.

Sincethespheretouchesthex-axisthetworootsofthisequationareequal.

∴4u2–4d=0oru2=d.

Page 786: Analytical Geometry: 2D and 3D

Similarly,v2=dandw2=d

Theradiusofthesphereis

Sincethecentreliesonthex-axis,–u=–v=–w=2 .

Therefore,therequiredequationisx2+y2+z2–4 (x+y+z)+8=0.

Example14.13

Findtheradiusandtheequationofthespheretouchingtheplane2x+2y–z=0andconcentricwiththesphere2x2+2y2+2z2+x+2y–z=0.

Solution

Sincetherequiredsphereisconcentricwiththesphere2x2+2y2+2z2+x+2y–

z=0itscentreisthesameasthatofthegivensphere

Centreis .Theradiusoftherequiredsphereisequaltothe

perpendiculardistancefromthispointtotheplane2x+2y–z=0.

Theequationoftherequiredsphereis

Example14.14

Page 787: Analytical Geometry: 2D and 3D

Findtheequationofthespherewhichpassesthroughthepoints(1,0,0),(0,2,0),(0,0,3)andhasitsradiusassmallaspossible.

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+k=0.Thisspherepassesthroughthepoints(1,0,0),(0,2,0)and(0,0,3).

Theradiusofthesphereisgivenbyr2=u2+v2+w2–k.

Therequiredequationofthesphereis

Example14.15

Page 788: Analytical Geometry: 2D and 3D

Findtheequationofthespheretangentialtotheplanex–2y–2z=7at(3,–1,–1)andpassingthroughthepoint(1,1,–3).

Solution

TheequationofnormalatAis

Anypointinthislineis(r+3,–2r–1,–2r–1).IfthispointisthecentreofthespherethenCA=CB.

Therefore,centreofthesphereis(0.5,5).

Radius=

Therefore,theequationofthesphereis(x–0)2+(y–5)2+(z–5)2=81.

(i.e.)x2+y2+z2–10y–10z–31=0

Example14.16

Showthattheplane4x–3y+6z–35=0isatangentplanetothespherex2+y2

+z2–y–2z–14=0andfindthepointofcontact.

Solution

Iftheplaneisatangentplanetothespherethentheradiusisequaltotheperpendiculardistancefromthecentreontheplane.

Page 789: Analytical Geometry: 2D and 3D

Thecentreofthespherex2+y2+z2–y–2z–14=0is .

Perpendiculardistancefromthecentreontheplaneis

Therefore,theplanetouchesthesphere.Theequationsofthenormaltothe

tangentplaneare

Anypointonthislineis .

Ifthispointliesontheplane4x–3y+6z–35=0then,

Therefore,thepointofcontactis(2,–1,4).

Example14.17

Page 790: Analytical Geometry: 2D and 3D

AsphereofconstantradiusrpassesthroughtheoriginOandcutstheaxesinA,BandC.FindthelocusofthefootoftheperpendicularfromOtotheplaneABC.

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thispassesthroughtheorigin.

∴d=0

ThespherecutstheaxesatA,BandCwhereitmeetsthex-axis.

y=0,z=0∴x2+2ux=0∴x=–2uTherefore,thecoordinatesofAare(–2u,0,0).SimilarlythecoordinatesofBandCareB(0,–2v,0)andC(0,0,–2w).Therefore,theequationsofthesphereisx2+y2+z2–2ux–2vy–2wz=0.Radius=r

TheequationsoftheplaneABCis

Thedirectionratiosofthenormaltothisplaneare .

Theequationsofthenormalare

Let(x,y,z)bethefootoftheperpendicularfromOontheplane.Then(x1,y1,z1)lieson(14.37).

Page 791: Analytical Geometry: 2D and 3D

Substitutingin(14.35),

Thepoint(x1,y1,z1)alsoliesontheplane(14.36)

or

Multiplying(14.38)and(14.39),weget

Thelocusof

Example14.18

Asphereofconstantradius2kpassesthroughtheoriginandmeetstheaxesinA,BandC.ShowthatthelocusofthecentroidofthetetrahedronOABCisx2+y2

+z2=k2.

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thispassesthroughtheorigin.

Page 792: Analytical Geometry: 2D and 3D

Sincex≠0,x=–2u.Therefore,thecoordinatesofAare(–2u,0,0).SimilarlythecoordinatesofBandCare(0,–2v,0)and(0,0,–2w).

Let(x1,y1,z1)bethecentroidofthetetrahedronOABC.

Theradiusofthesphereisr.

∴u2+v2+w2=4r2

Using(14.40),

Thelocusof(x1,y1,z1)isthespherex2+y2+z2=r2.

Example14.19

AsphereofconstantradiusrpassesthroughtheoriginandmeetstheaxesinA,BandC.ProvethatthecentroidofthetriangleABCliesonthesphere9(x2+y2

+z2)=4r2.

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thislinepassingthroughtheorigin.

∴d=0.

Page 793: Analytical Geometry: 2D and 3D

Whenthecirclemeetsthex-axis,y=0,z=0

∴x2+2ux=0as

x≠0,x=−2u∴Aisthepoint(–2u,0,0).SimilarlyBandCarethepoints(0,–2v,0)and(0,0,–2w).Alsogiventhe

radiusisr.

Let(x1,y1,z1)bethecentroidofthetriangleABC.

Butthecentroidis

∴from(14.41):

Thelocusof(x1,y1,z1)is9(x2+y2+z2)=4r2.

Example14.20

Aplanepassesthroughthefixedpoint(a,b,c)andmeetstheaxesinA,B,C.

Provethatthelocusofthecentreofthesphereis

Page 794: Analytical Geometry: 2D and 3D

Solution

Lettheequationofthespherebex2+y2+z2+2ux+2vy+2wz+d=0.Thispassesthroughtheorigin.

∴d=0Whenthisspheremeetsthex-axis,y=0andz=0.

∴x2+2ux=0.Asx≠0,x=–2u.Therefore,thecoordinatesofAare(–2u,0,0).SimilarlythecoordinatesofBandCare(0,–2v,0)and(0,0,–2w).

TheequationoftheplaneABCis

Thisplanepassesthroughthepoint(a,b,c).

Thelocusofthecentre(–u,–v,–w)is

Example14.21

Findthecentreandradiusofthecirclex2+y2+z2–8x+4y+8z–45=0,x–2y+2z=3.

Solution

Thecentreofthespherex2+y2+z2–8x+4y+8z–45=0is(4,–2,–4).

Page 795: Analytical Geometry: 2D and 3D

CNistheperpendicularfromthecentreofthesphereontheplanex–2y+2z=3.

Therefore,theradiusofthecircleis units.TheequationofthelineCNis

Anypointonthislineist+4,–2t–2,2t–4.Thispointisthecentreofthecirclethenthisliesontheplanex–2y+2z–3=0thent+4–2(2t–2)+2(2t–4)–3=0.

Therefore,thecentreofthecircleis

Example14.22

Showthatthecentresofallsectionsofthespherex2+y2+z2=r2byplanesthroughthepoint(α,β,γ)lieonthespherex(x–α)+y(y–β)+z(z–γ)=0.

Solution

Page 796: Analytical Geometry: 2D and 3D

Let(x1,y1,z1)beacentreofasectionofthespherex2+y2+z2=r2byaplanethrough(α,β,γ).Thentheequationoftheplaneisx1(x–x1)+y1(y–y1)+z1(z–z1)=0.Thisplanepassesthroughthepoint(α,β,γ).

x1(α–x1)+y1(β–y1)+Z(γ–z1)=0Therefore,thelocusof(x1,y1,z1)isx(α–x)+y(β–y)+z(γ–z)=0.(i.e.)x(x–α)+y(β–y)+z(γ–z)=0whichisasphere.

Example14.23

Findtheequationofthespherehavingthecirclex2+y2+z2=5,x–2y+2z=5foragreatcircle.Finditscentreandradius.

Solution

Anyspherecontainingthegivencircleisx2+y2+z2–5+2λ(x–2y+2z−5)=0.Thecentreofthissphereis(–λ,2λ,–2λ).Sincethegivencircleisagreat

circle,thecentreofthesphereshouldlieontheplanesectionx–2y+2z=5.

Therefore,theequationofthesphereisx2+y2+z2–5– (x–2y+2z–5)=0.

9(x2+y2–z2–5)–10(x–2y+2z–5)=0.

Centreofthesphereis .

Page 797: Analytical Geometry: 2D and 3D

Example14.24

Findtheequationsofthesphereswhichpassesthroughthecirclex2+y2+z2=5,x+2y+3z=3andtouchtheplane4x+3y=15.

Solution

Anyspherecontainingthegivencircleisx2+y2+z2–5+λ(x+2y+3z–3)=0.

Centreis .

Ifthespheretouchestheplane4x+3y=15thentheradiusofthesphereisequaltotheperpendiculardistancefromthecentreontheplane.

Therearetwospherestouchingthegivenplanewhoseequationsarex2+y2+z2

–5+2(x+2y+3z–3)=0andx2+y2+z2–5– (x+2y+3z–3)=0

Page 798: Analytical Geometry: 2D and 3D

Example14.25

Provethatthecirclesx2+y2+z2–2x+3y+4z–5=0,5y+6z+1=0andx2+y2+z2–3x–4y+5z–6=0,x+2y–7z=0lieonthesamesphereandfinditsequation.

Solution

Theequationofthespherethroughthefirstcircleis

Theequationofthespherethroughthesecondcircleis

Thegivencircleswilllieonthesamesphereifequation(14.42)and(14.43)areidentical.Therefore,comparingequations(14.42)and(14.43)weget,

Thesetwovaluesλandμsatisfy(14.42),theequations(14.45)and(14.46).Hence,thetwogivencircleslieonthesamesphere.Theequationofthe

sphereisx2+y2+z2–3x–4y+5z–6+x+2y–7z=0.

(i.e.)x2+y2+z2–2x–2y–2z–6=0

Page 799: Analytical Geometry: 2D and 3D

Example14.26

Theplane meetsthecircleO,A,BandC.Findtheequationsofthe

circumcircleofthetriangleABCandalsofinditscentre.

Solution

TheequationoftheplaneABCis .

Therefore,thecoordinatesofA,BandCare(a,0,0),(0,b,0)and(0,0,c)respectively.AlsoweknowthattheequationofthesphereOABCisx2+y2+z2–ax–by–

cz=0.Therefore,theequationofthecircumcircleofthetriangleABCarex2+y2+z2

–ax–by–cz=0and .

ThecentreofthesphereOABCis

TheequationofthenormalCNis

Anypointonthislineis .

Page 800: Analytical Geometry: 2D and 3D

Thus,pointliesontheplane

Hencethecentreofthecircleis

Example14.27

Obtaintheequationstothespherethroughthecommoncircleofthespherex2+y2+z2+2x+2y=0andtheplanex+y+z+4=0whichintersectstheplanex+y=0incircleofradius3units.

Solution

Theequationofthespherecontainingthegivencircleisx2+y2+z2+2x+2y+λ(x+y+z+4)=0.

Centreofthissphereis

Page 801: Analytical Geometry: 2D and 3D

CN=PerpendicularfromthecentreContheplanex+y=0.

Therefore,theequationsoftherequiredspheresarex2+y2+z2+2x+2y–2(x+y+z+4)=0andx2+y2+z2+2x+2y+18(x+y+z+4)=0.

Example14.28

Findtheequationofthespherewhichtouchesthespherex2+y2+z2+2x–6y+1=0atthepoint(1,2,–2)andpassesthroughtheorigin.

Page 802: Analytical Geometry: 2D and 3D

Solution

Theequationofthetangentplaneat(1,2,–2)isx+2y–2z+(x+1)–3(y+2)+1=0.

Theequationofthespherepassingthroughtheintersectionof(14.48)and(14.49)isx2+y2+z2+2x–6y+1+λ(2x–y–2z–4)=0.Thisspherepassesthroughtheorigin.

