analytical proper elements for hilda...

30
Analytical Proper Elements for Hilda Asteroids Octavio Miloni , Sylvio Ferraz-Mello and Cristi ´ an Beaug ´ e Fac. de Ciencias Astron ´ omicas y Geof ´ ısicas de la Universidad Nacional de La Plata Instituto de Astronomia Geof ´ ısica e Ci ˆ encias Atmosf ´ ericas da Universidade de S ˜ ao Paulo. Observatorio Astron ´ omico de C ´ ordoba Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.1/30

Upload: others

Post on 18-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Analytical Proper Elements for HildaAsteroids

    Octavio Miloni

    ��� � , Sylvio Ferraz-Mello � and CristiánBeaugé

    Fac. de Ciencias Astronómicas y Geofı́sicas de laUniversidad Nacional de La Plata�

    Instituto de Astronomia Geofı́sica e Ciências Atmosféricasda Universidade de São Paulo.�

    Observatorio Astronómico de CórdobaReunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.1/30

  • The scheme

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.2/30

  • The Resonant CoordinatesFor the resonance 3:2 we have the standard resonantcoordinates: � � � �� � � � ��� � � �� � � � ���� � � ��

    � � � � ��� � � � �� �� � � ��

    �� � � � � � � �� �� � �� � � ��

    where,

    , � are the mean longitude and periheliumrespectively.

    "! # are the Delaunay moments (for theparticle) and is the momentum conjugated to the time.

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.3/30

  • The Hamiltonian Evolution$

    Osculating Elements

    %'& % () ! * +, Application of the standard Lie Series –>$

    Mean Elements

    % - & % - () - ! * - +$

    Resonant Theory –>, Formal integration for the simple pendulum (HoriKernel)–>, The transformation is extended to include the seconddegree of freedom with the Henrard-Lemaitre formula.–>

    % - & % - (/. -10 ! . -12 ! 3 - 0 ! 3 - 2 +, Averaging over . 0 to get the mean-mean Elements% - - & % - - (/. - -2 ! 3 - -0 ! 3 - -2 + –>$

    Proper Elements% - - - & % - - - ( 3 - - -0 ! 3 - - -2 + –>$

    Equivalent Orbital Elements 4 - - - , 5 - - - –>Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.4/30

  • Osculating Elements

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    3.8 3.85 3.9 3.95 4 4.05 4.1

    ecce

    ntric

    ity

    semimajor axis [AU]

    Osculating Elements

    "hildasdat_1.dat" using 1:2

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.5/30

  • Convergence of the Laplacian ExpansionRED LINE: Sundman radius of convergence:

    3 .8 3 .9 4 .0 4 .1S E MI - MAJOR AX I S (AU )

    0 .0

    0 .1

    0 .2

    0 .3

    ECCE

    NTR

    ICIT

    Y

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.6/30

  • The Disturbing FunctionThe expansion for the disturbing function is the Beaugé’sDevelopment (Beaugé, 1996) adapted to include theshort-period terms

    6 � 7 8�9

    :

    ? ; =>

    @ ; =>

    A ;B >>

    C ;B >>

    D ;B > 6 :? @ A C D E�GF � FIH JK � :ML ? L @� NOP �Q � � R �� � � �� �

    L � 7 � S 7 � ��� � � � � � �� �T �U

    8 � V �� � � � � � �� �W �

  • The Mean Elements

    In the extended phase space (to eliminate the timedependence) the Hamiltonian is:

    %'& j k2

    � 2 l

  • The perturbation equations are:

    % -{z & j k2

    � 2 l

  • Preliminaries. Expansion of the Hamilto-nian about a reference valueOnce made the first average, the Hamiltonian does notdepend on the angle

    ) i and we can choose

    * -i & eg h & � k2

    �m n 0 i

    It is easy to show that, at the exact resonance

    ( * 0 l * 2 + &

    and, as

    j * -i & j � ( * -0 l * -2 + , we can expand theHamiltonian in Taylor series around

    & ( * -0 l * -2 + &

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.10/30

  • The Expansions

    For the unperturbed part (

    % z) we have the series:

    % z& j k2

    [ z( l � +

    * 2 [i� [ ( * -0 l * -2 + [ l �m n ( * -0 l * -2 + j m n * i j n * 2

    Each coefficient can be expanded in powers of

    ( * -0 l * -2 +

    Z z & Z | z z l Z | 0 z ( * 0 l * 2 + l Z | 2 z ( * 0 l * 2 + 2 l x x x

    Z 0 & Z | z 0 l Z | 0 0 ( * 0 l * 2 + l Z | 2 0 ( * 0 l * 2 + 2 l x x x

    Z 2 & Z | z 2 l Z | 0 2 ( * 0 l * 2 + l Z | 2 2 ( * 0 l * 2 + 2 l x x x

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.11/30

  • The Resonant TheoryThe Hamiltonian

    % - () - ! * - + is a two-degree-of-freedomHamiltonian where

    ) -10 is critical (resonant) and ) -12 is a longperiod angle.

