and development ce--etc iiiiiiiiii19. k(ey words (continue on reverse side if necessary and identify...

105
r/ A0-AU97 930 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 20/V MEASUREMENTS OF THE EFFECT OF TRIM ON THE NOMINAL WAKE OF THE N--ETCIU) IMAR BI M B WI LSON, G A HA MPTON UNCLASSIFIED DTNSRDC/ PD1O544-19 ML 2 flfflfllflfflfllflf I iiIIIIIIII IIIIIIIIIIIIII IEIIEIIEIIIEEE IIIEIIIIEI- ImEE.....

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

r/ A0-AU97 930 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 20/VMEASUREMENTS OF THE EFFECT OF TRIM ON THE NOMINAL WAKE OF THE N--ETCIU)

IMAR BI M B WI LSON, G A HA MPTONUNCLASSIFIED DTNSRDC/ PD1O544-19 ML2 flfflfllflfflfllflfI iiIIIIIIIIIIIIIIIIIIIIIIIEIIEIIEIIIEEEIIIEIIIIEI-

ImEE.....

Page 2: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Ln DAVID W. TAYLOR NAVAL SHIPRESEARCH AND DEVELOPMENT CENTER

Bthoes. Maryland 2008

AD A 0 9,7 9 3 r

MEASUREMENTS OF THE EFFECT OF TRIM ON

THE NOMINAL WAK- OF THE NAVAL

AUXILIARY OILER AO-177

by

Michael B. Wilson

6ary A. Hampton

z

04

-, A, .- o tY

4.

00 *.

March 1981 DTNSRD/SP-541

CINFD e 2Marc 491DNRCSD'54iw "w"I51 4 20 034

Page 3: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

S DTNSRDC

COMMANDER0

TECHNICAL DIRECTOR01

OFFICER IN-CHARGE OFFICER IN CHARGECARDE ROCK ANNAPOLIS

SYSTEMS

DEVELOPMENT

DEPARTMENT

SHIP PERFORMANCE AVIATION ANDI DEPARTMENT SURFACE VFFECTSD 15 DEPARTMENT 16

SR R COMPUTATION,

STRUCTURES MATHEMATICS AND

_ _ _R_ __17 LOGISTICS DEPARTMENT

18

[SHIP ACOUSTICS PROPULSION AND

DEPARTMENT AUXILIARY SYSTEMS19 DEPARTMENT 27

SIP WATERIALS 1CENTRALIEN INEERING INSTRUMENTATION

DEr kRTMENT 28 DEPARTMENT 2929b

Page 4: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITYPRACTICABLE. THE COPY FURNISHEDTO DTIC CONTAINED A SIGNIFICANTNUMBER OF PAGES WHICH DO NOTREPRODUCE LEGIBLY.

I

Page 5: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

UNCLASSIFIED

--ECUNlTY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS______ REPORT___DOCUMENTATION ____PAGE_ BEFORECOMPLETINGFORM

I. DTNS1-C/SPD-,5VT-ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4TITLEJto SulUfp 5. TYPE OF~ REPORT & PERIOD COVEREDASUREMENTS OF THE -EFETOFTRIM ON THE

NOMINAL WAKE OF THEIVN-VAL AUXIrIARY OILER Ad-l7. p nl~~ t6. PERFORMM ofte. RLP"R? "NDMER

7. HO~a IIdI. CONTRACT OR GRANT NUM99R~s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASKDavi Talor ava Shp R& CeterAREA I WORK( UNIT NUMBERSDavi Talor ava Shp R& CeterAppropriition: SCN

Ship Performance Department Work Unit 1-1532-100Bethesda, Md. 20084

II. CONTROLLING OFFICE NAME AND ADDRESS 1,RP"DT

Naval Sea Systems Command iMrh18Washington, D.C. 20362 1,,4MLA AE

IC. MONITORING AGENCY NAME & ADDRESS(If different from, Controling Office) IS.AS . (of this report)

UNCLASSI FIED

15a. DECLASSIFICATION/DOWNGIADINGSCHiEDULE

16. DISTRIBUTION STATEMENT (of tis Report)

DISTRIBUTION UNLIMITED: APPROVED FOR PUBLIC RELEASE

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

III. SUPPLEMENTARY NOTES

19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber)

Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

20. ABSTRACT rContinue on reverse sid. If necessery and Identify by block number)

Wake survey measurements of the nominal wake behind the AO-177 hull havebeen obtained from model experiments and are presented for cases Involving trimvariations and a slight change in displacement. Extensive tables and plots ofthe basic wake data display the three velocity component dIstributions,summries ofuseful averaged wake quantities, and distributions of wakeIharmonics. Radial distributions of a wake steepness parameter are compared forthe various trim conditions, and it appears that any difficulties pro duced by ~

DD I2 1473 EDTN O2.F I O69 S 1 L UNCLASSTFTED 27' /SECURITY CLASSIFICATION Of THIS PAGE (Whem Dole uar

Page 6: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enttered)

the ship wake are not introduced by the expected changes in trim.

SECUMITY CLASSIFICATION4 0FT41 MAGEfWhon Data Entered)

Page 7: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

TABLE OF CONTENTS

Page

LIST OF FIGURES................................................................. iii

LIST OF TABLES.................................................................. vii

NOTATION................................................................... ..... ix

ABSTRACT......................................................................... 1I

ADMINISTRATIVE INFORMATION....................................................... 1

INTRODUCTION..................................................................... 1

PROCL')URE........................................................................ 3

RESULTS AND DISCUSSION........................................................... 4

CONCLUSIONS...................................................................... 8

ACKNOWLEDGMENTS.................................................................. 8

REFERENCES....................................................................... 9

APPENDIX A- RESULTS OF EXPERIMENT 1............................................ 27

APPENDIX B- RESULTS OF EXPERIMENT 2......................................... 4

APPENDIX C RESULTS OF EXPERIMENT 3......................................... 5

APPENDIX D- RESULTS OF EXPERIMENT 4............................................ 75

LIST OF FIGURES

1 - AO-177 Wake Rake Pitot Tube Location in Relation to the21-Foot (6.4 m) Design Propeller............................................ 10

2 - AO-177 Stern Body Plan with Test Radii..................................... 11

3 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios-Radius Ratio = 0.359, Composite of Experiments2, 3, and 4.................................................................. 12

4 - Circumferential Distribution of the Longitudino'l,Tangential and Rqdial Velocity Component Ratios-Radius Ratio = 0.556, Composite of Experiments2, 3, and 4.................................................................. 13

Page 8: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Page

5 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -

Radius Ratio = 0.774, Composite of Experiments2, 3, and 4 ........................................................... 14

6 - Circumferential Distribution of the LongitudinalTangential and Radial Velocity Component Ratios -

Radius Ratio = 1.017, Composite of Experiments2, 3, a i.1 4 ........................................................... 15

7 -Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -

Radius Ratio = 1.178, Composite of Experiments2, 3, and 4 ........................................................... 16

8 - Radial Distribution of the Mean Velocity ComponentRatios, Composite of Fxperiments 2, 3, and 4Displacement 26,390 Tons (26,810 tonnes) ................................. 17

9 - Radial Distribution of the Mean Advance Angle andthe Maximum Variations of the Advance Angle forModel 5326, Composite of Experiments 2, 3, and4 Displacement 26,390 Tons (26,810 tonnes) ................................ 18

10 - Radial Distributions of the Harmonic Amplitudes(Vx/V) of the Longitudinal Velocity Componentfor N=T through 3 ..................................................... 19

11 - Radial Ditributions of tihe Harmonic Amplitudes(x/V)N of the Longitudinal Velocity Componentfor N=4 through 8 ..................................................... 20

12 - Radial Distributions of the Harmonic Amplitudes(17,/V)N of the Tangential Velocity Componentfor N=l through 4 ..................................................... 21

13 - Radial Distributions of the Harmonic Amplitudes(VT/V)N of the Tangential Velocity Componentfor N=5 through 8 ..................................................... 22

14 - Contour Plot of the Longitudinal ComponentIso-Wake w = (1-Vx/V) for the AO-177(Model 5326) ............................................................... 23

15 - Radial Distribution of the Wake GradientParameter for Three Trim Conditions ....................................... 24

Al - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -

Radius Ratio = 0.359, Experiment I ........................................ 28

iv

Page 9: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Page

A2 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.556, Experiment 1 ......................................... 29

A3 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.774, Experiment 1 ..................................... 30

A4 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 1.017, Experiment 1 ..................................... 31

A5 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios - 32Radius Ratio = 1.178, Experiment 1 .....................................