Therefore,theequationoftherequiredsphereis4(x2+y2+z2+2x–6y+1)+(2x–y–2z–4)=0.

(i.e.)4(x2+y2+z2)+10x–25y–2z=0

Example14.29

Showthattheconditionforthespherex2+y2+z2+2ux+2vy+2wz+d=0tocutthespherex2+y2+z2+2u1x+2v1y+2w1z+d1=0inagreatcircleis

wherer1istheradiusofthelattersphere.

Solution

TheintersectionofthesetwosphereisS–S1=0.

(i.e.)2(u–u1)x+2(v–v1)y+2(w–w1)z+d–d1=0.

Page 803: Analytical Geometry: 2D and 3D

ThecentreofthesphereS1=0is(–u1,–v1,–w1).SinceS1=0cutsS2=0inagreatcircle,thecentreofthesphereliesontheplaneofintersectionS1–S2=0.

Example14.30

Atangentplanetothespherex2+y2+z2=r2makesinterceptsa,bandconthecoordinateaxes.Provethata–2+b–2+c–2=r–2.

Solution

LetP(x1,y1,z1)beapointonthespherex2+y2+z2=r2.

TheequationofthetangentplaneatPisxx1+yy1+zz1=r2.

Therefore,theinterceptsmadebytheplaneonthecoordinateaxesare

Example14.31

Page 804: Analytical Geometry: 2D and 3D

Twospheresofradiir1andr2intersectorthogonally.Provethattheradiusofthe

commoncircleis .

Solution

Lettheequationofthecommoncirclebe

Thentheequationofthespherethroughthegivencircleisx2+y2+z2–r2+λz=0whereλisarbitrary.Lettheequationofthetwospheresthroughthegivencirclebex2+y2+z2–r2+λ1z=0andx2+y2+z2–r2+λ2z=0Ifr1andr2aretheradiioftheabovetwospheresthen

Sincethetwospherescutorthogonally.

Eliminatingλ1andλ2from(14.52)and(14.53),weget

Page 805: Analytical Geometry: 2D and 3D

Example14.32

Findtheequationofthespherewhichtouchestheplane3x+2y–z+2=0atthepoint(1,–2,1)andcutsorthogonallythespherex2+y2+z2–4x+6y+4=0.

Solution

Lettheequationoftherequiredspherebe

Thisspheretouchestheplane3x+2y–z+2=0at(1,–2,1).Theequationofthetangentplaneat(1,–2,1)isxx1+yy1+zz1+u(x+x1)+v(y+y1)+w(z+z1)+d=0.

Butthetangentplaneisgivenas

Identifyingequations(14.55)and(14.56)weget,

Thesphere(14.54)cutsorthogonallythesphere

Page 806: Analytical Geometry: 2D and 3D

Therefore,theequationofthesphereisx2+y2+z2+7x+10y–5z+12=0.

Example14.33

Findtheequationsoftheradicalplanesofthespheresx2+y2+z2+2x+2y+2z+2=0,x2+y2+z2+4y=0andx2+y2+z2+3x–2y+8z+6=0.Alsofindtheradicallineandtheradicalcentre.

Solution

Considertheequations,

Theradicalplaneofthespheres(14.62)and(14.63)isS1–S2=0.

Theradicalplaneofthespheres(14.63)and(14.64)isS2–S3=0.

(i.e.)3x–6y–8z+6=0

Page 807: Analytical Geometry: 2D and 3D

Theradicalplaneofthesphere(14.62)andS3isS1–S3=0.

(i.e.)x–4y+6z+4=0Theequationoftheradicallineofthespheresaregivenby

Alsotheradicallineisgivenby

3x–6y+8z+6=0,2x–3y+7z+4=0.Theradicalcentreisthepointofintersectionoftheabovetwolines.Sowehavetosolvetheequations

Solvingtheseequationsweget

Therefore,theradicalcentreis .

Example14.34

Findtheequationofthespherethroughtheoriginandcoaxalwiththespheresx2

+y2+z2=1andx2+y2+z2+x+2y+3z–5=0.

Solution

TheradicalplaneofthetwogivenspheresisS–S1=0.

Page 808: Analytical Geometry: 2D and 3D

(i.e.)x+2y+3z–4=0TheequationofanyspherecoaxalwithgivenspheresisS+λP=0.

(i.e.)x2+y2+z2–1+λ(x+2y+3z–4)=0Thisspherepassesthroughtheorigin.

Therefore,theequationoftherequiredsphereisx2+y2+z2–1– (x+2y+3z

–4)=0.

Example14.35

Findthelimitingpointsofthecoaxalsystemofspheresdeterminedbyx2+y2+z2+4x–2y+2z+6=0andx2+y2+z2+2x–4y–2z+6=0.

Solution

Theradicalplaneofthetwogivenspheresis2x+2y+4z=0.Theequationtoanysphereofthecoaxalsystemisx2+y2+z2+4x–2y+2z

+6+λ(x+y+2z)=0.

Thecentreis .

Page 809: Analytical Geometry: 2D and 3D

Radiusis

Forlimitingpointofthecoaxalsystemradius=0.

Therefore,thelimitingpointsarethecentresofpointspheresofthecoaxalsystem.Therefore,thelimitingpointsare(–2,1,–1)and(–1,2,1).

Example14.36

Thepoint(–1,2,1)isalimitingpointofacoaxalsystemofspheresofwhichx2

+y2+z2+3x–2y+6=0isamember.Findtheequationoftheradicalplaneofthissystemandthecoordinatesofotherlimitingpoint.

Solution

Thepointgivesbelongingtothecoaxalsystemcorrespondingtothelimitingpoint(–1,2,1)is(x+1)2+(y–2)2+(z–1)2=0.

(i.e.)x2+y2+z2+2x–4y–2z+6=0Twomembersofthesystemofthesystemarex2+y2+3x–3y+6=0andx2+y2+z2+2x–4y–2z+6=0.Theradicalplaneofthecoaxalsystemisx+y+2z=0.Anymemberofthe

systemisx2+y2+2x–4y–2z+6+λ(x+y+2z)=0.

Centreis

Page 810: Analytical Geometry: 2D and 3D

Forlimitingpointsradius=0

Whenλ=0centreis(–1,2,1)whichisthegivenlimitingpoint.Whenλ=2,thecentreis(–2,1,–1)whichisotherlimitingpoint.

Example14.37

Showthatthespheresx2+y2+z2=25andx2+y2+z2–24x–40y–18z+225=0touchexternally.Findtheirpointofcontact.

Solution

Thecentreandradiusofsphere(14.65)are

C1(0,0,0),r1=5Centreandradiusofthesphere(14.66)are

Thedistancebetweenthecentres

Hencethetwogivenspherestouchexternally.

Page 811: Analytical Geometry: 2D and 3D

Therefore,thepointofcontactdividesthelinesofcentresintheratio4:1Therefore,thecoordinatesofthepointofcontactis

Exercises1

1. Findtheequationofthespherewithi. centreat(1,–2,3)andradius5units.

ii. centreat andradius1unit.

iii. centreat(1,2,3)andradius4units.

2. Findthecoordinatesofthecentreandradiusofthefollowingspheres:

i. x2+y2+z2+2x–4y–6z+15=0

ii. 2x2+2y2+2z2–2x–4y–6z–1=0

iii. ax2+ay2+az2+2ux+2vy+2wz+d=0

3. Findtheequationofthespherewhosecentreisatthepoint(1,2,3)andwhichpassesthroughthepoint(3,1,2).

Ans.:x2+y2+z2–2x–4y–6z+8=0

Page 812: Analytical Geometry: 2D and 3D

4. Findtheequationofthespherepassingthroughpoints:i. (0,0,0),(0,1,–1),(–1,2,0)and(1,2,3)ii. (2,0,1),(1,–5,–1),(0,–2,3)and(4,–1,3)iii. (0,–1,2),(0,–2,3),(1,5,–1)and(2,0,1)iv. (–1,1,1),(1,–1,1),(1,1,–1),(0,0,0)

5. Findtheequationofthesphereonthelinejoiningthepoints(2,–3,–1)and(1,–2,–1)attheendsofadiameter.

Ans.:x2+y2+z2–3x+5y+7=0

6. Findtheradiusofthespheretouchingtheplane2x+2y–z–1=0andconcentricwiththesphere

2x2+2y2+2z2+x+2y–z=0.

Ans.: units

7. Findtheequationofthespherepassingthroughthepoints(0,2,3),(1,1,–1),(–5,4,2)andhavingitscentreontheplane3x+4y+2z–6=0.

Ans.:9(x2+y2+z2)+28x+7y–20z–96=0

8. Provethataspherecanbemadetopassthroughthemidpointsoftheedgesofatetrahedronwhose

facesarex=0,y=0,z=0and .Finditsequation.

Ans.:x2+y2+z2–ax–by–cz=0

9. Findtheconditionthattheplanelx+my+nz=pmaytouchthespherex2+y2+z2+2ux+2vy+2wz+d=0.

Ans.:(ul+vm+wn+p)2=(l2+m2+n2)(u2+v2+w2–d)

10. Provethatthespherecircumscribingthetetrahedronwhosefacesarey+z=0,z+x=0,x+y=0

andx+y+z=1isx2+y2+z2–3(x+y+z)=0.11. Apointmovessuchthat,thesumofthesquaresofitsdistancesfromthesixfacesofacubeisa

constant.Provethatitslocusisthespherex2+y2+z2=3(k2–a2).

12. Provethatthespheresx2+y2+z2=100andx2+y2+z2–12x+4y–6z+40=0touchinternallyandfindthepointofcontact.

Page 813: Analytical Geometry: 2D and 3D

Ans.:

13. Provethatthespheresx2+y2+z2=25andx2+y2+z2–24x–40y–18z+225=0touchexternally.Findthepointofcontact.

Ans.:

14. Findtheconditionthattheplanelx+my+nz=ptobeatangenttothespherex2+y2+z2=r2.

Ans.:r2(l2+m2+n2)=p2

15. Findtheequationofthespherewhichtouchesthecoordinateplanesandwhosecentreliesinthefirstoctant.

Ans.:x2+y2+z2–2vx–2vy–2vz+2v2=0

16. Findtheequationofthespherewithcentreat(1,–1,2)andtouchingtheplane2x–2y+z=3.

Ans.:x2+y2+z2–2x+2y+z+5=0

17. Findtheequationofthespherewhichhasthepoints(2,7,–4)and(4,5,–1)astheextremitiesofadiameter.

Ans.:x2+y2+z2–6x–12y+5z+47=0

18. Findtheequationofthespherewhichtouchesthethreecoordinateplanesandtheplane2x+y+2z=6andbeinginthefirstoctant.

Ans.:x2+y2+z2–6x–6y–6z+18=0

19. ApointPmovesfromtwopointsA(1,3,4)andB(1,–2,–1)suchthat3.PA=2.PB.Showthatthe

locusofPisthespherex2+y2+z2–2x–4y–16z+42=0.ShowalsothatthisspheredividesAandBinternallyandexternallyintheration2:3.

20. Aplanepassesthroughafixedpoint(a,b,c).Showthatthelocusofthefootoftheperpendicular

toitfromtheoriginisthespherex2+y2+z2–ax–by–cz=0.21. AvariablespherepassesthroughtheoriginOandmeetsthecoordinateaxesinA,BandCsothat

thevolumeofthetetrahedronOABCisaconstant.Findthelocusofthecentreofthesphere.

Ans.:xyz=k2

22. Findtheequationofthesphereonthelinejoiningthepoints:

Page 814: Analytical Geometry: 2D and 3D

i. (4,–1,2)and(2,3,6)astheextremitiesofadiameterii. (2,–3,4)and(–5,6,–7)astheextremitiesofadiameter

Ans.:x2+y2+z2–6x–2y–8z+17=0

x2+y2+z2+3x–3y+3z–56=0

23. Aplanepassesthroughafixedpoint(a,b,c)andcutstheaxesinA,BandC.Showthatthelocus

ofcentreofthesphereABCis

24. Asphereofconstantradius2kpassesthroughtheoriginandmeetstheaxesinA,BandC._Prove

thatthelocusofthecentroidofΔABCis9(x2+y2+z2)=a2.