    $

    Split the Hamiltonian into two parts% - () - ! * - + & % -g b a _ ` l % -

    $

    Integrate the Pendulum in the set

    () -0 ! ( * -0 l * -2 + + andobtain the angle-action variables

    (. -10 ! 3 - 0 +$

    Extend the transformation to include the other degreeof freedom via Henrard-Lemaitre Transformation$

    Average over the fast angle . 0

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.12/30

  • The Hori KernelThe main resonant part of the Hamiltonian is:

    }� � 7 � � �} � �}� � � � == = � �}� � � �� �}� � = = � �}� � NOP � }

    where 0 0 & j 0 2 �| n}� 9 and the functions zz z and z0 z aregenerically defined by

    = C � �

      9:; =>

    ? ; =>

    @ ; = 6 :? @ C =�F } � F = � :8� L} ? L @�

    ¡¢£ ; =

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.13/30

  • Solution up to order

    ¤ ¥§¦

    The angle-action variables, in the case of small amplitudregime are defined by the relations:

    * -0 l * -2 & j ¨ ©z0ª 0 0 ª « ¬® ¯ . -°0 ± j � ¬® ¯ . -°0 j ¬® ¯ �. -°0 ±i

    j � ¥� ¬® ¯ . -0 j ² ¬® ¯ �. -°0 j ¬® ¯ ². -°0 ± ³µ´ l ¶ (± · +

    ¯ ¸º¹ ) -u0 & ¨ « ¯ ¸¹ . -u0 ± j » ¯ ¸¹ . -0 j � ¯ ¸¹ �. -0 ± i

    j � ²� ¯ ¸º¹ . -u0 j � ¯ ¸º¹ �. -u0 j ² ¯ ¸º¹ ². -u0 ± ³ l ¶ (± · + ´

    where

    ±

    is the amplitude of oscillation of the pendulum:¼ � ½ } � �¿¾ = �P À Á   �

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.14/30

  • The Henrard-Lemaitre Formula

    To extend the canonical transformation to include the otherdegree of freedom we use the Henrard-Lemaitre Formula) 2 & . 2 j à 2* 2 & 3 2where:

    Ã 2 & Ä zÅ) 0Å. 0Å * 0Å 3 2 jÅ) 0Å 3 2Å * 0Å. 0 Æ. 0

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.15/30

  • The Hamiltonian up to order

    ¤ÈÇ � É ¦Up to order

    ¶ (o 2 + , the Hamiltonian can be written in theform: % - & Ê -2 ( 3 - 0 ! 3 - 2 + l Ê -i (/. - ! 3 - +where the subscripts mean the degree in oÊ -2 & Ë ( 3 - 0 ! * -2 + j n * -2 lpo 0 z ªÍÌ z ( * -2 + lpo zz z ( * -2 + !

    Ê -i & �» 0 0 0 ( * -0 l * -2 + i l o ( * -0 l * -2 +Æ z zÆ ªÎÌ z l

    l o ( * -0 l * -2 + Æ 0 zÆ ª Ì z ¬® ¯ ) -°0 l o z0 0 ¬® ¯ ) -°2 l

    l o zzÐÏ 0 ¬® ¯ () -0 j ) -2 +x

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.16/30

  • Cosines up to order

    ¤ É ¦

    NOP � } � 7 � 7Ñ V � 7 � NOP �¿Ò } W ¼ � � � � V � NOP �¿Ò } � NOP ÓÒ } W ¼ 9 �� V � Ñ Ó � 7 7 � NOP �¿Ò } � 7 �Ô NOP ÓÒ } � ÓÔ NOP Ñ Ò } W ¼ Õ � Ö Ö ÖØ× (1)Up to terms of order

    ¼ �

    , we also have:NOP � }� � NOP Ò }� � Ó V NOP � Ò } � Ò }� � � NOP � Ò }� � Ò } �W ¼�

    � Ô Ù � � NOP Ò }� � � 7 � 7Ú ÚÛ¾ =Û ½ } � � NOP � Ò }� � �Ò } � �

    � � 7 � 7Ú ÚÛ¾ =Û ½ } � � NOP � Ò }� � �Ò } �Ü ¼ � �

    � Ù � � � �Ú ÚÛ¾ =Û ½ } � � � Ó � NOP � Ò } � Ò }� � �

    � � � � �Ú ÚÛ¾ =Û ½ } � � � Ó � NOP � Ò }� � Ò } � �

    � � � �Ú ÚÛ¾ =Û ½ } � � 7 � � NOP � �Ò } � Ò }� � �

    � � � �Ú ÚÛ¾ =Û ½ } � � 7 � � NOP � Ò }� � �Ò } �Ü ¼ � (2)