A6 - Radial Distribution of the Mean Velocity ComponentRatios, Experiment 1 ................................................... 33

A7 - Radial Distribution of the Mean Advance Angle andthe Maximum Variations of the Advance Angle forModel 5326, Experiment 1 ............................................... 34

BI - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -

Radius Ratio = 0.359, Experiment 2 ..................................... 44

B2 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.556, Experiment 2 ..................................... 45

B3 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.774, Experiment 2 ..................................... 46

B4 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 1.017, Experiment 2 ..................................... 47

B5 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 1.178, Experiment 2 ..................................... 4F

B6 - Radial Distribution of the Mean Velocity ComponentRatios, Experiment 2 ................................................... 49

B7 - Radial Distribution of the Mean Advance Angle and theMaximum Variations of the Advance Angle for Model5326, Experiment 2 ..................................................... 50

V

Page 10: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Page

Cl - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.359, Experiment 3 .................................... 60

C2 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.556, Experiment 3 .......................................... 61

C3 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.774, Experiment 3 ........................................ 62

C4 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 1.017, Experiment 3 ........................................ 63

C5 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -

Radius Ratio = 1.178, Experiment 3 ........................................ 64

C6 - Radial Distribution of the Mean Velocity ComponentRatios, Experiment 3 .................................................. 65

C7 - Radial Distribution of the Mean Advance Angle andthe Maximum Variations of the Advance Angle forModel 5326, Experiment 3 ................................................... 66

O1 - Circumferential Distribution of the Longitudinal,Tangential and Rddial Velocity Component Ratios -

Radius Ratio = 0.359, Experiment 4 .................................... 70

D2 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.556, Experiment 4 ........................................ 77

D3 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 0.774, Experiment 4 ........................................ 78

D4 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios -Radius Ratio = 1.017, Experiment 4 ........................................ .7(

D5 - Circumferential Distribution of the Longitudinal,Tangential and Radial Velocity Component Ratios - I

Radius Ratio = 1.178, Experiment 4 .................................... 80

D6 - Radial Distribution of the Mean Velocity ComponentRatios, Experiment 4 .................................................. 81

vi

Page 11: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Page

D7 - Radial Distribution of the Mean Advance Angle and

the Maximum Variations of the Advance Angle for

Model 5326, Experiment 4 .............................................. 82

LIST OF TABLES

1 - Comparison of the Mean Velocity Component Ratios and

other Derived Quantities for Experiment 21 (May 25

1974) and Experiment 1 (August 1980) ..................................

2 - Comparison of the Mean Velocity Component Ratios and

other Derived Quantities for Experiments 2, 3, and

4, Displacement 26,390 Tons (26,810 tonnes) .............................. 26

Al - Listing of the Mean Velocity Component Ratios, the

Mean Advance Angles and other Derived Quantities,

Experiment 1 .......................................................... 35

A2 - Harmonic Analyses of Longitudinal Velocity Component

Ratios at the Experimental Radii, Experiment 1 ........................... 36

A3 - Harmonic Analyses of Longitudinal Velocity Component

Ratios at Interpolated Radii, Experiment 1 ............................... 37

A4 - Harmonic Analyses of Tangential Velocity ComponentRatios at the Experimental Radii, Experiment 1 ........................... 38

A5 - Harmonic Analyses of Tangential Velocity Component

Ratios at the Interpolated Radii, Experiment 1 ........................... 39

A6 - Input Data for Wake Survey Analyses, Experiment I ........................ 40

Bl - Listing of the Mean Velocity Component Ratios, theMean Advance Angles and other Derived Quantities,

Experiment 2 ... .. .................................................... 51

B2 - Harmonic Analyses of Longitudinal Velocity ComponentRatios at the Experimental Radii, Experiment 2 ........................

B3 - Harmonic Analyses of Longitudinal Velocity Component

Ratios at Interpolated Radii, Experiment 2 ............................... 53

B4 - Harmonic Analyses of Tangential Velocity Component

Ratios at the Experimental Radii, Experiment 2 ........................... 54

55 - Harmonic Analyses of Tangential Velocity Component

Ratios at the Interpolated Radii, Experiment 2 ........................... 55

B6 - Input Data for Wake Survey Analyses, Experiment 2 ........................ 56

vii

Page 12: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

P'age

C1 - Listing of the Mean Velocity Component Ratios, tile

Mean Advance Angles and Other Derived Quantities,

Experiment 3 . .......................................................... 67

C2 - Harmonic Analyses of Longitudinal Velocity Component

Ratios at the Experimental Radii, Experiment 3 ........................... 68

C3 - Harmonic Analyses of Longitudinal Velocity Component

Ratios at Interpolated Radii, Experiment 3 ............................... 69

C4 - Harmonic Analyses of Tangential Velocity Component

Ratios at the Experimental Radii, Experiment 3 ............................ 70

C5 - Harmonic Analyses of Tangential Velocity ComponentRatios at the Interpolated Radii, Experiment 3 ............................ 71

C6 - input Data for Wake Survey Analyses, Experiment 3 ........................ 72

DI - Listing of the Mean Velocity Component Ratios, the

Mean Advance Angles and Other Derived Quantities,

Experiment 4 .......................................................... 83

D2 - Harmonic Analyses of Longitudinal Velocity Component

Ratios at the Experimental Radii, Experiment 4 ........................... 84

D3 - Harmonic Analyses of Longitudinal Velocity ComponentRatios at Interpolated Radii, Experiment 4 ............................... 85

)4 - Harmonic Analyses ot Tangential Velocity Component

Ratios at the Experimental Radii, Experiment 4 ............................. 80

D5 - Harmonic Analyses of Tangential Velocity Component

Ratios at the interpolated Radii, Experiment 4 ........................... 87

1)6 - input Data for Wake Survey Analyses, Experiment 4 ........................ 88

viii

Page 13: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

NOTATION

Conventional Symbol Used on Definition Units*

Symbol Computer Plots

A COS COEFF Cosine coefficient of the Nth -

harmonic

BN SIN COEFF Sine coefficient of the Nth _harmonic

CB Block coefficient

C P Prismatic coefficient

CX Maximum section area coefficient -

D Propeller diameter L

G W Wake gradient parameter

J JV Apparent advance coefficientV ~Jv=V/nD

N N Harmonic number

n Propeller rate of revolution(rps) Rev/T

r/R or x RAD Radial distance (r) from pro-

peller axis expressed as ratioto propeller radius

rhub Hub radius L

R Propeller radius L

Ship displacement volume i3

V Ship or model velocity L/T(free stream)

V R(x,) VR Radial component of fluid L/Tvelocity at a given point

V (x) Circumferential average LITR radial velocity component

M mass; L length; T time.

ix

Page 14: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Conventional Symbol Used on Definition UnitsSymbol Computer Plots

V R (x, )/V VR/V Radial velocity ratio

RR(x)/V VRBAR Average radial v.elocity ratio

VT(X,(,) VT Tangential component of the L/Tfluid velocity' at a givenpoint

VT(x) Circumferential average L/Ttangential velocitycomponent

V (X,')/v VT/V Tangential velocity ratioT

V T(x)/V VTBAR Average tangential velocity ratio -

T()/V)N AMPLITUDE Amplittde (BN for single-screw symmetric; C N otherwise)cf Nth harmonic of tangentialvelocity component ratio

Vx(X,2-) VX Longitudinal component of L/Tfluid velocity at a given

point (parallel to propelleraxis)

V xX) Circumferentiil average L/D

velocity component

V (x,,I)/V VX/V Axial velocity ratiox

V x(X)/V VXBAR Average axial. velocity ratio

(x)/V)N APLITUDE Amplitude (AN. for single-screw symmetric; CN otherwise)of Nth harmonic of longitudinalvelocity component ratio

VX (x,=) x (x ,) - VT (x,',)tan .- ) (I/Tc longitudinal velocitr component

corrected for Langentialvelocity

Number of propeller bjades -

x

Page 15: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Conventional Symbol Used on Definition UnitsSymbol Computer Plots

N PHASE ANGLE Phase angle of the Nth harmonic deg

l-w x(r/R) l-WX Volumetric mean velocity ratio -

corrected for tangential velocityT r/R

2 r (VXc(X)/V)xdx

rhhub/Rl-X = (r/R) 2_ (rhub /R) 2

where V (x)/V =

c

VV21T dO

0

1-wx) 1-WVX Volumetric mean velocity ratiowithout tangential velocity

correction

r/R

2J(V(x)/V)xdx

hub/Rl-wvx2 2

(r/R) - (r hub/R)

S(x,O) Advance angle for a given point degin flow

(x) BBAR Circumferential average advance deg

angle

+Aa BPOS Variation of maximum advance degangle from the mean value(see sketch)

-A1U BNEG Variation of the minimum advance degangle from the mean value (seesketch)

xi

Page 16: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Conventional Symbol Used on Definition Units

Symbol Computer Plots _ _

ANGLE Position angle of point in wake deg

field, measured positive counter-

clockwise from 12 o'clock, looking

forward

PIc't c'

ITV ..i PropC~cr

VELOCITY DIAGRAM OF BETA ANGLES

xii

Page 17: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

ABSTRACT

Wake survey measurements of the nominal wake behind

the AO-177 hull have been obtained from model experiments

and are presented for cases involving trim variations and

a slight change in displacement. Extensive tables and

plots of the basic wake data display the three velocity

component distributions, summaries of useful averaged wakequantities, and distributions of wake harmonics. Radial

distributions of a wake steepness parameter are compared

ior the various trim conditions, and it appears that any

difficulties produced by the ship wake are not introduced

by the expected changes in trim.