25. Thetangentplaneatanypointofthespherex2+y2+z2=a2meetsthecoordinateaxesatA,BandC.FindthelocusofthepointofintersectionoftheplanesdrawnparalleltothecoordinateplanesthroughA,BandC.

Ans.:x−2+y−2+z–2=a−2

26. OA,OBandOCarethreemutuallyperpendicularlinesthroughtheoriginandtheirdirectioncosinesarel1,m,n;l2,m2,n2andl3,m3,n3.IfOA=a,OB=b,OC=cthenprovethatthe

equationofthesphereOABCisx2+y2+z2–x(al1+bl2+cl3)–y(am1+bm2+cm3)–z(an1+bn2+cn3)=0.

Exercises2

1. Findthecentreandradiusofasectionofthespherex2+y2+z2=1bytheplanelx+my+nz=1.

Ans.:

2. Findtheequationofthespherethroughthecirclex2+y2+z2=5,x+2y+3z=3andthepoint(1,2,3).

Ans.:5(x2+y2+z2)–4x–8y–12z–13=0.

3. Provethattheplanex+2y–z=4cutsthespherex2+y2+z2–x+z–2=0inacircleofradiusunityandfindtheequationofthespherewhichhasthiscircleforoneofitsgreatcircles.

Ans.:x2+y2+z2–2x–2y+2z–2=0

4. Findthecentreandradiusofthecircleinwhichthespherex2+y2+z2=25iscutbytheplane2x+y+2z=9.

Page 815: Analytical Geometry: 2D and 3D

Ans.:(2,1,2);4

5. Showthattheintersectionofthespherex2+y2+z2–2x–4y–6z–2=0andtheplanex–2y+

2z–20=0isacircleofradius withitscentreat(2,4,5).

6. Findthecentreandradiusofthecirclex2+y2+z2–2x–4z+1=0,x+2y+2z=11.

Ans.:

7. Provethattheradiusofthecirclex2+y2+z2+x+y+z=4,x+y+z=0is2.

8. Findthecentreandradiusofthecirclex2+y2+z2+2x–2y–4z–19=0,x+2y+2z+7=0.

Ans.:

9. Findtheradiusofthecircle3x2+3y2+3z2+x–5y–2=0,x+y=2.

10. Showthetwocircles2(x2+y2+z2)+8x+13y+17z–17=0,2x+y–3z+1=0andx2+y2+

z2+3x–4y+3z=0,x–y+2z−4=0lieonthesamesphereandfinditsequation.

Ans.:x2+y2+z2+5x–6y+7z–8=0

11. Provethatthetwocirclesx2+y2+z2–2x+3y+4z–5=0,5y+6z+1=0andx2+y2+z2–3x–4y+5z−6=0,x+2y−7=0lieonthesamesphereandfinditsequation.

Ans.:x2+y2+z2–2x–2y–2z–6=0

12. Findtheareaofthesectionofthespherex2+y2+z2+12x–2y–6z+30=0bytheplanex–y+2z+5=0.

Ans.:

13. Findtheequationofthespherewhichhasitscentreontheplane5x+y–4z+3=0andpassing

throughthecirclex2+y2+z2–3x+4y–2z+8=0,4x–5y+3z–3=0.

Ans.:x2+y2+z2+9x–11y+7z–1=0

14. Findtheequationofthespherehavingthecirclex2+y2+z2+10x–4z–8=0,x+y+z–3=0asagreatcircle.

Page 816: Analytical Geometry: 2D and 3D

Ans.:x2+y2+z2+6x–4y–3z+4=0

15. Avariableplaneisparalleltoagivenplane andmeetstheaxesatA,BandC.Prove

thatthecircleABCliesonthesurface

16. Findtheequationofthesphereswhichpassthroughthecirclex2+y2+z2–4x–y+6z+12=0,2x+3y–7z=10andtouchtheplanex–2y–2z=1.

Ans.:x2+y2+z2–2x+2y–4z+2=0

x2+y2+z2–6x–4y+10z+22=0

17. Findtheequationofthespherewhichpassthroughthecirclex2+y2+z2=5,x+2y+3z=5andtouchtheplanez=0.

Ans.:x2+y2+z2–2x+y+5z+5=0

5(x2+y2+z2)–(2x–4y+5z+1=0)

18. Findthecentreandradiusofthecirclex2+y2+z2–2x+4y+2z–6=0,x+2y+2z–4=0.

Ans.:(2,0,1),

19. Findtheequationofthespherewhichpassesthroughthepoint(3,1,2)andmeetsXOYplaneinacircleofradius3unitswiththecentreatthepoint(1,–2,0).

Ans.:x2+y2+z2−2x+4y–4z–4=0

20. Findthecentreandradiusofthecirclex2+y2+z2+12x–12y–16z+111=0,2x+2y+z=17.Ans.:(–4,8,9),r=4

21. Findthecentreandradiusofthecirclex2+y2+z2+2x+2y–4z–19=0,x+2y+2z+7=0.

Ans.:

22. Findthecentreandradiusofthecirclex2+y2+z2=9,x+y+z=1.

Page 817: Analytical Geometry: 2D and 3D

23. Findtheequationofthespherethroughthecirclex2+y2+z2=9,2x+3y+4z=5andthepoint(1,2,1).

Ans.:3(x2+y2+z2)–2x–2y–4z–22=0

24. Findtheequationofthespherecontainingthecirclex2+y2+z2–2x=9,z=0andthepoint(4,5,6).

Ans.:x2+y2+z2–2x–10z–9=0

25. Findtheequationofthespherepassingthroughthecirclex2+y2=a2,z=0andthepoint(α,β,λ).

Ans.:r(x2+y2+z2–a2)–z(α2+β2+γ2–a2)=0

26. Findtheequationofthespherethroughthecirclex2+y2+z2+2x+3y+6=0,x–2y+4z–9=0andthecentreofthesphere.

Ans.:x2+y2+z2–2x+4y–6z+5=0

27. Findtheequationsofthespherethroughthecirclex2+y2+z2=1,2x+4y+5z=6andtouchingtheplanez=0.

Ans.:x2+y2+z2–2x–4y–5z+5=0

5(x2+y2+z2)–2x–4y–5z+1=0

28. Findtheequationofthespherehavingthecirclex2+y2+z2+10y–4z–8=0,x+y+23=0asagreatcircle.

Ans.:x2+y2+z2–4x+6y–8z+4=0

29. Showthatthetwocirclesx2+y2+z2–y+2z=0,x–y+z–2=0andx2+y2+z2+x–3y+z–5=0,2x−y+4z−1=0lieonthesamesphereandfinditsequation.

Ans.:x2+y2+z2+3x–4y+5z–6=0

30. Provethatthecirclesx2+y2+z2–2x+3y+4z–5=0,5y+6z+1=0andx2+y2+z2–3x+4y+5z–6=0,x+2y–7z=0lieonthesamesphere.Finditsequation.

Ans.:x2+y2+z2–2x–2y–2z–6=0

Page 818: Analytical Geometry: 2D and 3D

31. Findtheconditionsthatthecirclesx2+y2+z2+2ux+2vy+2wz+d=0,lx+my+nz=pand

(x2+y2+z2)2u′x+2v′y+2w′z+d′=0,l′x+m′y+n′z=p′tolieonthesamecircle.

32. Findthecentreandradiusofthecircleformedbytheintersectionofthespherex2+y2+z2=2225andtheplane2x–2y+z=27.

Ans.:(6,–6,3),12

33. Findthecentreandradiusofthecirclex2+y2+z2=25,x+2y+2z=9.Ans.:(1,2,2),4

34. Findtheequationofthecirclewhichliesonthespherex2+y2+z2=25andhasthecentreat(1,2,3).

Ans.:x2+y2+z2=25,x+2y+3z=14

35. Aplanepassesthroughapoint(α,β,γ)andintersectsthespherex2+y2+z2=a2.Showthatthelocusofthecentreofthecircleofintersectionisthespherex(x–α)+y(y–β)+z(z–γ)=0.

36. Findtheequationofthespherethroughthecirclex2+y2+z2–4=0andthepoint(2,1,1).

Ans.:x2+y2+z2–2x+y–2z–1=0

37. Findtheequationofthespherethroughthecirclex2+y2+z2=9,2x+3y+4z=5andthroughtheorigin.

Ans.:5(x2+y2+z2)–18x–27y–36z=0

38. Showthatthetwocircles2(x2+y2+z2)+8x–13y+17z–17=0,2x+y–3z+1=0andx2+

y2+z2+3x–4y+3z=0,x–y+2z–4=0lieonthesamesphereandfinditsequation.

Ans.:x2+y2+z2+5x–6y–7z–8=0

39. Findtheequationofthespherewhichhasitscentreontheplane5x+y–4z+3=0andpassing

throughthecirclex2+y2+z2–3x+4y–2z+8=0,4x–5y+3z–3=0.

Ans.:x2+y2+z2+9x–11y+7z–1=0

40. FindtheequationofthespherewhichhasthecircleS=x2+y2+z2+2x+4y+6z–11=0,2x+

Page 819: Analytical Geometry: 2D and 3D

y+2z+1=0asgreatcircle.

Ans.:x2+y2+z2–2x+2y+2z–13=0.

41. Findtheequationofthespherewhoseradiusis1andwhichpassesthroughthecircleof

intersectionofthespheresx2+y2+z2+2x+2y+2z–6=0andx2+y2+z2+3x+3y–z–1=0.

Ans.:3x2+3y2+3z2+16x+16y+4z+32=0

42. Ifristheradiusofthecirclex2+y2+z2+2ux+2vy+2wz+d=0,lx+my+nz=0thenprove

that(r2+d2)(l2+m2+n2)=(mw–nv)2+(nv–lw)2+(lv–mu)2.

43. Findtheequationofthespherethroughthecirclex2+y2=4,z=0meetingtheplanex+2y+2z=0inacircleofradius3.

Ans.:x2+y2+z2–6z–4=0

44. Findtheequationofthespherethroughthecirclex2+y2+z2=1,2x+3y+4z=5andwhich

intersectthespherex2+y2+z2+3(x–y+z)–56=0orthogonally,x2+y2+z2–12x–18y–24z+29=0.

45. TheplaneABCwhoseequationis meetstheaxesinA,BandC.Findtheequationto

determinethecircumcircleofthetriangleABCandobtainthecoordinatesofitscentre.

46. Findtheequationofthecirclecircumscribingthetriangleformedbythethreepoints(a,0,0),(0,b,0),(0,0,c).Obtainthecoordinatesofthecentreofthecircle.

Ans.:x2+y2+z2–x–2y–3z=0,6x–3y–2z–6=0

Centre=

47. Findtheequationofthespherethroughthecirclex2+y2+z2+2x+3y+6=0,x–2y+4z–9=

0andthecentreofthespherex2+y2+z2–2x+4y–6z+5=0.

Ans.:x2+y2+z2+7y–8z+24=0

Page 820: Analytical Geometry: 2D and 3D

48. Findtheequationofthespherehavingitscentreontheplane4x–5y–z–3=0andpassing

throughthecirclex2+y2+z2–2x–3y+4z+8=0,x2+y2+z2+4x+5y–6z+2=0.

Ans.:x2+y2+z2+7x+9y–11z–1=0

49. Acirclewithcentre(2,3,0)andradiusunityisdrawnontheplanez=0.Findtheequationofthespherewhichpassesthroughthecircleandthepoint(1,1,1).

Ans.:x2+y2+z2–4x–6y–6z+12=0

50. Findtheequationofthespherewhichpassesthroughthecirclex2+y2=4,z=0andiscutbytheplanex+2y+2z=0inacircleofradius3.

Ans.:x2+y2+z2+6z–4=0,

x2+y2+z2–6z–4=0

51. Provethattheplanex+2y–z–4=0cutsthespherex2+y2+z2–x+z–2=0inacircleofradiusunityandalsofindtheequationofthespherewhichhasthiscircleasgreatcircle.

