ancilla-assisted quantum information processing

41
Ancilla-Assisted Quantum Information Processing Indian Institute of Science Education and Research, Pune T. S. Mahesh

Upload: rhonda

Post on 22-Mar-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Ancilla-Assisted Quantum Information Processing. T. S. Mahesh. Indian Institute of Science Education and Research, Pune. Acknowledgements . Abhishek Shukla Swathi Hegde Hemant Katiyar Koteswara Rao Manvendra Sharma Ravi Shankar. Prof. Anil Kumar Dr. Vikram Athalye Prof. Usha Devi - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ancilla-Assisted  Quantum  Information Processing

Ancilla-Assisted Quantum Information Processing

Indian Institute of Science Education and Research, Pune

T. S. Mahesh

Page 2: Ancilla-Assisted  Quantum  Information Processing

Acknowledgements

Abhishek Shukla

Swathi Hegde

Hemant Katiyar

Koteswara Rao

Manvendra Sharma

Ravi Shankar

Prof. Anil Kumar

Dr. Vikram Athalye

Prof. Usha Devi

Prof. A. K. Rajagopal

PhD students

MS students

Collaborators

Page 3: Ancilla-Assisted  Quantum  Information Processing

system

ancilla

Ancillary staff: Provide necessary support to the primary activities

or operation of an organization, system, etc.

Dictionary meaning:

ancilla

system

Page 4: Ancilla-Assisted  Quantum  Information Processing

1. Spin-Systems and NMR

2. Measurementsa. Extracting expectation valuesb. Extracting probabilitiesc. Noninvasive measurementsd. Ancilla Assisted State-Tomographye. Ancilla Assisted Process-Tomography

3. Quantum Simulationsa. Particle in a potentialb. Introducing quantum noise

4. Phase Encoding (Quantum Sensors)a. Diffusion in liquidsb. Mapping-out electromagnetic fields

5. Summary

Outline

Page 5: Ancilla-Assisted  Quantum  Information Processing

Nuclear Spin and Magnetic Resonance

Spin ½ (qubit)

Chloroform

B0

EM energy(Radio waves)

0

1 1H

Page 6: Ancilla-Assisted  Quantum  Information Processing

Nuclear Spin and Magnetic Resonance

B0

EM energy(Radio waves)

0

1

Page 7: Ancilla-Assisted  Quantum  Information Processing

NMR Signal x Tr[ x ]

Net transverse magnetization

x

Procedure:

Prepare x

t

Nuclear Spin and Magnetic Resonance

Page 8: Ancilla-Assisted  Quantum  Information Processing

Ancilla assisted measurement:

1H13C

Prepare

Prepare|+

A1 A2

x

System qubit

Ancillaqubit

x = A1 A2 Am

Am

O. Moussa et al, PRL,104, 160501 (2010)

Prepare

Prepare|+

A

x

System qubit

Ancillaqubit

x = A

Unitary observable

Page 9: Ancilla-Assisted  Quantum  Information Processing

Example: Evaluating Leggett-Garg inequality

t = 0 t 2t

x

x

x

x

x

x

↗time

x(0)x(t) = C12

x(t)x(2t) = C23

x(0)x(2t) = C13

0

0

0

Hamiltonian : H = ½ z

Macrorealistic: K3 = C12 + C23 C13 1

For spin ½ : K3 = 2cos(t) cos(2t) (-3 K3 -1.5)

Athalye, S. S. Roy, TSM, PRL-2011

t

1H13C

A. J. Leggett and A. Garg, PRL-1985

Johannes Kofler, PhD Thesis, 2004

Page 10: Ancilla-Assisted  Quantum  Information Processing

Example: Evaluating Leggett-Garg inequality

1H13C

Athalye, S. S. Roy, TSM, PRL-2011

t = 0 t 2t

x

x

x

x

x

x

↗time

x(0)x(t) = C12

x(t)x(2t) = C23

x(0)x(2t) = C13

0

0

0

Hamiltonian : H = ½ z

Macrorealistic: K3 = C12 + C23 C13 1

For spin ½ : K3 = 2cos(t) cos(2t) (-3 K3 -1.5)

A. J. Leggett and A. Garg, PRL-1985

Johannes Kofler, PhD Thesis, 2004

Page 11: Ancilla-Assisted  Quantum  Information Processing

Extracting probabilities (in computational basis)

crusher

incoherence

convert

measure

Arbitrary 1q density matrix

Diagonal density matrix

Single quantum density matrix

xPrepare tU

U(dephasing channel)

Page 12: Ancilla-Assisted  Quantum  Information Processing

Extracting joint probabilities

t t+tSystem qubit

q(t) q(t+ t)

p( q(t),q(t+ t) ) ?