ADMINISTRATIVE INFORMATION

This work was funded under Naval Sea Systems Command (NAVSEA) Work Request

Number OH738, Ship Performance Department Work Unit Number 1532-100.

INTRODUCTION

The AO-177 Class Naval Auxiliary Oiler is a single-screw, finely-shaped oil

tanker equipped with a seven-bladed, 45-degree skewed propeller operating behind a

conventional clearwater stern arrangement. Some of its principal particulars are

given below.

Particulars of the AO-177

U.S. Customary S.I.

Waterline Length, LWL 560.5 ft 170.8 m

Beam 88 ft 26.8 m

Mean Draft (Design) 32.5 ft 9.9 m

Mean Draft (Trial) 31.5 ft 9.6 m

Displacement (Design) 27,380 Tons 27,820 tonnes

Displacement (Trial) 26,390 Tons 26,810 tonnes

Propeller Diameter, D 21 ft 6.4 m

Vertical Tip Clearance, a 6.12 ft 1.865 mz

Horizontal Tip Clearance, a 11.4 ft 3.48 mXt

Full Power Speed, V 21.5 knots

Page 18: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Particulars of the AO-177 (Continued)

Form Coefficients Based on L L:

CB = 0.605

Cp = 0.b2

Cx = 0.975

-VILL = 5.24 x 10WI.

On Builders Trials conducted in July 1980 with the first of thi (las A-1 -7;

there were experienced serious levels of airborne noise, traces o propeller hl.,dt

Scavitation erosion with bent trailing edge, and some unpleasant localized srut tur.i,

vibration levels. It is likely that all Lhese problems can he traced in ont. wa,, ,r

another to the characteristics of fluctuating cavitit- that appi;ar near the prU ,

blade tips as each blade passes through thl. large wakc -hadow behi nd the houI

centered about the 12 o'clock position of the propIll .r disc. ihe do.tail s of tbi

wake are important to understand ing th sour:t i ,1 .in. p ri,, c I I k r ic d i fiL ii

As best as can be dtrmined, the ifiitia] trial w.) s rin in I how-dowin trim

condition that differed somewhat from the design t,,ndit ion. It co.ld ut ht

e-,tima ',l with assur.:nc just what the elt eits .,i tri% wcrc ,it til,, wake distribu-

Lioll o1 thi ship, so thL' experiments describtd ill til I1(1-l t si-ri pertlormed to

,,st ibi ' s 1 what ch l ges we rc itt rodiicu d .L-pIICr.t i,,n i ti ,.t :I (t+, d rit i i tIlt

tril, ,i nd also to estibl ish .111' trend -111 i 1- r .:, , ,

t ioln.the estimated trial displacement (i, 20, 3) 0 - (.b,.li) t, - '..

percent ot the original full load design value. NelIIt iV ' n -i [ itI t i I I

away from the design condition, can be del itd ini i rm> , I , - il i l sed h c i . ,

length ivetween perpendiculars and the ditferinct, in tr im.

Trim iudit ion I ic it i v

Design 1.5 ft (0.457 ll) x "t t1

Trial (Est imated) I .0 t ((. 30)5 m) x l,1, ,).

Extreme Trim Cast 3.5 t(I .067 m) \ I, I. '.' ac

Page 19: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

PROCEDURE

Wake survey experiments were conducted in the deep water basin of Carriage 2

using David W. Taylor Naval Ship Research and Development Center (DTNSRDC) Model

5326 which represents the AO-177 hull with a linear scale ratio of A = 25.682. The

model was run with the bilge keels attached, but vith the rudder removed to

accommodate the wake survey probe.

The three velocity components ot the wake velocity were obtained with DTNSRDC

pitot tube rake Number 8 connected to a bank of differential pressure transducers.

This rake consists of five, 5-hole spherically-headed pitot tubes mounted on a foil

shaped housing. The tips of the pitot tubes were located at a nominal propeller

plane taken as 4.62 ft (1.408 m) att of Station 19.5 full-scale, corresponding to

the location of tile plane of the original wake survey reported by Renucrs and

iendrican. 1 As indicated in Figure 1, tile experimental wake plane is 1.12 ft

(0.3414 rr) aft full-scale of the propeller ref rence plane, and happens to pass

through the leading edge of the propeller swept outline at a radius of about 0.75R.

Some details of the propeller geometry for DTNSRDC Propeller Number 4677 are given

by Hendrican and Remmners 2 and Valentine and Chase.3

The radial locations of the pitot tubes are of course fixed on the model

apparatus, and are expressed nondimensionallv as radius ratios r/R, given for full-

stale propeller diameters of 21 tt (6.4 m) and 23 it (7.01 m) in the following

tab ic.

Radius Ratios, rR

1)-21 ft (6.4 m) 1)=23 ft (7.01 m)

Tube 1 0.359 0.328

Tube 2 0.556 0.508

Tube 3 0.774 0.707

Tube 4 1.017 0.929

Tube 5 1.178 1.070

The radius ratios for the 23 ft (7.01 m) diameter are useful for "ertain

comparisons that overlap with tie original AO wake sUrvev results of Re ferenck-

References are listed on Page 9.

Page 20: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

However, the final design propeller installed on the ship has a diameter of 21 ft

(6.4 m), and all the new wake data have been analyzed on that basis. The radial

positions of the pitot tube locations and relative position of the 21 ft (6.4 m)

propeller disc with respect to the afterbody hull sections are shown in Figure 2.

Certain other definitions and conventions are also presented in Figure 2. When

viewed looking forward, the angle e is measured positive counterclockwise, with zero

at 12 o'clock. The tangential and radial velocity components, VT and VR respectively,

are taken as shown in Figure 2 to agree with the convention described by Hadler and4

Cheng.

The shape of the pitot tube rake is such that the trim of the model could be

altered by forces generated on the rake in various angular positions. In order to

maintain tile natural trim the same throughout each survey, the model was first towed

free to trim with the rake in the zero degree position for each experimental

condition at a speed corresponding to the ship speed of 20 knots. The model was

then locked in trim for that particular experiment.

Five wake survey experiments reported on here correspond to a ship speed of

20 knots and the following ship conditions of displacmeent and trim.

Date Experiment Displacement Trim

No. (Tons) (tonnes) (ft) (m)

May 1974 21 27,380 27,820 1.5 0.457 x Stern

Aug 199 0 27,380 27,820 1.5 0.457 x Stern

Aug 1980 2 26,390 26,810 1.5 0.457 x Stern

Aug 1980 3 26,390 26,810 1.0 0.305 x Bow

Aug 1980 4 26,390 26,810 3.5 1.067 x Bow

The new data presented in this report are for the latter four cases (Experiments 1

through 4).

The model basin water temperature was constant throughout the test period at

74 deg Fahrenheit (23 deg Celsius).

RESULTS AND DISCUSSION

Results of the individual wake experiments are presented in both graphical and

tabular form in Appendices A throupih D for the results of Experiments 1 through 4.

respect ivelv. In each appei dix, the plotted data for the three , Ilocitv component

ratios are given in the first five figures. Two add it iona I figures i11 each

append ix show the radial di st r ibut ions of the mean vel oc i ty 0 Component rat io s and the

4

Page 21: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

advance angles. Five of the tables of each appendix present summary information on

the several averaged velocity component ratios, advance angles, and the results of

harmonic analysis for the longitudinal and tangential velocity components. The

final table in each appendix presents the measured data for the three velocity

component ratios at the experimental radius ratios. All the interpolated results

in the appendices have been based on propeller diameter D=21 ft (6.4 m).

To confirm and also to establish a basis on which to correlate the wake survey

data, Experiment 1 (August 1980) of the present series was performed with the same

condition as Experiment 21 (May 1974) reported in Reference I. A comparison between

some results of these two experiments at a condition representing a full-scale

displacement of 27,380 Tons (27,820 tonnes) and 1.5 ft (0.457 m) trim by the

stern is given in Table I on the basis of propeller diameter D=23 ft (7.01 m). The

repeatability of magnitudes of the various averaged wake quantities in the outer

half of the propeller disc ranges from I to 3 percent for V X/V and 0.2 to 2 percent

for 1-wX , At the innermost measurement radius, the repeatability degrades to plus

or minus 6 to 8 percent for those same quantities.

The effects of trim may be displayed in several ways. Table 2 summarizes the

averaged velocity ratios and other derived wake characteristics for tile results of

Experiments 2, 3, and 4 pertaining to a full-scale displacement of 26,390 lons

(26,810 tonnes). Plotted data for the detailed trim comparison of the three

velocity componPnt ratios versus the position angle " are given in Figures 3 through

7. Figure 8 is a composite graph of the radial distributions of tile several

averaged velocity component ratios. Figure 9 shows comparisons of the radial

distributions of the advance angles.