Ans.:x2+y2+z2–2x–2y+2z+2=0

52. Findtheequationofthespherehavingthecirclex2+y2+z2+10y–4z–3=0,x+y+z–3=0asagreatcircle.

Ans.:x2+y2+z2–4x+6y–8z+4=0

53. PisavariablepointonagivenlineandA,BandCareprojectionsontheaxes.ShowthatthesphereOABCpassesthroughafixedcircle.

Exercises3

1. Findtheequationsofthesphereswhichpassthroughthecirclex2+y2+z2=5,x+2y+3z=5andtouchtheplanez=0.

Ans.:x2+y2+z2–2x+y+5z+5=0

5(x2+y2+z2)–2x–4y+5z+1=0

2. Findtheequationsofthesphereswhichpassthroughthecirclex2+y2+z2–4x–y+3z+12=0,2x+3y–8z=10andtouchtheplanex–2y–2z=1.

Ans.:x2+y2+z2–2x+2y–4z+2=0

x2+y2+z2–6x–4y+10z+22=0

Page 821: Analytical Geometry: 2D and 3D

3. Showthatthetangentplaneat(1,2,3)tothespherex2+y2+z2+x+y+z–20=0is3x+5y+7z–34=0.

4. Findtheequationofthespherewhichtouchesthespherex2+y2+z2–x+3y+2z–3=0at(1,1,−1)andpassesthroughtheorigin.

Ans.:2x2+2y2+2z2–3x+y+4z=0

5. Findtheequationofthespherewhichtouchesthespherex2+y2+z2+2x–6y+1=0at(1,2,–2)andpassesthroughtheorigin.

Ans.:4(x2+y2+z2)+10x–28y–2z=0

6. Showthattheplane2x–2y+z+16=0touchesthespherex2+y2+z2+2x+4y+2z–3=0andfindthepointofcontact.

Ans.:(–3,4,–2)

7. Findtheequationofthetangentplaneattheorigintothespherex2+y2+z2–8x–6y+4z=0.Ans.:4x–3y+2z=0

8. Findtheequationofthetangentplanestothespherex2+y2+z2+2x–4y+6z–7=0whichpassesthroughtheline6x–3y–23=0,3z+2=0.

Ans.:8x−4y+z–34=0,4x–2y–z–16=0

9. Showthattheplane2x–2y+z–12=0touchesthespherex2+y2+z2–2x–4y+2z–3=0.

10. ShowthatthepointP(1,–3,1)liesonthespherex2+y2+z2+2x+2y–7=0andobtaintheequationofthetangentplaneatP.

Ans.:2x–2y+z=9

11. Ifthepoint(5,1,4)isoneextremitiesofadiameterofthespherex2+y2+z2–2x–2y–2z–22=0andfindthecoordinatesoftheotherextremity.Findtheequationtothetangentplanesatthetwoextremitiesandshowthattheyareparallel.

Ans.:(–3,1,–2);4x+3y–22=0,4x+3y+8=0

12. Findthevalueofkforwhichtheplanex+y+z=ktouchesthespherex2+y2+z2–2x–4y–6z+11=0.Findthepointofcontactineachcase.

Ans.:k=3or9;(0,1,2),(2,3,4)

13. Findtheequationtothetangentplanestothespherex2+y2+z2–2x–4y–6z–2=0whichareparalleltotheplanex+2y+2z–20=0.

Page 822: Analytical Geometry: 2D and 3D

Ans.:x+2y+2z–23=0x+2y+2z–1=0

14. Aspheretouchestheplanex–2y–2z–7=0atthepoint(3,–1,–1)andpassesthroughthepoint(1,1,–3).Findtheequation.

Ans.:x2+y2+z2–10y–10z–31=0

15. Showthattheline touchesthespherex2+y2+z2–6x+2y–4z+5=0.Find

thepointofcontact.Ans.:(5,–3,3)

16. Tangentplanesatanypointofthespherex2+y2+z2=r2meetsthecoordinateaxesatA,BandC.Showthatthelocusofthepointofintersectionoftheplanesdrawnparalleltothecoordinate

planesthroughthepointsA,BandCisthesurfacex–2+y–2+z–2=r–2.

17. Findtheconditionthattheline wherel,mandnarethedirectioncosinesofa

line,shouldtouchthespherex2+y2+z2+2ux+2vy+2wz+d=0.Showthattherearetwospheresthroughthepoints(0,0,0),(2a,0,0),(0,2b,0)and(0,0,2c)whichtouchtheaboveline

andthatthedistancebetweentheircentresis

18. Findtheequationofthespherewhichtouchesthespherex2+y2+z2+3y–x+2z–3=0at(1,1,–1)andpassesthroughtheorigin.

Ans.:2x2+2y2+2z2–3x+y+4z=0

19. Findtheequationofthetangentlineinsymmetricalformtothecirclex2+y2+z2+5x–7y+2z–8=0,3x–2y+4z+3=0.

20. Showthattheplane2x–2y–z+12=0touchesthespherex2+y2+z2–2x–4y+2z–3=0andfindthepointofcontact.

Ans.:(–1,4,–2)

21. Findtheequationofthespherewhichtouchesthespherex2+y2+z2+2x–6y+1=0atthepoint(1,2,–2)andpassesthroughtheorigin.

Page 823: Analytical Geometry: 2D and 3D

Ans.:4(x2+y2+z2)+10x–25y–22=0

22. Findtheequationsofthesphereswhichpassthroughthecirclex2+y2+z2=1,2x+4y+5z–6=0andtouchtheplanez=0.

Ans.:5(x2+y2+z2)–2x–4y–5z+6=0

5(x2+y2+z2)–2x–4y–5z+1=0

23. Findtheequationsofthespherepassingthroughthecirclex2+y2+z2–5=0,2x+3y+z–3=0andtouchingtheplane3x+4z−15=0.

Ans.:x2+y2+z2+4x+6y–2z–11=0

5(x2+y2+z2)–8x–12y–4z–37=0

24. Findthepointofintersectionofthelineandthespherex2+y2+z2–4x+6y–2z+5=0.Ans.:(4,–1,2),(0,–2,3)

25. Provethatthesumofthesquaresoftheinterceptsmadebyagivenlineonanythreemutuallyperpendicularlinesthroughafixedpointisconstant.

Exercises4

1. Provethatthespheresx2+y2+z2+6y+2z+8=0andx2+y2+z2+6x+8y+4z+2=0intersectorthogonally.

2. Findtheequationofthespherewhichpassesthroughthecirclex2+y2+z2–2x+3y–4z+6=0,

3x–4y+5z–15=0andwhichcutsorthogonallythespherex2+y2+z2+2x+4y–6z+11=0.

Ans.:5(x2+y2+z2)–13x+19y–25z+45=0

3. Findtheequationofthespherethatpassesthroughthecirclex2+y2+z2–2x+3y–4z+6=0,

3x–4y+5z–15=0andwhichcutsthespherex2+y2+z2+2x+4y+6z+11=0orthogonally.

Ans.:x2+y2+z2+x–y+z–9=0

4. Provethateveryspherethroughthecirclex2+y2–2ax+r2=0,z=0cutsorthogonallyevery

spherethroughthecirclex2+z2=r2,y=0.5. Findtheequationofthespherewhichtouchestheplane3x+2y–z+7=0atthepoint(1,−2,1)

andcutsthespherex2+y2+z2–4x+6y+4=0orthogonally.

Ans.:3(x2+y2+z2)+6x+20y–10z+36=0

Page 824: Analytical Geometry: 2D and 3D

6. Findtheequationofthespherethatpassesthroughthepoints(a,b,c)and(–2,1,–4)andcuts

orthogonallythetwospheresx2+y2+z2+x–3y+2=0and(x2+y2+z2)+x+3y+4=0.

Ans.:x2+y2+z2+2x–2y+4z–3=0

7. Findtheequationofthespherewhichtouchestheplane3x+2y–z+2=0atthepointP(1,–2,1)andalsocutsorthogonally.

Ans.:x2+y2+z2+7x+10y–5z+12=0

8. Ifdisthedistancebetweenthecentresofthetwospheresofradiir1andr2thenprovethatthe

anglebetweenthemis

9. Findtheconditionthatthespherea(x2+y2+z2)+2lx+z–y+2nz+p=0andb(x2+y2+z2)k2

maycutorthogonally.

Ans.:ak2=bp2

10. Findtheequationoftheradicalplanesofthespheresx2+y2+z2+2x+2y+2z–2=0,x2+y2+

z2+4y=0,x2+y2+z2+3x–2y+8z–6=0.Ans.:x–y+z–1=0,3x–6y+8z–6=0

x–4y+6z+4=0

11. Findtheequationoftheradicallineofthespheres(x–2)2+y2+z2=1,x2+(y–3)2+z2=6

and(x+2)2+(y+1)2+(z–2)2=6.

12. Findtheequationoftheradicallineofthespheresx2+y2+z2+2x+2y+2z+2=0,x2+y2+

z2+4y=0,x2+y2+z2+3x–2y+8z+6=0.Ans.:x–y+z+1=0,3x–6y+8z+6=0

13. Findtheradicalplaneofthespheresx2+y2+z2–8x+4y+4z+12=0,x2+y2+z2–6x+3y+3z+9=0.

Ans.:2x–y–z–3=0

14. Findthespherescoaxalwiththespheresx2+y2+z2+2x+y+3z–8=0andx2+y2+z2–5=0andtouchingtheplane3x+4y=15.

Ans.:5(x2+y2+z2)–8x–4y–12z–13=0

Page 825: Analytical Geometry: 2D and 3D

15. Findthelimitingpointsofthecoaxalsystemdefinedbythespheresx2+y2+z2+3x–3y+6=0,

x2+y2+z2–6y–6z+6=0.Ans.:(–1,2,1),(–2,1,–1)

16. Findthelimitingpointsofthecoaxalsystemdeterminedbythetwosphereswhoseequationsare

x2+y2+z2–8x+2y–2z+32=0,x2+y2+z2–7x+z+23=0.Ans.:(3,1,–2),(5,–3,4)

17. Findtheequationsofthesphereswhoselimitingpointsare(–1,2,1)and(–2,1,–1)andwhichtouchestheplane2x+3y+6z+7=0.

18. Findtheequationofthespherewhichtouchestheplane3x+2y–z+2=0atthepoint(1,–2,1)

andalsocutorthogonallythespherex2+y2+z2–4x+6y+4=0.

Ans.:x2+y2+z2+7x+10y–5z+12=0

19. Findthelimitingpointsofthecoaxalsystemtwoofwhosemembersarex2+y2+z2–3x–3y+6

=0,x2+y2+z2–4y–6z+6=0.Ans.:(2,–3,4)and(–2,3,–4)

20. Thepoint(–1,2,1)isalimitingpointofacoaxalsystemofspheresofwhichthespherex2+y2+

z2+3x–2y+6=0isamember.Findthecoordinatesoftheotherlimitingpoint.Ans.:(–2,1,–1)

Page 826: Analytical Geometry: 2D and 3D

Chapter15

Cone

15.1DEFINITIONOFCONE

Aconeisasurfacegeneratedbyastraightlinewhichpassesthroughafixedpointandintersectsafixedcurveortouchesagivencurve.Thefixedpointiscalledthevertexoftheconeandthefixedcurveiscalleda

guidingcurveofthecone.Thestraightlineiscalledagenerator.

15.2EQUATIONOFACONEWITHAGIVENVERTEXANDAGIVENGUIDINGCURVE

Let(α,β,γ)bethegivenvertexandax2+2hxy+by2+2gx+2fy+c=0,z=0betheguidingcurve.

Theequationsofanylinepassingthroughthepoint(α,β,γ)are

Whenthislinemeetstheplaneatz=0weget,

Thispointliesonthegivencurveax2+2hxy+by2+2gx+2fy+c=0,z=0.