U(t)x

System qubit

Ancillaqubit

Prepare

Prepare |0

x

U(t)

Suppose Q be an observable, with eigenvalues q = 0 or 1

Page 13: Ancilla-Assisted  Quantum  Information Processing

Extracting joint probabilities: Noninvasive method (Negative Result)Suppose Q be an observable, with eigenvalues q = 0 or 1

t t+tSystem qubit

q(t) q(t+ t)

p( q(t),q(t+ t) ) ?

U(t)x

System qubit

Ancillaqubit

Prepare

Prepare |0

x

U(t)

U(t)x

System qubit

Ancillaqubit

Prepare

Prepare |0

x

U(t)

Discord q = 1---------------------p(0,0) & p(0,1)

Discord q = 0---------------------P(1,0) & p(1,1)

Page 14: Ancilla-Assisted  Quantum  Information Processing

p(q1,q2) p(q1,q3)

time

Q1 Q2 Q3

t2 t3t1

Hemant, Abhishek, Koteswar, TSM, PRA-2013

Extracting joint probabilities

CHsystem

ancilla

Page 15: Ancilla-Assisted  Quantum  Information Processing

Entropic Leggett-Garg Inequality

InformationDeficit:

timeQ1 Q2 Q3

t2 t3 . . .

. . .

t1

System state: 1/2

Dynamical observable : Sz(t) = Ut Sz Ut†

Time Evolution: Ut = exp(iSxt)

Hemant, Abhishek, Koteswar, TSM, PRA-2013

CHsystem

ancilla

A. R. Usha Devi, H. S. Karthik, Sudha, and A. K. Rajagopal, PRA-2013

Page 16: Ancilla-Assisted  Quantum  Information Processing

Reason for LGI violation:

Classical Probability Theory:

P’(q1,q2) = P(q1,q2,q3)q3

P’(q1,q3) = P(q1,q2,q3)q2

P’(q2,q3) = P(q1,q2,q3)q1

P(q1,q2)

P(q1,q3)

P(q2,q3)

Marginals Grand

Quantum systems do not obey this rule !!

A. R. Usha Devi, H. S. Karthik, Sudha, and A. K. Rajagopal, PRA-2013

Page 17: Ancilla-Assisted  Quantum  Information Processing

Extracting GRAND probabilities: Suppose Q be an observable, with eigenvalues q = 0 or 1

0 tSystem qubit

Q(0) q(t)

p(q(0),q(t),,q(nt)) ?

(n-1)t

q((n-1)t)

nt

Q(nt)

xSystem qubit

nancillaqubits

x

U(t) U(t)Prepare

Prepare |0

Prepare |0

Prepare |0

U(t) U(t)

Page 18: Ancilla-Assisted  Quantum  Information Processing

Illegitimate Joint Probability

P(q1,q2,q3)is illegitimate !!

Violation ofEntropic LGI

Hemant, Abhishek, Koteswar, TSM, PRA-2013

Page 19: Ancilla-Assisted  Quantum  Information Processing

Quantum State Tomography

Tomography:

Page 20: Ancilla-Assisted  Quantum  Information Processing

Quantum State TomographyComplete characterization of complex density matrix

- Requires a series of measurements all starting from same initial condition

= +

Obtained bymeasuring

z

Obtained bymeasuring x and y

9 different experimentscarried out

3-unknowns

15-unknowns

Measure: x(1) |00|,

x(1) |11|,

|00| x(2),

|11| x(2),

After rotations:II, XI, YI, IX, IY, XX, XY, YX, YY

Complexsignal ofTwo-qubits

Page 21: Ancilla-Assisted  Quantum  Information Processing

Quantum State Tomography: Scaling

n-qubit system:

n 2nNumber of experiments ~

Observables per experiment

22n

Number unknowns in the density matrix

= n2n

n-qubits

number of experiments

2 23

4

7

11

19

2n x 2n density matrix

Page 22: Ancilla-Assisted  Quantum  Information Processing

System qubits

ancilla qubits

|00…0

System qubits

|00…0

ancilla qubits

Ucomp

System qubits

ancilla qubits

Utomo

x

Ancilla Assisted Quantum State Tomography:

(n+a)-qubit system:

n 2(n+a)Number of experiments ~

Observables per experiment

22n

Number unknowns in the density matrix

= n

2n - a

Nieuwenhuizen & coworkers, PRL-2004

Page 23: Ancilla-Assisted  Quantum  Information Processing

Ancilla Assisted Quantum State Tomography: Scaling

(a)(n)

n2n - a

Abhishek, Koteswar, TSM, PRA-2013

Page 24: Ancilla-Assisted  Quantum  Information Processing

Ancilla Assisted Quantum State Tomography:

Fidelity: 0.95

3-system qubits, 2-ancilla qubits

Abhishek, Koteswar, TSM, PRA-2013

Page 25: Ancilla-Assisted  Quantum  Information Processing

Ancilla Assisted Quantum State Tomography: Noisy Measurements

Abhishek, Koteswar, TSM, PRA-2013

Page 26: Ancilla-Assisted  Quantum  Information Processing

Quantum Process Tomography:- Characterizes the process (unitary or nonunitary)

Standard method:

1

1

1

1

matrix

tomo

tomo

tomo

tomo

b1

b2

b3

b4

() = mn EmEn†

mn

Page 27: Ancilla-Assisted  Quantum  Information Processing

Ancilla Assisted Process Tomography:- Characterizes the process (unitary or nonunitary)

Using a single ancilla qubit

11

11

matrix

(on system)tomo

() = mn EmEn†

mn

Altepeter et al, PRL-2003

Page 28: Ancilla-Assisted  Quantum  Information Processing

Single-Shot Process Tomography:- Characterizes the process (unitary or nonunitary)

Using two ancilla qubits

11

11

matrix

process

(on system)

x

() = mn EmEn†

mn

Page 29: Ancilla-Assisted  Quantum  Information Processing

Schrodinger equation: iħ (d/dt) |(t) = H |(0)

|(t) = exp(-iHt)|(0)

H = T + V

KineticP2/2m

Potential

Do not commute

exp(-i H dt) exp(-i V/2 dt) . exp(-i T dt) . exp(-i V/2 dt)

Trotter approximation:

Quantum Simulation: Particle in a potential (1D)

Page 30: Ancilla-Assisted  Quantum  Information Processing

(with spin-1/2 nuclei)

|111 |110 |101 |100 |011 |010 |001 |000

x

exp(-i H dt) exp(-i V/2 dt) . exp(-i T dt) . exp(-i V/2 dt)

Circuit for Diagonal Unitary

Trotter form:

Quantum Simulation: Particle in a potential (1D)

exp(-i H dt) exp(-i V/2 dt) .Uiqft. exp(-i T’ dt) . Uqft . exp(-i V/2 dt)

position

Page 31: Ancilla-Assisted  Quantum  Information Processing

Ancilla Assited Quantum Simulation:

Initial state

Final state(after

Simulation)

Ravi Shankar, Swathi Hegde, TSM, PLA-2013

Page 32: Ancilla-Assisted  Quantum  Information Processing

Ancilla Assited Quantum Simulation: Ravi Shankar, Swathi Hegde, TSM, PLA-2013

Experiments Theory

Page 33: Ancilla-Assisted  Quantum  Information Processing

chloroform

1H (system)

13C (ancilla: environment)

System

Ancilla

Time

System

Ancilla

Time

kicks

Cory & coworkersPRA, 2003

Simulating quantum noise:

Page 34: Ancilla-Assisted  Quantum  Information Processing

chloroform

1H (system)

13C (environment)

Simulating quantum noise:

Has applications in optimizing dynamical decoupling sequences

Swathi & TSM (on-going work)

Page 35: Ancilla-Assisted  Quantum  Information Processing

Measuring diffusion

B0

|0+|1 |0+ei|1

Price, Concepts in NMR-1997

Page 36: Ancilla-Assisted  Quantum  Information Processing

Measuring diffusion

B0

|0+|1 |0+ei|1

Price, Concepts in NMR-1997

Page 37: Ancilla-Assisted  Quantum  Information Processing

31P

Trimethylphosphite(300 K, DMSO, fixed conc.)

Measuring diffusion

Abhishek, Manvendra, TSM, CPL-2013

Page 38: Ancilla-Assisted  Quantum  Information Processing

B0

|0…0+|1…1 |0…0+ein|1…1

Measuring diffusion: NOON states

31P

Trimethylphosphite(300 K, DMSO, fixed conc.)

PreparingNOON states

Converting tosingle-quantum

states

Abhishek, Manvendra, TSM, CPL-2013

10-qubits

Page 39: Ancilla-Assisted  Quantum  Information Processing

31P

Trimethylphosphite(300 K, DMSO, fixed conc.)

Measuring diffusion: NOON states

Abhishek, Manvendra, TSM, CPL-2013

Page 40: Ancilla-Assisted  Quantum  Information Processing

Mapping RF Intensity with NOON states:

Abhishek, Manvendra, TSM, CPL-2013

31P

Page 41: Ancilla-Assisted  Quantum  Information Processing

Summary:

Ancilla qubits play an important role in practical quantum processors

Provide efficient ways to measure expectation values and joint probabilities

Assist in Quantum State Tomography and Quantum Process Tomography

Assist in direct read-out of probabilities in quantum simulation

Can induce controlled quantum noise on the system qubits

Can participate in preparing large NOON states – have applications in quantum sensors