In general, it appears that the influence )f trim-by-tlie-bow is to deepen the

wake shadow very slightly, noticeable only at tile inner radii. That is, the V X/V

ratios near the 12 o'clock position in the wake field ar, decreased svst,.at lea] lv

as the trim is changed from 1.5 ft (0.457 m) by the stern to 3.5 ft (1.067 m) hv

the bow. At the middle and outer radii (r/R = 0.774 and outward) the velocitv

patterns for V X/V at the different trims become indistinguishable. These trends irc

reflected in the slight decreases in the circumftrential ivarigc ve loit v ratio

V X/V and the volumetric mean velocity ratlo 1-w withi incre.lsing,, trim-b%'-thc-,how.

The effect on the magnitudes of both V X/V and 1-wX ranges t rm bouti t 7 t,, 8 pti, cot

decrease at the innermost radius to about 2 percent d ,rc, ~c ;it tki ouit k , m st r. id i

Page 22: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

in Figure 9, the effect of trim on mean angle of advance 3 is negligible even

at the inner radius ratios. The variations of minimum and maximum advance angles

from the mean, -AS and +AS, indicate that increasing trim-by-the-bow tends to

exaggerate slightly the deviations of advance angle on the negative side. Qualita-

tively, this indicates that increasing bow down trim produces slight increases in

the mean foil section angles of attack, so that suction side cavitation would be

slightly exaggerated as well. Quantitatively, the effect is very small, and is

confined to the inner radii of the propeller disc.

It is interesting to try to discern any effect of trim on the wake harmonics.

Figures 10 and 11 contain a series of composite plots for the harmonics N=l through

8, ;howing the radial distributions of harmonic amplitudes for the longitudinal

velocity component V x/V. Figures 12 and 13 contain the same series of comparisons

for the tangential velocity component V T/V. This presentation is useful for

displaying the harmonic amplitude as well as the location of changes of phase angle

(where the amplitude curve crosses zero). From these graphs, the measurable

influence of trim on the harmonic amplitudes is only slight, and confined to the

lower harmonic orders.

For the case of the longitudinal velocity component harmonics (Figures 10 and

1I), there is a slight increase in the magnitude of the harmonic amplitude with

increasing bow-down trim, at the inner radii (r/R , 0.6) for the orders N=I and 2.

This is ruvcrscd foL N=J, and appears mixed for the higher orders. This is con-

sistent with the slight deepening of the V /V velocity defect at the inner radiixthat was noted previously.

For the case of the tangential velocitv component harmonics (Figures 12 and

13), the eftect of increasing bow-down trim is to reduce the harmonic amplitude at

the inner radii for N=I. The higher harmonic orders show no particular effect of

t r i m.

In general terms, the wake of the AO-t77 has a definite spike-like character,

with a deep velocity defect and rather steep velocity gradients centered about the

12 o'clock position. These are prominent featurts evident in Figure 14 which

Is an iso-wake contour plot corresponding to the trial condition of 26,390

Ions (26,810 tonnes) displacement and 1 it (0.305 in) trim by the bow. One measure

ot the relative steepness of suchI a wake has been suggested by t)dabasi and5

Fitzsimmons, who have defined .a parameter describing the io al wake gradient per

unit axial velocity at a given radius.

6)

Page 23: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

I dw/dlG -- R 1-w

where the local circumferential wake slope is dw/d0, 0 is in radians, and w is

the local wake.

It has been proposed in Reference 5, as part of a complete wake criterion for

avoiding problems with cavitation-induced pressure fluctuations, that the wake

gradient parameter should satisfy

GW < 1.0

inside the angular interval 0B ( eB to either side of the 12 o'clock position), and

for radii ranging from 0.7R to 1.15R. The angular interval 0B in degrees depends on

the number of propeller blades

6=360B Z

so for the seven-bladed AO propeller, 0, = 61.4 degrees. This criterion is

supposed to be based in part on wake data from model experiments of ships with

known propeller-excited vibration problems. The complete wake assessment scheme of

Reference 5 has become known as the British Ship Research Association (BSRA) wake

quality criterion, and although it has been widely quoted, there is as yet

relatively little published evidence on how well it works. Only the wake gradient

part of it is conisdered here, and is used only to indicate the relative effects of

trim.

Figure 15 is a composite plot of the radial distribution of the wake gradient

parameter GW for the AO-177, showing the effects of trim changes compared with

the original design case of displacement and trim. The GW values are shown along

the ray 0 = 300 which is near the edge of the recommended angular interval ' JB,

and passes through the characteristic wake slope feature of the prominent hull

wake shadow. On the basis of the gradient paramcter, it appears that the wakc of

this ship is quite steep. The C exceeds 1.0 everwhere in the interval 0.7R . rw

< 1.15 R. It is fair to state that this constitutes a single indicator of a

possibly troublesome wake, but without firmer connection between wake steepness and

fluctuating propeller-induced pressures and resulting hull vibration or airborne

7

Page 24: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

JP- -. . . . . ... . . . .

noise problems, a general conclusion is premature. What is useful to the present

discussion is to note that trim seems to exert a relatively minor effect on this

steepness tendency in the crucial outer radius region. It appears that bow-down

trim variation in the range considered should not introduce any substantially worse

wake characteristics than exist already with the wake produced in the original trim

condition. It should be noted that at the time of the original AO-177 wake

experiments, wake quality assessment schemes were not available for making

preliminary judgments on the possibility of problems with the interaction of steep

wakes and propeller-induced fluctuating pressures.

CONCLUSIONS

1. Extensive wakedata are made available for future investigations of the

AO-177 propeller-wake interaction problems.

2. There are noticeable, consistent, but small changes in the velocity patterns

and harmonic amplitudes of the wake of the AO due to trim-by-the-bow. The effects

are discernible mainly at the inner radii (typically r/R < 0.6) and are confined to

the region centered about the 12 o'clock position in the wake. The changes due to

the maximum trim excursion of 0.52 deg are only slightly larger than the typical

repeatability bounds for a wake survey. The effect of a trim change of 0.26 deg

appears to be within the error bounds inherent in a wake survey experiment.

3. Radial distributions of the wake gradient parameter GW > 1.0 for this wake

shows that difficulties from unsteady cavitation pressure pulses may he expected.

The effect on G of the trim change of 0.26 deg is small, and would not be ex ectedW

to produce new or different problems with the wake.

ACKNOWLEDGMENTS

The authors are grateful to Ms. Rae Hurwitz and Mr. Stewart Jessup for perform-

ing the analyses of the wake survey data. The assistance of Mr. Mark Vranicar in

preparing the graphs is also appreciated.

Page 25: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

REFERENCES

1. Remmers, K.D. and A.L. Hendrican, "Analysis of Wake Survey of a Naval Auxiliary

Oiler (AO-177 Class) Represented by Model 5326," NSRDC Report SPD-544-05 (May 1974).

2. Hendrican, A. and K. Remmers, "Powering and Cavitation Performance for a Naval

Fleet Oiler, AO-177 Class (Model 5326 with Propeller 4677)," DTNSRDC Report

SPD-544-14 (January 1976).

3. Valentine, D.T. and A. Chase, "Highly Skewed Propeller Design for a Naval Auxiliary

Oiler (AO-177)," DTNSRDC Report SPD-544-12 (September 1976).

4. Hadler, J.B. and H.M. Cheng, "Analysis of Experimental Wake Data in Way of

Propeller Plane of Single and Twin Screw Ship Models," SNAME Trans., Vol. 73(1965).

5. Odabasi, A.Y. and P.A. Fitzsimmons, "Alternative Yethods for Wake Quality

Assessment, "International Shipbuilding Progress, Vol. 25, No. 282 (February 1978).

6. Harvald, S.A., "Potential and Frictional Wake of Ships," Trans. R.I.N.A.,

Vol. 115 (1973).