Page 827: Analytical Geometry: 2D and 3D

Eliminatingl,m,nfrom(15.1)and(15.2)wegettheequationofthecone.

From(15.1)

Multiplyingthroughoutby(z−γ)2,weget

a(αz−γx)2+2h(αz−γx)(βz−γy)+b(βz−γy)2+2g(αz−γx)(z−γ)+zf(βz−γy)(z−γ)+c(z−γ)2=0.

Thisistherequiredequationofthecone.

Example15.2.1

Findtheequationoftheconewithitsvertexat(1,1,1)andwhichpassesthroughthecurvex2+y2=4,z=2.

Solution

LetVbethevertexoftheconeandPbeanypointonthesurfaceofthecone.LettheequationsofthegeneratorVPbe

Thislineintersectstheplanez=2.

Thispointliesonthecurvex2+y2=4.

Page 828: Analytical Geometry: 2D and 3D

Eliminatingl,m,nfrom(15.3)and(15.4)weget

or

Thisisrequiredequationofthecone.

Example15.2.2

Findtheequationoftheconewhosevertexis(a,b,c)andwhosebaseisthecurveαx2+βy2=1,z=0.

Solution

ThevertexoftheconeisV(a,b,c).

Theguidingcurveis

Letl,m,nbethedirectioncosinesofthegeneratorVP.

ThentheequationsofVPare

Whenthislinemeetsz=0wehave

Page 829: Analytical Geometry: 2D and 3D

Thepointliesonthecurveαx2+βy2=1.

Wehavetoeliminatel,m,nfrom(15.6)and(15.7)

Thisistheequationoftherequiredcone.

15.3EQUATIONOFACONEWITHITSVERTEXATTHEORIGIN

Toshowthattheequationofaconewithitsvertexattheoriginishomogeneous,let

betheequationofaconewithitsvertexattheorigin.LetP(α,β,γ)beanypointonthesurface.Then,OPisageneratorofthecone.

Since(α,β,γ)liesonthecone

TheequationsofOPare

Anypointonthislineis(tα,tβ,tγ).Thepointliesontheconef(x,y,z)=0.

Page 830: Analytical Geometry: 2D and 3D

Fromequations(15.8)and(15.11),weobservethattheequationf(x,y,z)=0ishomogeneous.

Conversely,everyhomogeneousequationin(x,y,z)representsaconewithitsvertexattheorigin.

Letf(x,y,z)=0beahomogeneousequationinx,y,z.Sincef(x,y,z)=0isahomogeneousequation,f(x,y,z)=0foranyreal

number.Inparticularf(0,0,0)=0.

Therefore,theoriginliesonthelocusoftheequation(15.8).Asf(tx,ty,tz)=0,anypointonthelinethroughtheoriginliesontheequation(15.8).Inotherwords,thelocusof(15.8)isasurfacegeneratedbythelinethroughtheorigin.Henceequationrepresentsaconewithitsvertexattheorigin.

Note15.3.1:Iff(x,y,z)canbeexpressedastheproductofnlinearfactorsthenf(x,y,z)=0representsnplanesthroughtheorigin.

Note15.3.2:Iff(x,y,z)=0isahomogeneousequationofseconddegreeinx,yandzthenf(x,y,z)=0isaquadriccone.Ifitcanbefactoredintotwolinearfactorsthenitrepresentsapairofplanesthroughtheorigin;thenweregardequationf(x,y,z)=0asdegeneratecone,thevertexbeinganypointonthelineofintersectionofthetwoplanes.

Generators:Theline isageneratoroftheconef(x,y,z)=0withits

vertexattheoriginifandonlyiff(l,m,n)=0.

Let beageneratoroftheconef(x,y,z)=0thenthepoint(lr,

mr,nr)liesonthecone.Takingr=1,thepoint(l,m,n)liesontheconef(x,y,z)=0.

Page 831: Analytical Geometry: 2D and 3D

∴f(l,m,n)=0

Converse:Letf(x,y,z)=0betheequationoftheconewithitsvertexatthe

originand bealinethroughtheoriginsuchthatf(l,m,n)=0.

Sincethevertexisattheorigin,f(x,y,z)=0isahomogeneousequationinx,yandz.

Nowwewillprovethat isageneratorofthecone.

Anypointonthegeneratoris(lr,mr,nr).Sincef(x,y,z)=0andf(l,m,n)=0,itfollowsthatf(lr,mr,nr)=0.

∴ isageneratoroftheconef(x,y,z)=0.

Example15.3.1

Findtheequationoftheconewithitsvertexattheoriginandwhichpassesthroughthecurveax2+by2+cz2−1=0=αx2+βy2−2z.

Solution

Lettheequationofthegeneratorbe

Anypointonthislineis(lr,mr,nr).Thispointliesonthecurve

Page 832: Analytical Geometry: 2D and 3D

From(15.14),

Substitutingthisin(15.13)weget

Asl,m,nareproportionaltox,y,ztheequationoftheconeis4z2(ax2+by2+cz2)=(αx2+βy2)2.

Example15.3.2

Findtheequationoftheconewhosevertexisattheoriginandtheguidingcurve

is

Solution

Sincethevertexoftheconeistheoriginitsequationmustbeahomogeneousequationofseconddegree.Theequationsoftheguidingcurveare

Page 833: Analytical Geometry: 2D and 3D

Homogenizingtheequation(15.15)withthehelpof(15.16)wegettheequation

oftherequiredcone.Hencetheequationoftheconeis

(i.e.)27x2+32y2+7z2(xy+yz+zx)=0

Example15.3.3

Theplane meetsthecoordinateaxesatA,BandC.Provethatthe

equationoftheconegeneratedbylinesdrawnfromOtomeetthecircleABCis

Solution

ThepointsA,B,Care(a,0,0),(0,b,0)and(0,0,c),respectively.TheequationofthesphereOABCisx2+y2+z2−ax−by−cz=0.TheequationsofthecircleABCare

Homogenizingequation(15.17)withthehelpof(15.18)wegettheequationoftherequiredcone.

15.4CONDITIONFORTHEGENERALEQUATIONOFTHESECONDDEGREETOREPRESENTACONE

Page 834: Analytical Geometry: 2D and 3D

Letthegeneralequationoftheseconddegreebe

Let(x1,y1,z1)bethevertexofthecone.Shifttheorigintothepoint(x1,y1,z1).Then

Thentheequation(15.19)becomes

SincethisequationhastobeahomogeneousequationinX,YandZ.CoefficientofX=0CoefficientofY=0CoefficientofZ=0andconstantterm=0.

Eliminatingx,y,zfrom(15.21),(15.22),(15.23)and(15.24),weget,

Page 835: Analytical Geometry: 2D and 3D

Thisistherequiredcondition.

Note15.4.1:Ifthegivenequationoftheseconddegreeisf(x,y,z)=0thenmakeithomogeneousbyintroducingthevariabletwheret=1.Then

Solvinganythreeofthesefourequations,wegetthevertexofthecone.Testwhetherthesevaluesofx,y,zsatisfythefourthequation.

Example15.4.1

Findtheequationoftheconeoftheseconddegreewhichpassesthroughtheaxes.

Solution

Theconepassesthroughtheaxes.Therefore,thevertexoftheconeistheorigin.Theequationsoftheconeisahomogeneousequationofseconddegreeinx,y

andz.

Giventhatx-axisisagenerator.Theny=0,z=0mustsatisfytheequation(15.25)

∴a=0Sincey-axisisageneratorb=0.Sincez-axisisageneratorc=0.

Page 836: Analytical Geometry: 2D and 3D

Hencetheequationoftheconeisfyz+gzx+hxy=0.

Example15.4.2

Showthatthelinesthroughthepoint(α,β,γ)whosedirectioncosinessatisfytherelational2+bm2+cn2=0,generatestheconea(x−α)2+b(y−β)2+c(z−γ)2

=0.

Solution

Theequationsofanylinethrough(α,β,γ)are

where

Eliminatingl,m,nfrom(15.26)and(15.27)

weget,

a(x−α)2+b(y−β)2+c(z−γ)2=0Example15.4.3

Findtheequationtothequadricconewhichpassesthroughthethreecoordinate

axesandthethreemutuallyperpendicularlines ,

Solution

Wehaveseenthattheequationoftheconepassingthroughtheaxesis

Page 837: Analytical Geometry: 2D and 3D

Thisconepassesthroughline

or

Sincetheconealsopassesthroughtheline wehave

From(15.29)and(15.30)weget

From(15.28)and(15.31)weget5yz+8zx−3xy=0.

Sincetheconepassesthroughtheline

weget4f+5g+20h=0and4(5)+5(8)+20(−3)=0isalsotrue.Therefore,theequationoftherequiredconeis5yz+8zx−3xy=0.

Example15.4.4

Provethattheequation2x2+2y2+7z2−10yz−10zx+2x+2y+26z−17=0representsaconewhosevertexis(2,2,1).

Solution

LetF(x,y,z,t)=2x2+2y2+7z2−10yz−10zx−2xt+2yt+26zt−17t2=0

Page 838: Analytical Geometry: 2D and 3D

givetheequations

Solvingthefirstthreeequationswegetx=2,y=2,z=1.Thesevaluesalsosatisfythefourthequation.Therefore,thegivenequationrepresentsaconewithitsvertexatthepoint(2,2,1).

Exercises1

1. Findtheequationoftheconewhosevertexisattheoriginandwhichpassesthroughthecurveof

intersectionoftheplanelx+my+nz=pandthesurface,ax2+by2+cz2=1.

Ans.:p2(ax2+by2+cz2)=(lx+my+nz)2

2. Findtheequationoftheconewhosevertexis(α,β,γ)andwhoseguidingcurveistheparabolay2

=4ax,z=0.

Ans.:(ry−βz)2=4a(z−γ)(αz−rx)

3. Provethattheline where2l2+3m2−5n2=0isageneratorofthecone2x2+3y2−5z2

=0.

Page 839: Analytical Geometry: 2D and 3D

4. Findtheequationoftheconewhosevertexisatthepoint(1,1,0)andwhoseguidingcurveisx2+

z2=4,y=0.

Ans.:x2−3y2+z2−2xy+8y−4=0

5. Findtheequationoftheconewhosevertexisthepoint(0,0,1)andwhoseguidingcurveisthe

ellipse ,z=3.Alsoobtainsectionoftheconebytheplaney=0andidentifyitstype.

Ans.:36x2+100y2−225z2+450z−225=0

pairofstraightlines

6. Findtheequationsoftheconeswithvertexattheoriginandpassingthroughthecurvesof

intersectiongivenbytheequations:

i.

ii.

iii.

iv.

v.

7. Theplanex+y+z=1meetsthecoordinateaxesinA,BandC.Provethattheequationtothe

Page 840: Analytical Geometry: 2D and 3D

conegeneratedbythelinesthroughO,tomeetthecircleABCisyz+zx+xy=0.

8. Avariableplaneisparalleltotheplane andmeetstheaxesinA,BandC.Provethat,

thecircleABCliesonthecone

9.i. Findtheequationofthequadricconewhichpassesthroughthethreecoordinateaxesand

threemutuallyperpendicularlines

Ans.:16yz−33zx−25xy=0

ii. Provethattheequationoftheconewhosevertexis(0,0,0)andthebasecurvez=k,f(x,

y)=0is wheref(x,y)=ax2+2hxy+by2+2gx+2fy+c=0.

10. Findtheequationtotheconewhosevertexistheoriginandthebasecirclex=a,y2+z2=b2andshowthatthesectionoftheconebyaplaneparalleltothexy-planeishyperbola.

Ans.:a2(y2+z2)=b2x2

11. PlanesthroughOXandOYincludeanangleα.Showthatthelineofintersectionliesonthecone

z2(x2+y2+z2)=x2y2tan2α.12. Provethataconeofseconddegreecanbefoundtopassthroughtwosetsofrectangularaxes

throughthesameorigin.