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.17/30

  • cosines

    NOP � � } � � }� � � NOP Ò }� � Ù � Ô Ú ÚÛ¾ =Û ½ } � NOP � Ò }� � �Ò } � �

    � Ô Ú ÚÛ¾ =Û ½ } � NOP � �¿Ò } � Ò }� �Ü ¼ � � Ý � ¼ 9 � (3)

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.18/30

  • Expression for

    Þ�

    }� � ß � Ô ¾ =Ú Úà Û á =Ûâ Ú£ ; = � Û = =Ûâ Ú£ ; = ã ¼ �

    � ä Ñ Ó � ¾ = � �Ú Ú� � ¾=Ú ÚäÔåÛ =Ûâ Ú£ ; = � 7Ñ Û = =Ûâ Ú£ ; = æ æ ¼ � ç NOP Ò } �

    � S à Ñ Ó � ¾ = � �� Ú Ú� �è � ¾ =Ú ÚÛ á =Ûâ Ú£ ; = � Ô ¾ =Ú ÚÛ = =Ûâ Ú£ ; = ã ¼ � T NOP �Ò } �

    � é = � =ê=B � 7 Ñ = ¼ �ë NOP Ò }� �

    � S Ó = ¼ � à � Ó = � � � = Ú ÚÛ¾ =Û ½ } �ã ¼ � T NOP � Ò } � Ò }� � �

    � S Ó = ¼ � à � Ó = � � � = Ú ÚÛ¾ =Û ½ } �ã ¼ � T NOP � Ò } � Ò }� � �

    � ì Ô =ê=B Ú ÚÛ¾ =Û ½ } � � Ô = �Ô = Ú ÚÛ¾ =Û ½ } � ¼ �í NOP � �¿Ò } � Ò }� � �

    � ì Ô =ê=B Ú ÚÛ¾ =Û ½ } � � Ô = �Ô = Ú ÚÛ¾ =Û ½ } � ¼ �í NOP � �¿Ò } � Ò }� ��

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.19/30

  • and...

    l � �o z0 0ª 0 0 ªÅ © z0Å 3 - 2 j � �o z0 0 ± i ¬® ¯ ( �. -u0 j . -u2 + l

    l � �o z0 0ª 0 0 ªÅ © z0Å 3 - 2 l � �o z0 0 ± i ¬® ¯ ( �. -°0 l . -°2 + l

    l ¶ (± î +Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.20/30

  • The Homological Equation and the mean-mean Hamiltonian

    « Ê -2 ! -2 ´ 0 & % -i j Ê i (/. - ! 3 - +The averaging rule

    % - -i & ���ï2ñð

    z Ê -i Æ. - -0

    The Hamiltonian for the mean-mean elements is:

    % - - & Ë ( 3 - - + j n 3 - -2 l o 0 z ªÍÌ z ( 3 - -2 + lpo zz z ( 3 - -2 + l (4)l òo z0 0 ( 3 - -2 + l o zzÐÏ 0 ( 3 - -2 + j � » o z0 0 ( 3 - -2 +± 2ó ¬® ¯ . - -2

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.21/30

  • The Resonant Lie GeneratorThe solution for the first homological equation is:

    ¾ ô õ � ö� � ß � Ô ¾ =Ú Úà Û =Ûâ Ú£ ; = � Û = =Ûâ Ú£ ; = ã ¼ �

    � ä Ñ Ó � ¾ = � �Ú Ú� � ¾=Ú ÚäÔåÛ á =Ûâ Ú£ ; = � 7 Ñ Û = =Ûâ Ú£ ; = æ æ ¼ � çP ÷µø Ò } } �

    � S à Ñ Ó � ¾ = � �� Ú Ú� �� Ó ¾ =Ú ÚÛ á =Ûâ Ú£ ; = � Ô ¾ =� Ú ÚÛ = =Ûâ Ú£ ; = ã ¼ � TP ÷µø �Ò } } �

    � S Ó = ¼ � à � Ó = � � � = Ú ÚÛ¾ =Û ½ } �ã ¼ � TP ÷µø � Ò } } � Ò } }� � �

    � S Ó = ¼ � à � Ó = � � � = Ú ÚÛ¾ =Û ½ } �ã ¼ � TP ÷µø � Ò } } � Ò } }� � �

    � ì Ó =ê=B Ú ÚÛ¾ =Û ½ } � � Ó = �Ó = Ú ÚÛ¾ =Û ½ } � ¼ �íP ÷µø � �¿Ò } } � Ò } }� � �

    � ì Ó =ê=B Ú ÚÛ¾ =Û ½ } � � Ó = �Ó = Ú ÚÛ¾ =Û ½ } � ¼ �íP ÷µø � �¿Ò } } � Ò } }� ��

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.22/30

  • and....

    l � �o z0 0� ª 0 0 ªÅ © z0Å 3 - 2 j Éo z0 0 ± i ¯ ¸¹ ( �. - -0 j . - -2 + l

    l � �o z0 0� ª 0 0 ªÅ © z0Å 3 - 2 l Éo z0 0 ± i ¯ ¸¹ ( �. - -0 l . - -2 + l

    l ¶ (± î +xReunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.23/30

  • The Last IntegrationFor commodity we use again a Lie series up to first order inthe small parameter o to integrate the Hamiltonian:

    % - - & © 0 3 - -0 j n 3 - -2 l o 0 z ªùÌ z ( 3 - -2 + l o zz z ( 3 - -2 + l (5)l òo z0 0 ( 3 - -2 + l o zzÐÏ 0 ( 3 - -2 + j � » o z0 0 ( 3 - -2 +± 2ó ¬® ¯ . - -2

    we define the frequency:

    © 2 & Å % - -zÅ 3 - -2

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.24/30

  • AveragingWe adopt, again, the average:

    % - - - & ���ï2ñð

    z % - - Æ. - -2 (6)and the homological equation (obtained in the same way asin the first averaging) is:

    © 2 Å| i iÅ. - - -2 &

    òo z0 0 ( 3 - - -2 + l o zzÐÏ 0 ( 3 - - -2 + j � » o z0 0 ( 3 - - -2 +± 2ó ¬® ¯ . - - -2

    whose solution is:| i i & �© 2òo z0 0 ( 3 - - -2 + l o zzÐÏ 0 ( 3 - - -2 + j � » o z0 0 ( 3 - - -2 +± 2ó ¯ ¸¹ . - - -2

    (7)

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.25/30

  • The Proper Elements

    The resulting Hamiltonian is

    % - - -z & Ë ( 3 - - - + j n 3 - - -2 l o 0 z ªÍÌ z ( 3 - - -2 + lpo zz z ( 3 - - -2 +

    which defines two invariants

    3 - - -0 and 3 - - -2 which are theDynamical Proper Elements.|̂

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.26/30

  • The Proper Elliptical Elements

    It is interesting to write

    3 - - -0 and 3 - - -2 in terms of the orbitalelements.The semi-major axis and eccentricity calculated from theseelements will be called equivalent elliptical elements and theyare calculated in the following way:

    $

    With the invariants, calculate the formal

    * - - -

    and

    ) - - -

    variables$

    Calculate the equivalent Delaunay’s moments$

    Obtain 4 - - - and 5 - - -|̂

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.27/30

  • Preliminary Results

    Dynamical Proper Elements

    -0.008

    -0.006

    -0.004

    -0.002

    0

    0.002

    0.004

    0.006

    -0.00015 -0.0001 -5e-05 0 5e-05 1e-04 0.00015

    Lam

    bda_

    2

    Lambda_1

    ’propio_new2.dat’ u 3:4

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.28/30

  • Preliminary Results

    Elliptical Proper Elements

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    3.96 3.98 4 4.02 4.04 4.06

    ecce

    ntric

    ity

    semi-major axis

    ’propio_new2.dat’ u 1:2

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.29/30

  • THE END

    Reunion de la Asociacion Argentina de Astronomia, San Juan, septiembre de 2004 – p.30/30

    The schemeThe Resonant CoordinatesThe Hamiltonian Evolution Osculating ElementsConvergence of the Laplacian ExpansionThe Disturbing FunctionThe Mean ElementsPreliminaries. Expansion of the Hamiltonian about a reference valueThe ExpansionsThe Resonant TheoryThe Hori KernelSolution up to order ${cal O}( {cal Q}^7)$The Henrard-Lemaitre FormulaThe Hamiltonian up to order ${cal {O}}(varepsilon ^{2}{cal {Q}}^4)$Cosines up to order ${cal O}( {cal Q}^4)$

    cosinesExpression for $F^*_3$and...The Homological Equation and the {it mean-mean} HamiltonianThe Resonant Lie Generatorand....The Last IntegrationAveragingThe Proper ElementsThe Proper Elliptical ElementsPreliminary ResultsPreliminary Results