9

Page 26: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

i----L PITOT TUBE PLANE

RUDDER4.62 ft(1.408 Mn). 0.22D

U12 ft(0.341 in). .05330

BASE LINE

STA. 19 1/2 STA. 19

Figure 1I AO 177 Wake Rake Pitot Tube Location in Relationto the 21-Foot (6.4 m) Design Propeller

10

Page 27: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

24 ft

1 6 ft 1 7

8 ft \10.359 rR

0.774 r/R

PROPELLER R =10.5 ft(e.4 M)

1.017 r/R

1.178 rIR

Fig~ure 2 \nA 1 77 STERN, BODY WLNLT T 1K1BA]I

Page 28: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

- - -DISPLACEMENT = 26,390 TONS (26,810 tonnes)

D = 21 ft (6.4 m)

0 --1 _

"C 4 !d

utIC[-I E T0 E IT 2 I ft m) x STE

El EXEIMN 3 TRME 1. ft(.0 m O

' i : ___

__ I

j -4 i-F--

*N L [4 5LC RL~S

o EXPERIMENT 2 TRIMMED 1.5 ft (0.457 m) x STERNo EXPERIMENT 3 TRIMMED 1.0 ft (0.305 m) x BOW~'

A EXPERIMENT 4 TRIMMED 3.5 ft (1.067 m) x BOW

Figure 3 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAl. AND

RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = 0.359COMPOSITE OF EXPERIMENTS 2, 3, AND 4

12

... ... I= = logo

Page 29: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

g DISPLACEMENT 26,390 TONS (26,810 tonnes)

- 21 ft (6.4 m)

4 O Z , Z

q / I I N D I r

0 EI E 3 T t ( m x B

A EXEIET4TIME 3. ft (106 m) x BOW

C O OF E.N 2, , AN ___ _ ____

-13

r C Z 4C iO C i OG 'Zcc ' {1] 4 '00 r

A0 .0,

20 ,2a" C ,' & ,E I '0 t, "'7 '

R.NU[! F_ , DLRLS

o EXPERIENT 2 TRIMMED 1.5 ft (0.457 m) x STERNo] EXPERIMENT 3 TRIMMED 1.0 ft (0.305 m) x BOWAEXPERIMENT 4 TRIMMED 3.5 ft (1.067 m) x B30W

Figure 4 - CIRCUMFERENTIAL DISRTIBUTION OF THE LONGITUDINAL, TANGENTIAL ANDRADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = 0.556

COMPOSITE OF EXPERIMENTS 2, 3, AND 4

13

Page 30: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

DISPLACEMENT = 26,390 TONS (26,810 tonnes)D 21 ft (6.4 m)

L0 6

-0 6

0.9-- h-- a __

aA

0.6-

0 4C 4IF

go I

cr_ d. It

20 20 40 0 60 CC CC 120 '40 'CC 16C 200O 220 240 26C 2110 3CC jZC 340 cqNV-I.E !N BECREES

* EXPERIMENT 2 TRIMMED 1.5 ft (0.457 m) x STERNO EXPERIMENT 3 TRIMMED 1.0 ft (0.305 mn) x BOWA EXPERIMENT 4 TRIMMED 3.5 ft (1.067 m) x BOW4

Figure 5 -CIRCUMFERENTIAL S,'TRIBUTION OF THE LONGITUDINAL,, TANGENTIAL ANDRADIAL VELOC. COMPONENT RATIOS - RADIUS RATIO = 0.774

COMPOSITE OF EXPERIMENTS 2, 3, AND 4

14

"-- °6"A'

Page 31: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

! I DSPCEN ne2s)9ILACEMENT 26,390 TONS (26,810 ton

' D 2 ft (6.4 m)

t F

c i 6 , I , - _ 1

If I

T i F

qcl

CO P S T OF EXPEIME T 2, 3, AND

'tL , i ,1

* * a a 7II

4C !6C ' C

o EXPERIMENT 2 TRIMMED 1.5 ft (0.457 m) x STERN

O EXPERIMENT 3 TRIMMED 1.0 ft (0.305 m) x BOW

A EXPERIMENT 4 TRIMMED 3.5 ft (1.067 m) x BOW

Figure 6 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL AND

RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO =.017

COMPOSITE OF EXPERIMENTS 2, 3, AND 4

Page 32: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

DISPLACEMENT = 26,390 TONS (26,810 tonnes)D = 21 ft (6.4 m)

tii

C~ P 1

-LOW I

IC-- - -- - - -- - - ------ ---

'I,

qNC,t L N [GECREELS

0 EXPERIMENT 2 TRIMMED 1.5 ft (0.457 m) x STERN13 EXPERIMENT 3 TRIMMED 1.0 ft (0.305 m) x BOWA EXPERIMENT 4 TRIMMED 3.5 ft (1.067 m) x BOW

Figure 7 - CIRCUMFERENTIAL DISTRIBUTION OF TE LONGITUDINAL, TANGENTLAL AND

RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = 1.178

COMPOSITE OF EXPERIMENTS 2, 3, AND 4

16

Page 33: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

o TRrED 1.5' x STERN0i D KZ.ERIMZNTAL RADII C3 TRIMMED 1.0' x BOW

A TRIMMED 3.5' x BOWX( MIERPLATE RADIII

T _ _ _ _ -4.

i 0.881-I

K K,----------- ,T-------- --

Ti

0 . 0 .3 0 . 8 0 . 0 . 0. 0 . . . . .

R U I .

/~ i

I - , I -- ------- .- L. --. ,- L-1

RA DIU- R D- -. .f

Fi ur - RA TA D I R BT o OF il' ! 'IA-EO IY .M~(% : A T

-i-- 4 - -- t- +------,--,

, 2- _ ___ ____T-, __or'I,

I -

• 1 ,i - - ,

ao _ _ _ _ _ __- -_---- . . .

RDSATI'O 2,IAM. 23ft

0 0.3 0.4 0 0.0 0.7 08 0.9 1.0 1.1 1.21.RADIUS RATIO. DIAM.= 21 ft

Figure 8 - RADIAI. PISTRI BUrTON OF T1lE 1 MAN V!HOC'ITIY 'OM PO NF'T RATT OS,

COMPOS ITFV O' EXIEFRI ,1I,51TS , I , A\N!) /4

DISPLACiEME'NT 26,390 TONS (2f. ,81 0 tcnnis)

17

Page 34: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0 TRI2MED 1. 5' x STERN0 C36 EXPERIDEWA.L RADII - a TRno 1.0' x Bow

bO X ITROLATED RADII ' TRIMED 3.5' x BOW

,: = 0.881 ' i'

c.

a.

RADIU RAIO DIM 3I

0.3__ 0.4__0.6__0.0 _0.7_ _0. ___0. ____.0 _1.1 __1.2 1.

RA IU RA IO DI . 21' It

Fi-u 9

V RAIS OFTO. ADVANCE 23GL FORMDL52

* I I I:

COMPOSITE OF EXPERIMENTS 2, 3, AND 4

DISPLACEMENT 26,390 TONS (26,810 tonnes)

I 3-

ii

Page 35: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Exp. No. 1 1.5 ft(O.457 *)x Stern2 -- - --- 1.5 ft(0.457 m) x Stern 1) 21 f,(6.4 m)3 -- ~--- - 1.0 ft(0.305 m) x Bow

4 - -Q-- -3.5 ft(I.067 m) x Bow

01

N I.

-.05 t.vx

1-. 0 . .....

.2 r - - - - - - ---- ....

.. ......

x( )..

.

2

----H----- ---- -------T T( ) .

10...

-. 20

-.0

vx0?04fS1vAl' A -

3iur ..-.D....TRB'IO S ff T~E iAR fN ' *M'L 1. ... a 11 .N1T~

0IDNI EOIY iP~V.

Page 36: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Exp. No. 1 ----- -- 1.5 ft(U.457 m) X Stern~2 1- -- A .5 ft(0.45/ .. 7 x t r L 6.4

3 - -- a-- 1.0 ft(0.105i n) x Bow4 -Q--- 3.5 ft(1.067 m) x Bow

N 4

x(-) .05

-. 10.0

N 5

0

x80

C)0

Fiue6 AILPSRBTOSO HE1~)OICA)!I ~~( .vn

I.ONCI~~~~~~~~~~~~ 6)P A.VIC Y 'I'N - ' I < C

Page 37: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Exp. No. 1 0 - 1.5 ft(0.457 m) x Stern2 -------- 1.5 ft(0.457 Ki x Stern~ ) 21 it.(6.4 m)3 --------- 1.0 ft(0.305 m) x Bow

4 -3.5 ft(1.067 m) x Bow

VT -.05 ,.rv .. ...

-.10 t________________

VT

VT 3

(-)-

1 4

-.05 (6 ~ H{

kA1)1 '~1; PA , r/P

r I - M 1A\ I li 1 1 P, I i i I

IA I I: 1"I'~

Page 38: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Exp. No. 1 O --- 1.5 ft(0.457 m) x Stern2 ------ 1.5 ft(0.457 m~) x Stern D =21 ft(C).4 m)3 --- --- 1.0 ft(O.305 mn) x Bow

4 -- 3.5 ft(I.067 m) x Bow

-.05

N 6TV - . .. . . . .-. . . .

VT

V 0

-. 05

(-T)v 0

TT

TANGENTI AL VELOCITY COMPONFNT, LOP)I 5 THjROUGHj lj

Page 39: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

26,390 Tons (26,810 tonnes) DISPLACEMENT1.0 ft (0.305 m) TRIM BY THE BOW

0

180

Figure 14 -CONTOUR PLOT OF 'ithE TONG! TITIfINAI. COMPONENT ISO-WAKE:W= (I -V /V) FOR TliE A0 1 77 (MoOFr, 5326)

?3

Page 40: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

E3 --- 1.5 ft (0.457 m) TRIM x STERN, DISPL - 27,380 Tons(27,820 tonnes)--~--1.5 ft (0.457 m) TRIM x STERN, DISPL = 26,390 Tons(26,810 tonnes)

-- -1.0 ft (0.305 m) TRIM x BOW, DISPL= 26,390 Tons (26,810 tnnnes)-k--3.5 ft (1.067 m) TRIM x BOW, DISPL - 26,390 Tons (26,810 tonnes)

i C

. . .Slope at

4.0......-. - =300 gives

0. dw d-. da de V

3.0 . C ----

20 2c 10 5-C c

-*Region of Interest :

2.0

S 1.0-

0.2 0.4 0.6 0.8 1 .01.