13. Provethattheequationx2−2y2+3z2+5yz−6zx−4xy+8x−19y−2z−20=0representsaconewithitsvertexat(1,−2,3).

14. Provethattheequation2y2−8yz−4zx−8xy+6x−4y−2z+5=0representsaconewhose

vertexis .

15. Provethattheequationax2+by2+cz2+2ux+2vy+2wz+d=0representsaconeif

15.5RIGHTCIRCULARCONE

Arightcircularconeisasurfacegeneratedbyastraightlinewhichpassesthroughafixedpoint,andmakesaconstantanglewithafixedstraightline

Page 841: Analytical Geometry: 2D and 3D

throughthefixedpoint.Thefixedpointiscalledthevertexoftheconeandtheconstantangleiscalledthesemiverticalangleandfixedstraightlineiscalledtheaxisofthecone.Thesectionofrightcircularconebyanyplaneperpendiculartoitsaxisisa

circle.

15.5.1EquationofaRightCircularConewithVertexV(α,β,γ),AxisVLwithDirectionRatiosl,m,nandSemiverticalAngleθ

LetP(x,y,z)beanypointonthesurfaceofthecone.ThendirectionratiosofVParex−α,y−β,z−γ.

ThedirectionratiosoftheperpendicularVLarel,m,n.

Thisistherequiredequationofthecone.

Note15.5.1.1:

i. Ifthevertexisattheoriginthentheequationoftheconebecomes(lx+my+nz)2=[(x2+y2+

z2)(l2+m2+n2)]cos2θ.ii. Ifl,m,narethedirectioncosinesofthelinethen

iii. Ifaxisofconeisthez-axisthentheequation(15.33)becomes

Page 842: Analytical Geometry: 2D and 3D

or

15.5.2EnvelopingCone

Ithasbeenseeninthetwo-dimensionalanalyticalgeometrythattwotangentscanbedrawnfromagivenpointtoaconic.Inanalogywiththataninfinitenumberoftangentlinescanbedrawnfromagivenpointtoaconicoid,inparticulartoasphere.Allsuchtangentlinesgenerateaconewiththegivenpointasvertex.Suchaconeiscalledanenvelopingcone.

Definition15.5.2.1:Thelocusoftangentlinesdrawnfromagivenpointtoagivensurfaceiscalledanenvelopingconeofthesurface.Thegivenpointiscalledthevertexofthecone.

Equationofenvelopingcone:Letusfindtheequationoftheenvelopingconeofthespherex2+y2+z2=a2withthevertexat(x,y,z).

LetP(x,y,z)beanypointonthetangentdrawnfromV(x1,y1,z1)tothegivensphere.LetQbethepointthatdividesPQintheratio1:λ.Thenthecoordinates

ofQare

Ifthispointliesonthespherethen,

Page 843: Analytical Geometry: 2D and 3D

Thisisaquadraticequationinλ.TherearetwovaluesofλindicatingthattherearetwopointsonVPwhichdividesPQintheratio1:λandlieonthesphere.IfPQisatangenttothespherethenthesetwopointscoincideandthepointisthepointofcontact.Therefore,thetwovaluesofλofequation(15.34)mustbeequalandhencethe

discriminantmustbezero.

Thisistheequationofthe

envelopingcone.

Note15.5.2.2:Theequationoftheenvelopingconecanbeexpressedintheform

Example15.5.1

Findtheequationoftherightcircularconewhosevertexisattheorigin,whose

axisistheline andwhichhasaverticalangleof60°.

Solution

Theaxisoftheconeis .

Page 844: Analytical Geometry: 2D and 3D

Therefore,thedirectionratiosoftheaxisoftheconeare1,2,3.

Thedirectioncosinesare .

LetP(x,y,z)beanypointonthesurfaceofthecone.LetPLbeperpendiculartoOA.

Example15.5.2

Findtheequationoftherightcircularconewithitsvertexattheorigin,axisalongthez-axisandsemiverticalangleα.

Page 845: Analytical Geometry: 2D and 3D

Solution

Thedirectioncosinesoftheaxisoftheconeare0,0,1.

LetP(x,y,z)beanypointonthecone.

Then,

Thisistherequiredequationofthecone.

Example15.5.3

Findthesemiverticalangleandtheequationoftherightcircularconehavingitsvertexatoriginandpassingthroughthecircley2+z2=b2,x=a.

Solution

Theguidingcircleoftherightcircularconeisy2+z2=b2,x=a.Therefore,theaxisoftheconeisalongx-axis.

Ifθisthesemiverticalangle,then .

LetP(x,y,z)beanypointonthesurfaceofthecone.ThedirectionratiosofOParex,y,z.

Page 846: Analytical Geometry: 2D and 3D

Thedirectioncosinesofthex-axisare1,0,0.

whichistherequiredequationofthecone.

Example15.5.4

Arightcircularconehasitsvertexat(2,−3,5).ItsaxispassesthroughA(3,−2,6)anditssemiverticalangleis30°.Finditsequation.

Solution

Theaxisisthelinejoiningthepoints(2,−3,5)and(3,−2,6).

Therefore,itsequationsare .

Thedirectionratiosoftheaxesare1,1,1.

Page 847: Analytical Geometry: 2D and 3D

Thedirectionratiosoftheaxesare1,1,1.

Thedirectioncosinesare

LetP(x,y,z)beanypointonthecone.

Squaring,crossmultiplyingandsimplifyingweget,5x2+5y2+5z2−8xy−8yz−8zx−4x+86y−58z+278=0.

Example15.5.5

Arightcircularconehasthreemutuallyperpendiculargenerators.Provethatthe

semiverticalangleoftheconeis

Solution

Page 848: Analytical Geometry: 2D and 3D

Theequationoftherightcircularconewithvertexattheorigin,semiverticalangleαandaxisalongz-axisisgivenbyx2+y2=z2tan2α.Thisconewillhavethreemutuallyperpendiculargeneratorsifcoefficientof

x2+coefficientofy2+coefficientofz2=0.

Example15.5.6

TheaxisofarightconevertexO,makesequalangleswiththecoordinateaxesandtheconepassesthroughthelinedrawnfromOwithdirectioncosinesproportionalto(1,−2,2).Findtheequationtothecone.

Solution

Lettheaxisoftheconemakeanangleβwiththeaxes.Thenthedirectioncosinesoftheaxesarecosβ,cosβ,cosβ.(i.e.)1,1,1.Letαbethesemiverticalangleoftheaxisofthecone.Thedirectionratiosofoneofthegeneratorsare1,−2,2.

LetP(x,y,z)beanypointonthecone.ThenthedirectionratiosofOParex,y,z.Thedirectionratiosoftheaxisare1,1,1.

Squaringandcrossmultiplyingweget,

Page 849: Analytical Geometry: 2D and 3D

9(x+y+z)2=x2+y2+z2or4x2+4y2+4z2+9xy+9yz+9zx=0

Example15.5.7

Provethatthelinedrawnfromtheoriginsoastotouchthespherex2+y2+z2+2ux+2vy+2wz+d=0lieontheconed(x2+y2+z2)=(ux+vy+wz)2.

Solution

Thelinesdrawnfromtheorigintotouchthespheregeneratestheenvelopingcone.

TheequationoftheenvelopingconeofthegivensphereisT2=SS1.

Example15.5.8

Showthattheplanez=0cutstheenvelopingconeofthespherex2+y2+z2=11whichhasitsvertexat(2,4,1)inarectangularhyperbola.

Solution

Theequationoftheenvelopingconewithitsvertexat(2,4,1)isT2=SS1.

Thesectionofthisconebytheplanez=0is(2x+4y−11)2=10(x2+y2−11).Coefficientofx2+coefficientofy2=6−6=0Hence,theplanez=0cutstheenvelopingconeinarectangularhyperbola.

Page 850: Analytical Geometry: 2D and 3D

Exercises2

1. Findtheequationoftherightcircularconewhosevertexistheline andwhichhasa

verticalangleof60°.

Ans.:19x2+13y2+3z2−8xy−24yz−12zx=0

2. If(x,y,z)isanypointontheconewhosevertexis(1,0,2)andsemiverticalangleis30°andthe

equationtotheaxisis ,showthattheequationoftheconeis27[(x−1)2+y2+(z−

2)2]=4(x+2y−2z+3)2.3. Findtheequationtotherightcircularconeofsemiverticalangle30°,whosevertexis(1,2,3)and

whoseaxisisparalleltothelinex=y=z.

Ans.:5(x2+y2+z2)−8(yz+zx+xy)+30x+12y−6z−18=0

4. Findtheequationtotherightcircularconewhosevertexis(3,2,1),semiverticalangleis30°and

axisistheline

Ans.:7x2+37y2+21z2−16xy−12yz−48zx+38x−88y+126z−32=0

5. Findtheequationoftherightcircularconewithvertexat(1,−2,−1),semiverticalangle60°and

axis

Ans.:5[(5x+4y+14)2+(3z−5x+8)2+(4x+3y+2)2]

=75[(x−1)2+(y+2)2+(z+1)2]

6. Findtheequationoftherightcircularconewhichpassesthroughthethreelinesdrawnfromthe

originwithdirectionratios(1,2,2)(2,1,−2)(2,−2,1).

Ans.:8x2−5y2−4z2+yz+5zx+5xy=0

7. Linesaredrawnthroughtheoriginwithdirectioncosinesproportionalto(1,2,2),(2,3,6),(3,4,12).Findtheequationoftherightcircularconethroughthem.Alsofindthesemiverticalangleofthecone.

Page 851: Analytical Geometry: 2D and 3D

Ans:

8. Findtheequationoftheconegeneratedwhenthestraightline2y+3z=6,x=0revolvesaboutthez-axis.

Ans.:4x2+4y2−9z2+36z−36=0

9. Findtheequationtotherightcircularconewhichhasthethreecoordinateaxesasgenerators.Ans.:xy+yz+zx=0

10. Findtheequationoftherightcircularconewithitsvertexatthepoint(0,0,0),itsaxisalongthey-axisandsemiverticalangleθ.

Ans.:x2+z2=y2tan2θ

11. Ifαisthesemiverticalangleoftherightcircularconewhichpassesthroughthelinesox,oy,x=y

=z,showthat

12. Provethatx2+y2+z2−2x+4y+6z+6=0representsarightcircularconewhosevertexisthepoint(1,2,−3),whoseaxisisparalleltooyandwhosesemiverticalangleis45°.

13. Provethatthesemiverticalangleofarightcircularconewhichhasthreemutuallyperpendicular

tangentplanesis

14. Findtheenvelopingconeofthespherex2+y2+z2−2x−2y=2withitsvertexat(1,1,1).

Ans.:3x2−y2+4zx−10x+2y−4z+6=0

15. Findtheenvelopingconeofthespherex2+y2+z2=11whichhasitsvertexat(2,4,1)andshowthattheplanez=0cutstheenvelopingconeinarectangularhyperbola.

15.6TANGENTPLANE

Tangentplanefromthepoint(x1,y1,z1)totheconeax2+by2+cz2+2fyz+2gzx+2hxy=0.Theequationsofanylinethroughthepoint(x1,y1,z1)are

Page 852: Analytical Geometry: 2D and 3D

Anypointonthelineis(x1+lr,y1+mr,z1+nr).

Ifthispointliesonthegivenconethen

Thisequationisaquadraticinr.Since(x1,y1,z1)isapointonthecone

Therefore,onerootoftheequation(15.36)iszero.Ifline(15.35)isatangenttothecurve,thenboththerootsareequalandhencetheotherrootmustbezero.Theconditionforthisisthecoefficientofr=0.

Hencethisistheconditionfortheline(15.35)tobeatangenttothecurveatthepoint(x1,y1,z1).Sinceequation(15.38)canbesatisfiedforinfinitelymanyvaluesofl,m,n

thereareinfinitelymanytangentlinesatanypointofthecone.Thelocusofallsuchtangentlinesisobtainedbyeliminatingl,m,nfrom

(15.35)and(15.38).

Therefore,theequationofthetangentplaneat(x1,y1,z1)is

Note15.6.1:(0,0,0)satisfiestheaboveequationandhencethetangentplaneatanypointofaconepassesthroughthevertex.

Page 853: Analytical Geometry: 2D and 3D

ThetangentplaneatanypointofaconetouchestheconealongthegeneratorthroughP.

Proof:Lettheequationoftheconebeax2+by2+cz2+2fyz+2gzx+2hxy=0.LetP(x1,y1,z1)beanypointonthecone.TheequationofthetangentplaneatPis(ax1+hy1+gz1)x+(hx1+by1+

fz1)y+(gx1+fy1+cz1)z=0.

TheequationsofthegeneratorthroughPare

Anypointonthislineis(rx1,ry1,rz1).Theequationofthetangentplaneat(rx1,ry1,rz1)is(arx1+hry1+grz1)x+(hrx1+bry1+frz1)y+(grx1+fry1+crz1)z=0.

Dividingbyr,(ax1+hy1+gz1)x+(hx1+by1+fz1)y+(gx1+fy1+cz1)z=0whichisalsotheequationofthetangentplaneat(x1,y1,z1).Therefore,thetangentplaneatPtouchestheconealongthegeneratorthroughP.

15.6.1ConditionfortheTangencyofaPlaneandaCone

Lettheequationoftheconebe

Lettheequationoftheplanebe

Lettheplane(15.40)touchtheconeat(x1,y1,z1).Theequationofthetangentplaneat(x1,y1,z1)is

Page 854: Analytical Geometry: 2D and 3D

Iftheplane(15.40)touchesthecone(15.39)thenequations(15.40)and(15.41)areidentical.Thereforeidentifying(15.40)and(15.41)weget,

Alsoas(x1,y1,z1)liesontheplane

Eliminating(x1,y1,z1),r1from(15.43),(15.44),(15.45)and(15.46)weget,

Simplifyingthisweget,

whereA,b,C,F,G,Harethecofactorsofa,b,c,f,g,hinthedeterminant

Hence(15.47)istherequiredconditionfortheplane(15.40)totouchthecone.

15.7RECIPROCALCONE

15.7.1EquationoftheReciprocalCone

Letusnowfindtheequationoftheconereciprocaltothecone

Page 855: Analytical Geometry: 2D and 3D

Letatangentplanetotheconebe

Thenwehavethecondition

whereA,b,C,F,G,Harethecofactorsofa,b,c,f,g,hinthedeterminant

Theequationofthelinethroughthevertex(0,0,0)ofthecone(15.48)andnormaltothetangentplane(15.49)are

Thelocusof(4)whichisgotbyeliminatingl,m,nfrom(15.50)and(15.51)is

Thisistheequationofthereciprocalcone.

Note15.7.1.1:Ifwefindthereciprocalconeof(15.52)wegettheequationofconeasax2+by2+cz2+2fyz+2gzx+2hxy=0.

Definition15.7.1.2:Twoconesaresaidtobereciprocalconesofeachotherifeachoneisthelocusofthenormalthroughthevertextothetangentplanesoftheother.

15.7.2AnglebetweenTwoGeneratingLinesinWhichaPlaneCutsaCone

Lettheequationoftheconeandtheplanebe

Page 856: Analytical Geometry: 2D and 3D

Letoneofthelinesofthesectionbe

Sincethislineliesontheplanewehave,

from(15.56)

Substitutingthisin(15.55)weget,

Thisisaquadraticequationin

Therearetwovaluesfor

Hencethegivenplaneintersectstheconeintwolinesnamely,

Page 857: Analytical Geometry: 2D and 3D

Alsosince aretherootsoftheequation(15.57)

Page 858: Analytical Geometry: 2D and 3D

whereP2=−(Au2+Bv2+Cw2+2Fvw+2Gwu+2Huv)andA,B,C,F,G,H

arethecofactorsofa,b,c,fg,hinthedeterminant

Itfollowsbysymmetry

Ifθistheacuteanglebetweenthelinesthen

Note15.7.2.1:Ifthetwolinesareperpendicularthen(a+b+c)(u2+v2+w2)−f(u,v,w)=0.

(i.e.)f(u,v,w)=(a+b+c)(u2+v2+w2)Note15.7.2.2:Ifthelinesofintersectionarecoincidentthenθ=0.

Page 859: Analytical Geometry: 2D and 3D

Thisistheconditionfortheplaneux+vy+wz=0tobeatangentplanetothecone.

15.7.3ConditionforMutuallyPerpendicularGeneratorsoftheCone

Wehaveseenthattheconditionfortheplaneux+vy+wz=0cuttheconeintwoperpendiculargeneratorsisthat

Ifthereisathirdgeneratorwhichisperpendiculartotheabovetwolinesofintersectionthenitmustbeanormaltotheplaneux+vy+wz=0.Therefore,itsequationsare

Since(15.59)isageneratoroftheconef(x,y,z)=0,weget

(15.58)and(15.60)holdsifandonlyifa+b+c=0.Therefore,theconditionfortheconetohavethreemutuallyperpendicular

generatorsisa+b+c=0.

Page 860: Analytical Geometry: 2D and 3D

Example15.7.1

Findtheanglebetweenthelinesofsectionoftheplane3x+y+5z=0andthecone6yz−2zx+5xy=0.

Solution

Lettheequationsofthelineofsectionbe

Asthislineliesontheplaneandalsoontheconeweget

From(15.62)m=−(3l+5n)Substitutingthisin(15.63)weget,

Solvingl+n=0and3l+m+5n=0weget,

Solvingl+2n=0and3l+m+5n=0weget,

Therefore,thedirectionratiosofthetwolinesare1,2,−1and2,−1,−1.

Page 861: Analytical Geometry: 2D and 3D

Ifθistheanglebetweenthelines

Therefore,theacuteanglebetweenthelinesis

Example15.7.2

Provethattheanglebetweenthelinesgivenbyx+y+z=0,ayz+bzx+cxy=

0is ifa+b+c=0.

Solution

Theplane

willcutthecone

intwolinesthroughthevertex(0,0,0).Theequationsofthelinesofthesectionare

wherel,m,narethedirectionratiosofthelines.Sincethelinegivenby(15.66)liesontheplaneandthecone

Substitutingn=−(l+m)in(15.67)weget

Page 862: Analytical Geometry: 2D and 3D

Ifl1,m1,n1andl2,m2,n2arethedirectionratiosofthetwolinesweget,

Similarlywecanshowthat

Ifθistheanglebetweenthelines

Example15.7.3

Provethattheconesax2+by2+cz2=0and arereciprocal.

Solution

Theequationofthereciprocalconeax2+by2+cz2=0is

Page 863: Analytical Geometry: 2D and 3D

whereA,B,Carethecofactorsofa,b,cin

Theequationofthereciprocalconeisbcx2+cay2+abz2=0or .

Similarly,wecanshowthatthereciprocalconeof isax2+by2+

cz2=0.Therefore,thetwogivenconesarereciprocaltoeachother.

Example15.7.4

Showthattheequation representsaconewhichtouchesthe

coordinateplanes.

Solution

Squaring(fx+gy−hz)2=4fgxy

Page 864: Analytical Geometry: 2D and 3D

Thisbeingahomogeneousequationofseconddegreeinx,y,z,itrepresentsacone.Whenthisconemeetstheplanex=0weget,(gy−hz)2=0.Hencetheaboveconeiscutbytheplanex=0incoincidentlinesandhencex

=0touchesthecone.Similarly,y=0,z=0alsotouchthecone.

Exercises3

1. Findtheanglebetweenthelinesofthesectionoftheplanesandcones:

i. x+3y−2z=0,x2+9y2−4z2=0

ii. 6x−10y−7z=0,108x2−20y2−7z2=0

Ans:

2. Showthattheanglebetweenthelinesinwhichtheplanex+y+z=0cutstheconeayz+bzx+

cxy=0is

3. Provethattheequationa2x2+b2y2+c2z2−2bcyz−2cazx−2abxy=0representsaconewhichtouchesthecoordinateplane.

4. If representsoneofthegeneratorsofthethreemutuallyperpendiculargeneratorsofthe

cone5yz−8zx−3xy=0thenfindtheothertwo.

Ans:

5. If representsoneofthethreemutuallyperpendiculargeneratorsofthecone11yz+6zx−

14xy=0thenfindtheothertwo.

Ans:

Page 865: Analytical Geometry: 2D and 3D

Chapter16

Cylinder

16.1DEFINITION

Thesurfacegeneratedbyavariablelinewhichremainsparalleltoafixedlineandintersectsagivencurve(ortouchesagivensurface)iscalledacylinder.Thevariablelineiscalledthegenerator,thefixedstraightlineiscalledthe

axisofthecylinderandthegivencurveiscalledtheguidingcurveofthecylinder.

16.2EQUATIONOFACYLINDERWITHAGIVENGENERATORANDAGIVENGUIDINGCURVE

Letusfindtheequationofthecylinderwhosegeneratorsareparalleltotheline

andwhoseguidingcurveistheconic

Let(α,β,γ)beanypointonthecylinder.Thentheequationsofageneratorare

Letusfindthepointwherethislinemeetstheplanez=0.Whenz=0,

Page 866: Analytical Geometry: 2D and 3D

Thispointis

Whenthegeneratormeetstheconic,thispointliesontheconic.

Thelocusofthepoint(α,β,γ)is

Thisistherequiredequationofthecylinder.

Note1:Ifthegeneratorsareparalleltoz-axisl=0,m=0,n=lthentheequationofthecylinderbecomes,

Note2:Theequationf(x,y)=0inspacerepresentsacylinderwhosegeneratorsareparalleltoz-axis.

16.3ENVELOPINGCLINDER

Thelocusofthetangentlinesdrawntoasphereandparalleltoagivenline

Letthegivenspherebe

Letthegivenlinebe

Page 867: Analytical Geometry: 2D and 3D

Let(α,β,γ)beanypointonthelocus.Thenanylinethrough(α,β,γ)paralleltoline(16.5)is

Anypointonthislineis(α+lr,β+mr,γ+nr)Ifthepointliesonthesphere(16.4),then

Thisisaquadraticequationinrgivingthetwovaluesforrcorrespondingtotwopointscommontothesphereandtheline.Ifthelineisatangentthenthetwovaluesofrmustbeequalandhencethediscriminantmustbezero.

Thelocus(α,β,γ)is

whichisacylinder.Thiscylinderiscalledtheenvelopingcylinderofthesphere.

Envelopingcylinderasalimitingformofanenvelopingcone

Let betheaxisoftheenvelopingcylinder.Anypointonthislineis

(lr,mr,nr).Letthispointbethevertexoftheenvelopingcone.Thentheequationofthe

envelopingconeisT2=SS1.

Page 868: Analytical Geometry: 2D and 3D

whichistheequationtotheenvelopingcylinder.

16.4RIGHTCIRCULARCYLINDER

Arightcircularcylinderisasurfacegeneratedbyastraightlinewhichremainsparalleltoafixedstraightlineataconstantdistancefromit.Thefixedstraightlineiscalledtheaxisofthecylinderandtheconstantdistanceiscalledtheradiusofthecylinder.Theequationofarightcircularcylinderwhoseaxisisthestraightline

andwhoseradiusisa.

LetP(x,y,z)beanypointonthecylinder.LetAA′betheaxisofthecylinder.DrawPLperpendiculartotheaxisandPL=a.LetQ(α,β,γ)beapointontheaxisofthecylinder.

Page 869: Analytical Geometry: 2D and 3D

Thisistherequiredequationoftherightcylinder.

ILLUSTRATIVEEXAMPLES

Example16.1

Findtheequationofthecylinderwhosegeneratorsareparalleltotheline

andwhoseguidingcurveisx2+y2=9,z=1.

Solution

LetP(x,y,z)beapointonthecylinder.