RADftUS RATIO, r/R

Figure 15 -RADIAL DISTRIBUTION OF THIE WAKE GRADIENT PARAMFTKSFOR THREE TRIM CONDITIONS

(Taken along the ray 30 degrees)

24

Page 41: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

-r)

11 rl ,-4 ) OD 01% 0000 Ic I I I

Ul ~ ~ ~ ~ ~ i cn %D mr 4 l -

-4 14 C

CN LlC oLl 00 In

m 0 CN cli N -1 -4 -4 .- -4.-4 H

> ~~

I r Cfl IT r-.- - r-- r-7N-ON

oSr- 4jo0C) Q) I

) -l

CC) Cl =C) CC C

Lr) ~ ~ ~ ~ ~ * C) 4.4 'T- lq I T-

Cr-~ C-I CCeCeC-CC ) CC) C) CC

~J* -0 CU

r, 0. C Lr r-r-- oC- co ) 0 C)i -4

C') ~ ~ ~ ~ ~ ~ 0 4) 0 DV C 04 a LPQ~~~~ ~ ~ ~ C) )C) 0C C )u91

Q) -

r-..- W7 0) -4 O-'--')c -CH r4 '0 C

-) SC31>-- 4 C N

255o Lor

Page 42: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

a '- T V)'-r4 M 10 mC4 C40

0~0 'D 00 co 00 r- 4-~U N ' t 0C0 '

<0 m LrLr)Lr C c) M r--- IT .- ~ V)Lncl ra-t --

0w- r- J) - 4 ()L) O

U, X0TL 00 00 0 L N0 ar-00 0

r-- r,4 r.- ,-s m~ 0- 4 C 0 c'- ,-. I C-j ODO .f <d

cli C 4 C14 0r00 00 000 M0

rw - n - - - - C14 C -4~c tr M f,C)Q > 0 D L0 - C 0 C 0C

Cl C, (a 0 0 0 0C.D ) I- c 0 0 0

'< I n O 0c r In -4 C1 - c 4 0 ,0

07 -00

~~2JZ ~ Q Q J~ )Z Q~-41 9 0 41-COO 0 JO 4-1 0 0 Ai00O

-4'1,aJ ~ X ~ X X~ 4

W4~~~~~~ ~ ~ ~ ~ C' l , 1 .1 C4e . jm'

Page 43: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

APPENDIX A

RESULTS OF EXPERIMENT I

Corresponding to

Trim 1.5 ft (0.457 m) by the Stern

Displacement 27,380 Tons (27,830 tonnes)

27

Page 44: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

2 9

0. 8X

0 1 1 11

0 A

0

"-- 0 .-----------------------

- \/ -i-o i 'i -,

' 2rt \

0 !,

Lz I0- - -I-.-- _ - --

-o 2 K - -i -f--

-20 0 20 40 60 80 100 120 140 !60 180 100 220 j40 260 260 -00 jio 340 3bO -1O

RNGLE IN DEGREES

Figure Al - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANCENTTAT, ANDRADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = 0.351.

EXPERIMENT 1

TRIMED 1.5 FEET BY THE STERN, DISPLACEMIENT 27,38 TONS

28

Page 45: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

S0 K0 4

E M

0 1

0 a ' 40 0 0 0G 20 40 50 0 C ' 00 C r

PIG IN L: " I

Fiur A2 CICMEETA DITIBTO O TH LNG UD ATNETI 1N

TRIMMIED 1.5 FEET BY TlE STERN, DISPLACEMENT 27,380 TONS

29

Page 46: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

o .Z

01.- -

0.6 -0.7

II

zC 0 40 60 6C 'CC 12C P40 '60 18C 200 ZC 240 2V iC CC ',0 14C C -,fl

RNCt E IN OVR E5

Figure A3 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL ANDRADIAL VELOCITY COMPONENT RATIOS - RADI1S RATIO = o.77t

EXPERIMENT I

TRIMMIED 1 .5 FEET BY TlE SiR,'TERN, IISPLACENT 27,380 TONS

30

Page 47: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0.

1.2

C .4

0.3

-

0.2

-i

Lo 0 20 40 60 O IOC 12b !40 !60 1 O 200 22O 40 260 BO 3GO 4G AC '-4RNME IN OECREES

Figure A4 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TA::GENTIAL AND

RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO =I .017EXPERIMENT I

TRIMMED 1.5 FEET BY THE STERN, DISPLACEENT 27,3,°,." TONS

31

Page 48: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0 6-

-F

0 C 0 40 C r r, CC0 4 f C! O0r C 40t C,' J 'CC C.

Figure A5 CIRCUM FERENTIAL DISTRIBUTION OF THPl, ONGTUDI)TNAL, TANGENTIAL ANDRADIAL VTlIOCITY COMPONENT RATIOS - RADIUS RATIO =l.178

EXPERIMENT 1

TRIMMED 1.5 FEET BY 1111 STERN, ISPLACEMENT 27, 320( TONS

132

Page 49: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

CIL FXPEREMTAL RADII 4 -

r n;TmRoLATED RADII -- KE)' I I -1 , -

I I _v I--i-

Ii 0. 881

X BX

G c

° I I t-Wvx I -i ,__ __ I K IK -v i~

--W X

I ,

c r T 1 W

0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.1 1.2RADIUS RATIO, DIAM.23 It

L i * .1 I I 11

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3RADIUS RATIO, DIAM.= 21 ft

Figure A6 - RADIAL DISTRIBUTION OF THE MEAN VELOCITY COMPONENT RATIOS

EXPERIMENT I

TRTMED 1.5 FEET BY TII7 STER', DI :1'IACIMIKNT 27,38(0 TN-S

'13

Page 50: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

rj 71 EXPERIMEM'AL RADII40 -X -) INTERPOLATED RADIIJ

+p.- -~0.881

cr -

~ 20Lj-- --- 4-

-4-J

0 . .3 0 4 . 0 .6 . . . . .

I . i - --L -- -- -- 4- -I - -- - L

F.P.IEN I

TPI'11 1.7 FE T 1) 11I IR

Page 51: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

o1 C i -

Coe. . . . . - -, . 3

0 w z. . (. * i. . 3 3 4.

0 'DI

N *.C, z c a

1-4,t 3

"L I- C .

-k 2. 3. IL

~ - ~ ~ ~ -ii) 0's)(35

Page 52: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

- c t~ C) (Ni

0) C) (N -(4 .4 s-4

CV) G. t)

4, (71U4

0 *Q

m QH

W-

if4c- if If -1.tUC i

" Ll ' ~ " -

- - C~ Ci C if ) .

- - H 16

Page 53: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

-4 re -4 eli . '(\j I. 4 m ~ r- (P 4 T ~ C

m C) .4 (NJ CNj (N (Nj .4 .C.4 C-1 m) C3 C3 CD 3 C

rLn

M) .7 .7 U U :' LEn r'. .4 D .4 . 4 . ~ .

0 Ci C') C:) C3. C) C7 C) %3C

0 C a. ENJ _ 2 (N

E-. 4~4C) C C3 cu C) a) Ci C 'C4 -44 C:3 C i Cj rl \

> 0 -. r- l- F'- IS'\ Cd ic (Nj 4I a) (\j f'- (NJ (p r- )4

<< V) C)1 C"$ C) C) C C) C3z -J E- H

Wci .4 aL (1i (Nj ff) mu 34) .4 4 (Ni1 (NJ ft:" U

X )C) C) eC) -T C)l C) kL w)

w cm rI cm :; C: C) CD

.4 - 4 -1 CCC) (j ">i) k-4 P., -1 4~ f) o. cc: .

Ci C' Ci C i C:) C) )

C") %V Ci j c' 'fl r(T

CI -4 C I f -4

C') C 'L (N C-,-

I4- 1 43 1 I I I I - I I

r-- c- C' C ,..4 . 1'- -.3 %L IN' a4 C '

(NItLD 1 C. (N0 (N it, li CM

I ) I- vt ( I I) k I i M V

44 r' 4 i -~4 -- .gi C'4 I4L C- Li c-, L' C'

C'. (' 4 I U. - cx ver'

ft .j( : --I- .

Ci )S4 i-i .7-4 _ Si )14 D-4 2)-4 91 17-

Page 54: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

.- 4 CO cr (TNa, O r-_ 1-4 Cuj

CC) Cl a) I a

C3 c~ C)p C) a

o (n . C) C', C)C) C7 Cl C) C)

CN .Qj u. 4 ci IC) f,

44-C-

14 CuC' \

0- P4.W C C C) C

I Il

C) C3

Haz~-

11-.3 ~

C/~ ~ L i w ) -4 ) .~

If,'

L11 W 4 fO 4

4-44C- 1, C-)

HI

38I- I 4 f

Page 55: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

U)~c CO ana' '

Go cl t ~ C: C.) C3 ID ) c iCD C) C.1 C2 C' C3 CD C2 C3

(\j or)4 ') - r.0- t'~J 1= C-) a C') a')1 C:) ?)