TheequationsofthegeneratorthroughPandparalleltotheline are

Page 870: Analytical Geometry: 2D and 3D

Theguidingcurveis

WhenthegeneratorthroughPmeetstheguidingcurve,

Sincethispointliesonthecurve(16.9),

Thisistheequationoftherequiredcylinder.

Example16.2

Findtheequationofthecylinderwhichintersectsthecurveax2+by2+cz2=1,lx+my+nz=pandwhosegeneratorsareparalleltoz-axis.

Solution

Theequationoftheguidingcurveis

Sincethegeneratorsareparalleltoz-axistheequationofthecylinderisoftheformf(x,y)=0.Theequationofthecylinderisobtainedbyeliminatingzinequation(16.10)

Page 871: Analytical Geometry: 2D and 3D

Substitutingthisinax2+by2+cz2=1,weget,

Thisistheequationoftherequiredcylinder.

Example16.3

Findtheequationofthecylinderwhosegeneratorsareparalleltotheline

andwhoseguidingcurveistheellipsex2+2y2=1,z=3.

Solution

Theequationtotheguidingcurveis

Let(x1,y1,z1)beapointonthecylinder.Thentheequationsofthegenerator

throughP(x1,y1,z1)are

Whenthislinemeetstheplanez=3,wehave,

Thispointliesonthecurvex2+2y2=1.

Page 872: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1,z1)is

Example16.4

Findtheequationofthesurfacegeneratedbythestraightliney=mx,z=nxand

intersectingtheellipse

Solution

Thegivenliney=mx,z=nxcanbeexpressedinsymmetricalformas

LetP(x1,y1,z1)beanypointonthecylinder.ThentheequationsofthegeneratorthroughPare

Thismeetsthecurve

Whenz=0,

Page 873: Analytical Geometry: 2D and 3D

Thispointliesonthecurve

Thelocusof(x1,y1,z1)is

whichistheequationoftherequiredcylinder.

Example16.5

Findtheequationofthecircularcylinderwhosegeneratinglineshavethedirectioncosinesl,m,nandwhichpassesthroughthecircumferenceofthefixedcirclex2+y2=a2onthexozplane.

Solution

LetP(x1,y1,z1)beanypointonthecylinder.Thentheequationsofthegenerator

throughPare

Thismeetstheplaney=0.

Thispointliesonthecurve

Page 874: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1,z1)is

whichistherequiredequationofthecylinder.

Example16.6

Findtheequationsoftherightcircularcylinderofradius3withequationsofaxis

as

Solution

Theequationsoftheaxisare

(1,3,5)isapointontheaxis.2,2,–1arethedirectionratiosoftheaxis.

∴directioncosinesare

Page 875: Analytical Geometry: 2D and 3D

LetP(x1,y1,z1)beanypointonthecylinder.

Also,PQ2=QL2+LP2

Thelocusof(x1,y1,z1)is

Thisistheequationoftherequiredcylinder.

Example16.7

Findtheequationoftherightcircularcylinderwhoseaxisisx=2y=–zandradius4.

Page 876: Analytical Geometry: 2D and 3D

Solution

Theequationsoftheaxisofthecylinderare

LetP(x1,y1,z1)beanypointonthecylinder.TheequationsofthegeneratorthroughPare

Thedirectioncosinesoftheaxisare .

Also,PQ2=QL2+LP2

Page 877: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1,z1)is

Example16.8

Findtheequationofthecylinderwhosegeneratorshavedirectioncosinesl,m,nandwhichpassesthroughthecirclex2+z2=a2,y=0.

Solution

LetP(x1,y1,z1)beanypointonthecylinder.TheequationofthegeneratorsthroughPare

Thislinemeetsthecurvey=0,x2+z2=a2

Page 878: Analytical Geometry: 2D and 3D

Thispointlieson

Thelocusof(x1,y1,z1)is

Thisistheequationoftherequiredcylinder.

Example16.9

Findtheequationoftherightcircularcylinderwhoseaxisis and

passesthroughthepoint(0,0,3).

Solution

Theequationsoftheaxisofthecylinderare

Page 879: Analytical Geometry: 2D and 3D

LetP(x1,y1,z1)beanypointonthecylinder,then

Thelocusof(x1,y1,z1)is

Thisistheequationoftherequiredcylinder.

Example16.10

Page 880: Analytical Geometry: 2D and 3D

Findtheequationtotherightcircularcylinderwhichpassesthroughcirclex2+y2+z2=9,x–y+z=3.

Solution

Fortherightcircularcylinder,theguidingcurveisthecirclex2+y2+z2=9,x–y+z=3.Therefore,thedirectionratiosoftheaxisofthecylinderare1,–1,1.LetP(x1,y1,z1)beanypointonthecylinder.ThentheequationsofthegeneratorthroughPare

Anypointonthislineis(r–x1,–r+y1,r+z1).Ifthispointliesonthecircle,then

Eliminatingrfrom(16.16)and(16.17)weget

Simplifying,thelocusof(x1,y1,z1)is

whichistheequationoftherequiredcylinder.

Example16.11

Findtheequationtotherightcircularcylinderofradiusawhoseaxispassesthroughtheoriginandmakesequalangleswiththecoordinateaxes.

Page 881: Analytical Geometry: 2D and 3D

Solution

Letl,m,nbethedirectioncosinesoftheaxisofthecylinder.

Theaxispassesthroughtheorigin.LetP(x1,y1,z1)beanypointonthecylinder.

Thelocusof(x1,y1,z1)is

Page 882: Analytical Geometry: 2D and 3D

Thisistheequationoftherequiredcylinder.

Example16.12

FindtheequationtotherightcircularcylinderdescribedonthecirclethroughthepointsA(1,0,0),B(0,1,0)andC(0,0,1)astheguidingcurvex2+y2+z2–yz–zx–xy=1.

Solution

TheequationofthesphereOABCis

TheequationoftheplaneABCis

Therefore,theequationofthecircleABCis

Thecentreofthesphereis .

Page 883: Analytical Geometry: 2D and 3D

TheequationsofthelineCNare

whichistheaxisofthecylinder.Thedirectionratiosoftheaxisare1,1,1.

Thedirectioncosinesoftheaxisare

Page 884: Analytical Geometry: 2D and 3D

Thelocusof(x1,y1,z1)is

whichistherequiredequationofthecylinder.

Example16.13

Findtheequationoftheenvelopingcylinderofthespherex2+y2+z2–2x+4y=1havingitsgeneratorsparalleltothelinex=y=z.

Solution

Page 885: Analytical Geometry: 2D and 3D

LetP(x1,y1,z1)beanypointonatangentwhichisparalleltotheline

Therefore,theequationofthetangentlinesare

Anypointonthislineis(x1+r,y1+r,z1+r).Thispointliesinthissphere

Ifequation(16.22)touchesthesphereofequation(16.23),thenthetwovaluesofrofthisequationareequal.

Onsimplifyingwegetthelocusof(x1,y1,z1)as

whichistherequiredequation.

Exercises

1. Findtheequationofthecylinder,whoseguidingcurveisx2+z2–4x–2z+4=0,y=0andwhoseaxiscontainsthepoint(0,3,0).Findalsotheareaofthesectionofthecylinderbyaplaneparalleltothexzplane.

2. Findtheequationofthecylinder,whosegeneratorsareparalleltotheline andpassing

throughthecurvex2+2y2=1,z=0.3. Provethattheequationofthecylinderwithgeneratorsparalleltoz-axisandpassingthroughthe

Page 886: Analytical Geometry: 2D and 3D

curveax2+by2=2cz,lx+my+nz=pisn(ax2+by2)+2c(lx+my)–2pc=0.

4. Findtheequationofthecylinder,whosegeneratorsareparalleltotheline andpasses

throughthecurvex2+y2=16,z=0.5. Findtheequationtothecylinderwithgeneratorsparalleltoz-axiswhichpassesthroughthecurve

ofintersectionofthesurfacerepresentedbyx2+y2+2z2=12andlx+y+z=1.

6. Findtheequationofthecylinder,whosegeneratorsintersecttheconicax2+2hxy+by2=1,z=0andareparalleltothelinewithdirectioncosinesl,m,n.

7. Acylindercutstheplanez=0withcurve andhasitsaxisparallelto3x=–6y=2z.

Finditsequation.

8. Astraightlineisalwaysparalleltotheyzplaneandintersectsthecurvesx2+y2=a2,z=0andx2

=az,y=0.Provethatitgeneratesthesurfacex4y2=(x2–az)2(a2–x2).9. Findtheequationofarightcircularcylinderofradius2whoseaxispassesthrough(1,2,3)and

hasdirectioncosinesproportionalto2,1,2.10. Findtheequationoftherightcircularcylinderofradius2whoseaxispassesthrough(1,2,3)and

hasdirectioncosinesproportional2,–3,6.

11. Findtheequationoftherightcircularcylinderofradius1withaxisas

12. Findtheequationoftherightcircularcylinderwhosegeneratorsareparallelto and

whichpassesthroughthecurve3x2+4y2=12,z=0.13. Findtheequationoftherightcircularcylinderofradius4whoseaxisisx=2y=–z.14. Findtheequationoftherightcircularcylinderwhoseguidingcurveisthecirclethroughthepoint

(a,0,0),(0,b,0),(0,0,c).

15. Findtheequationoftheenvelopingcylinderofthespherex2+y2+z2–2x+4y=1havingitsgeneratorsparalleltothelinex=y=z.

16. Findtheenvelopingcylinderofthespherex2+y2+z2–2y–4z=11havingitsgeneratorsparalleltothelinex=–2y=2z.

17. Findtheequationoftherightcylinderwhichenvelopesasphereofcentre(a,b,c)andradiusranditsgeneratorsparalleltothedirectionl,m,n.

Answers

1.10x2+5y2+13z2+12xy+4xz+6yz–36x–30y–18z+36=0

2.3x2+6y2+3z2–2xz+8yz−3=0

4.9x2+9y2+5z2–6xz–12yz–144=0

5.3x2+3y2+4xy–4x–4y–10=0

Page 887: Analytical Geometry: 2D and 3D

7.36x2+9y2+17z2+6yz–48xz–9=0

9.5x2+8y2+5z2–4yz–8zx–4xy+22x–16y–14z–10=0

10.45x2+40y2+13z2+36yz–24zx+12xy–42x–280y–126z+294=0

11.10x2+5y2+13z2–12xy–6yz–4zx–8x+30y–74z+59=0

12.27x2+36y2+112z2–36xz–120yz–180=0

13.5x2+8y2+5z2–4xy+4yz+8zx–144=0

14.

15.x2+y2+z2–xy–yz–zx–4x+5y–z–2=0

16.5x2+8y2+8z2+4xy+2yz–4xz+4x–18y–36z=99

17.(l2+m2+n2)[(x–a)2+(y–b)2+(z–c)2–r2]

=[l(x–a)+m(y–b)+n(z–c)]2

Page 888: Analytical Geometry: 2D and 3D

Acknowledgements

IexpressmysincerethankstoPearsonEducation,India,especiallytoK.Srinivas,Sojan,Charles,andRameshfortheirconstantencouragementandforsuccessfullybringingoutthisbook.

P.R.Vittal

Page 889: Analytical Geometry: 2D and 3D

Copyright©2013DorlingKindersley(India)Pvt.Ltd

LicenseesofPearsonEducationinSouthAsia.

NopartofthiseBookmaybeusedorreproducedinanymannerwhatsoeverwithoutthepublisher’spriorwrittenconsent.

ThiseBookmayormaynotincludeallassetsthatwerepartoftheprintversion.ThepublisherreservestherighttoremoveanymaterialpresentinthiseBookatanytime,asdeemednecessary.

ISBN9788131773604ePubISBN9789332517646

HeadOffice:A-8(A),Sector62,KnowledgeBoulevard,7thFloor,NOIDA201309,India.RegisteredOffice:11CommunityCentre,PanchsheelPark,NewDelhi110017,India.

Page 890: Analytical Geometry: 2D and 3D