E-4 z . 4n C' C' C, C' C3 C' C3I

en

ci k ,- i3 -4 1 C' P j

Ca Cm C7: cl ) C CD C3 C)3

-T j* C S

WI 44 C, U') Cij C'C

w - ~ ' C' C. , C) C) C

0 on '- 00

L-1 i- a' - i

L II aF*

H~- ;) 71 . . C

CI')t~ '5 F- 4 'j , r)~39

Page 56: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

C °. o °° r°° , ° a..~,° e0° ,. °°o°-$t ,

a c--oo ccao e .... c--:o. .Cc.o oo ..

-. 0 0 0 0 0 - 00000.,000.0 0,. . * , . .000 0 ,

~ ~ ~ 1 ... . . ... . ... . . .. 0 . . . . .. °. .....

.P.4 .. . .0..,

H4H

.*.5 ,. .- w-,.-r.. .0.00 .J~ . Np°.-fl S. C .... • tI

rn-4 -

-~4 0

LnL

0...0 ... . . .... ....... .

. . . . . . .to. N A -.. ,S O c , .. C P~

O~~N4O.SJ ,r~~~ . . . . .. . . . . . . . . . .

04

Page 57: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

yz

0

g ... ....... .... ...... .... ...

o. . .o°,.°o... .oo. .o.°,.°°oo . o.,

0

>4

z co

..... oo..... .C.--. ...... ....... , ., N

> - I*** I .r t .V .i -.f. .-. . . .

~-41o~ ~ a,~~a.NC C..tC-itC~,.C~f fto~t-l

~fl 4JfC~e~..aa~a~CCC y3O CCC aC~,MC SMC

Page 58: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

APPENDIX B

RESULTS OF EXPERIMENT 2

Corresponding to

Trim 1.5 ft (0.457 m) by the Stern

Displacement 26,380 Tons (26,810 tonnes)

43

Page 59: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

o bi 1- I ,-

65 C 0 4 C\;WX' ' , E Ci L E

Fiur BI CICMEETA DITIBTO OF 10,TUTA, TiNETT AND

IME 1.5 FEE BY TH STRN WSLCMN 26,390

44N

---

C !--4 ~ . - - -- --

.. ..- - J

SI , i

FiueB ICMFRNTA DITIBTO OF- TH OGTDNL ACNIAi,

FigreIU CRCUMFERVENLOIS OMOTRI ATIOO T- LONIUDIAL , TAGNTA9 AI

EXPERIMENT 2

TRIMMED 1.5 F:EET BY THE STERN, DISPLA(CEMEN T 265,39)0 TIfNS

4/4

Page 60: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

$0 8

A~J

- --- ---

1' C L L % F

Figure B2 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONcITUDINAL, TANGENTIAL ANDRADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO = 0.556

EXPERIMENT 2

TRIMMED 1.5 FEET BY THIE STERN, DISPLACEMENT 20,390 TONs

/4 5

Page 61: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

J 4 C, c

II C

Figure B3 -CTRCUMFEREN,,TTAL, DISTRIBUTION 01' ThE LNGTITDTNAL., TAXCE2F'TTA. AN:PRADIAL VELOCITY COMPONENT RATIOS -RADII-"; RATIO -. 7,

EXPERIMNT 2

TRIMM.1ED 1. 5 -TBY 1PIE- STERN , DI SPLACEMENT 2(.,)' ()I

'46

Page 62: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0 6

X

> I

" - - O t ! t!

-> I

S I4-

CC 4 f IC cc zc 4 G I : I o - .

I !-

Figuro B4 CIRCUMFERENTIAL DISTRIBUTION OF THE LONGITUDINAL, TANGENTIAL AND)RADIAL VELOCITY COMPONENT RATIOS - RADIUS RATIO - 1.017

EXPERIMEWNT 2

TRIMMED 1.5 FEET BY T11E STERN, DISPLACENTN' 26, 31io TONS

47

Page 63: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

c I4

I - TP.. . : V'

-4-

7

C t .• .. .. --- ---- J

Figure B) CIRCUMFERENTIAL. DISTRIBUTION OF 7111 LONGTTUT 'AI, TAN(FNTTA7. AND)RADIAL VELOCITY COMiPONE.NT RATIOS - R.ADIUS RATIO 1.178

EXPERIMENT 2

fRrftii1E 1 .5 FlIT- B3Y T111 ST1kRX, 1PISPIACFMNN '

Page 64: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

E _4__ T II

I INTERPL AE RAII ' ---- . . .T

0 J = 0.881

i I I

->I i L x "

I _ _ T

I _ _ _

1 I i-1 __w x__ _ _ ___-Lwix

Fj7

RA IU RA IO DI 2 ft

0.3 0. o. 0. 0. 0. 0. 1. 1. 1. 1.3

R U A ,1

FX E.1,17T 2

* --

TR ,MEI 1 FEE BY'il M , IMSLAC,IN 2639 TONS

S9

. .. . ... . . .. j, .. .. .. .

_________lilllIII __ __ __ IIIIIIIII

Page 65: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

PIP i! - -

- -0 L/ EXPERIMENTAL RADII

40 - ! - X INTERPOLATED RADII

30 = 0.881 Ccr v

4- --

- L

4---

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2RADIUS RATIO. DIAM.=23 It

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3RADIUS RATIO, DIAM.= 21 ft

F igure B7 - RADIAl, DISTRIBUTION OF TIlE MEAN ADVANCE ANCIEI ANTD Till .1A1,TUTNVARIATIONS OF THE ADVANCE AN;I, FOR 1ODE]. 5V2

EXPERIKENT 2

TRI.DIED 1.5 FEET BY M1IE STERN, ITSPIACEMIN,"T 26,39O TONS

50

Page 66: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

* 40 f.N 04

m .7 610 1..

wo - - . 0 N N N d

>4 U . 0 C 0En a a .7 .

41.4 .3.

u C4a 'U

o~~~~~ 41 -a . 0 t

O~~~11 41Na a

I -atHI

0 N 41\ U' U U' 4 '4 N C

Page 67: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

U)'

0 0

0 cc *

Li C C

A. fZ UN r- N

C- c C.I ca ~ C

O N .4 c

(I) 11 C 1 -T g f

M DEn VI l' In 0

L. LL C Ll C L a

-a r .1T- 410: S 0

Page 68: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

%C 4 If Cli .kD .7 -S Cfn P- N I QC %C ) -4

WU) f~ C) .-4 IV N~ cN (NJ 4 CDo D CD C C) C) C3 C:)

0 C CN N . tN %W

,. N C) CD .4 N -4 IM CD

C: C: 0 C:C C) C:.

z E-

(\I ~ US UN m . - I4 N\ m~ 1-4

0 cz'm CDIL C:) C: C

C .4 !.4Po ~ . Cj . ) C0' k.f '.D am U" U) N 1'

C: .-4 N~l Nl .4- ~ C3 C:) C) 3 C: ) C C)3 C)l

P4 0 0 0 0

%0 C3 to (IN n ~ C3 I'. UN a%

-4 H F) c) C3) C3 C), CD C:)

o cl c

47 'U C:) N) In CDC) Co

co . C) ,, U ~ I~ co a%.44 C) C= ) C) C:3 C), C)

4 0 Co C3 C)o C

11 1 0 5 5 0

-14

~ C) o t'. ~ -0HN U) 4 30 NJ -4 cc ' 0

.. 4 F. 4 N La C3 C3 134'N N N N N N - .4

cc 0 0 * S 0 to 5 e

H: of C)II caI I :311 C)I It c-j1 C)II C)I )CID '3 I= C) C3 C3 r-D 'M C)

I..4

0 "I- = ='- 6 '-4 = " ~ r- :T- _j. ".4~ _j4 "-. -. t-4 _ f-j " _-4j g-

Q~ a. .D0. LC)a. U) CL CD6 i L L . Lc.ia Cl.-)a

Page 69: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

Lo w cc

CD C 0e C

0

4 Ulo N 4kc .4 1-4 C -) C;

=n 4= CZ cz

0m vr 4 1-4 cj C7 C3

.4 73 C C)44 P. w

0- CD e

-~~ ~ I.-

~~-4 .4j C

-A4-

Ltl C -

z 0 .

r _j 0 9 i *'-4 L 0 a. u Q 0: C

2 ~ - <AS (S YAS el -

(Y <~ 'X < Q Cy 2 c

Page 70: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

C:) C3 Cl -4 .4 C') 13 CJ CiC3 CD C3 C Cl) C3 C.3 C:

S r-4 t*r\' .4 .

-1 C: C=) C: CD c:, C-) a)~

z C3 C2 .4 V CD C C=

14 0" N ~ l -, (\4 NC.;-p.-

V: C:) - .4 CZ) C) V c

aN IVV 4 V

P4. 4 -1 C-))V ~ C.7 V

a, L3 V3 C7 CCc:V )

0

C3 a, 4t

2: [; J-4 4 V rr3 f'-- r-.j CZ P-4 cl C17 c! C-3D -)

in C:3 cr 10 a* iIn r~i CN C: N ) f) N

C3~~C p VnV

C~j 4 4m .4 -4 ol t,

LA. CaJ CDt C:7 W Z C=)L J

L ~ r '. L2f. pLA 00. za V . U rL

Page 71: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

. 0 . . . . o. ° 0 a-.0o . .o° . .o .. t. o . .o .

0- , m m,, ,., |

U2

PL4 M4

Cm

-)

: d0

C, .... Co COCC.... . .00o -- o.o c .....~~-- 00000 o

E--

0

• ° o . ° ° , o ° ° . °. o.,.. . .. ... . . . .

. . . , . . . . . . . . . . . . ... . o . . .

EE-

• . .. .. . . . 0 . . . 0 . . . . . . . . . . . . . . . ° +

I i- - - --- - -

, '. .

NC0A20CS ...... R.

0 0 . 0 ° . . . . . . . . . . . . . . . .

Page 72: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0

c,'~1 ci:-

> • • • , • .. . . • • o • • • •... . . . .. . • ., . . . . . . . . • . . . . . . . . . . . .. , . 0. • •. . •1-C . •

P .. 4. . . -C .-.. . . . -. . .-o- -. .-. . . . . . ..4

I r

t57

- 4 -

I

.. ...

|II 4 ||

Page 73: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

APPENDIIX C

RESULTS OF EXPERIMENT 3

Corresponding to

Trim 1.0 ft (0.305 m) by the Bow

Displacemenc 26,390O Tons (26,810 tonnes)

59

Page 74: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

09 1

C c 4r - - ------ -------

~ ______7

-1' C -F

Fiue* CRUFRNTA IIMUTNO H LNTIM A. IA(,NTA.A1

PA TT EOIT OPNNT A1 S -PT I ! I]T .5

~ ~, ~ 71~Zl,"PI------iii>!lRINF 1. Fo-1 Mu ni.-Bo,, )SLC.INTI

U~~ .... W~I~ (WQ~ C 4C 'I, ,I

Page 75: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

-c

tI C U- C-(IG-

Figure C2 -CIRCUMFERENTIAL DISTRIBUTION OF THE1 LONCITUDINAI., TANCFNTTAJ.ADRADIAL VELOCITY COMPONENT RATIOS - RADTIUS PATIO -= i)

EXPERIMENT 3

TRIMMl:,ED 1 .0 FOOT BY THlE [BOW, DISPlAC:EF':T 2)6, '3 Tn

Page 76: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

G Z Ct 4: f

ti - i I , jE :

Figure C3 CRCIN~r.RFNIAT T)I RBTO FIi (% TT)NlT NINJ I ,!RADTAL- ---- TT C.-. ~ N IA T S A T'' 'T .7

T- M II I .-- ) FO.4. i lll W , D S~?A I ''

Page 77: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

c

, / I , 11:4 411!I

C; i t ! -- 1 i___ __. _____ .____ _ _' -.. ..I-. ..

Ci

C ~-------t ______7-

I .I"

C. C- 4

I> I r

Figure C4 - CIRCUMFERENTIAL DISTRIBUTION OF THE LONCITUT,NAL, TANCENTIAL AU :RADIAL VELOCITY COTMPONENT RATIOS - RADIUS RATIO = 1.017

EXPERIMENT 3

TRIMED 1.0 FOO V BY T-E BOl, DISPLACEMENT 2 , il,1 TONS

63

Page 78: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0,_

C C -

I--

cO 4 CJ tU 1; 11 CU 1- 4 -i

Figure C25 -CTRCUMPFRENTIAI. DISTRIBUTTON OF PT- JONCFI)T :AT TANI'NlIAIA::RADI AL VELOCITY CMPONENT RATI OS - EAI)TI S ATI 1I

TI>ID . FOOT BY '1111,- ~ s'~lI:I2,3

f) .

Page 79: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0 A EXPERIMENTAL RADII -jINTERPOLATED RADII [ - { ] -E)- I

J = 0.881- !..v

-'.-- - - - ---

I I I i 2K

-,- _ __

Cu 1 , I _________

X1.

I 6

' ' i I ! - !" - 2 I O I I

i - i iL:

I-L--

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2RADIUS RATIO, DIAM.=23 ft

I , I . I , L , Li____,_ L I JL I-- L - i0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

RADIUS RATIO. DIAM.= 21 ft

Figure C6 - RADIAL DISTRIBUTION ()F itE MEA.' VEI(X: TYM COIPONENT IRFT(S1'1XPER I NT 3

TRI,,I'ED i.) FOM F ' 5i" r LtB , L i lr11 I'I 2h,,3(O 'I xs

(4

Page 80: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

hi(3 - r----- ' - - __________--__ __-___-_

SCD 7) A EXPERIMENTAL RADII'

4C -4- X INTERPOLATED RADI I ,

crIa( 1

_____ ___ ~ ___ F]

c 1 --- -i--- -- = -o + ..--

__~~ 4 f3

R R -2 I

02 0.3 0.4 0.5 0. 0.7 0.8 0. ~ 1.0 1. 1 1 1.

RADIUS RATIO. DIAM.= 231 t

P I \3*, I~-,: ,t

Figure~XPIR MKl - 1;l ~ ~

I'RF>I>ID I .1 I-F() r!FE 5(1W, 5~ I\ -:s:.j. ) v

Page 81: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

I TO

N v N

0' C4 z C )

w ND

00 1= .

C)

H a -C N C C' .K

-1 12 on .5- 16 S ( t C

o N N .4 .4 '0 t

07 N C

Page 82: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

00 C~iN C; .

LI)Z ""NO (wnJ~ 4

2~ *~ *\ 4 * P i

CC

HN

"

c -4 r C el C; -

Pa -3 L-3 *- 1. * .LJ *

u * * C\J C

k-4

,4 4: )0

'. Lf) _ 4 , - g".-4 00 ?- -T CL 3 (Tr

C- r-- --) , c

CnC

Z, 7j r'--- -r.i

-\ cc4 -4 In. -D -rCCl

-- 1-411 -

uj.r ..1 C

ii 0II I 1)111 fl r7 r-'I I

7* "d * J = Li* W A

<~~ -17 17 T 17 4 7- -7 <'

LLJC or < Y<C W . re<C x1

Page 83: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

cc .0 n L C. aL Ml N

V)19 a-r~ p -1 'oC -'. %N LC P, I

oz -'o ;C' F' .-4 *

0 c

I= ''- 4C' C\. 1)

C:, C7''

J- ;:j 1, * 0 e.'N C cr IN I F

H-od, II I II II II I II II I

Page 84: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

a .D 00 r-' .~OD 3 -44 cmL ) : -

co-t U0o -

IN 4 .' u 4 \

t% V ~ 4x- C~j C

z0

OC aj

-4 ac D

U'Un \(I(j --4 V

0a C:)-' CU' C-3. -44C;) Cp* C-) cJ C3 P.

0 14 -4

,.3 .r .:) . = CC La CD*

-4 0- 9.-

.-4. P -1 10

N 1 CI NC

(IIt 1-. V 4-

L L

Page 85: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

LA m 4 P-, c9 C?. . C * G £. * * . *

OD C Co CD C'.O C3l 12 W ~ -~

z C7' .r' *.4 U4 4. ?.- cc 4 *..4 -1~

0- cc* 4N. m * ' r ' * , .4.

H N ,Wl 0 C N .~ C, CI. 04 CAC 9 0 CDJ CDt 0D UN CD C- m0Z

H, CI PL' E Or 4 W, 0' - c r 04 . C u ' 0 ;

ol U C . * cc .4 *.;

X I *r 4. C, (4 to a C. -T Or . -

c=, 0? .- r NN ('-' .- 4 ... 0.4 C r

(/20 Oa~ cc I, -) C 0 0P-

- P. M ? ;* -7. 'D W). - ;V ul

x ~ :r. N ~ 00 OCf C:) C C cz C3

* C3O C'df CL CC CD W0 .4 ~ D

<7 N .' I C'. .0 a, N . ' * NC,4 00' oN o'- O O N C

H3 C3, t* N C* P.-.- ~ O s N

U * *.4 .4 *4 4 * .

11 C3 I i It Ol 11 111 CD11 11 ta[I111111 .-a11 o i t i o l I

Hi 0 0l 0D L 0 0i Cn 0

N ) ' 0 LM 0' 0(

.4~~. .. ...i- (n , -AC

IL OQe ' -1 CLJO'CL x L ck U CL QOf a. CY OI CL a Ta

71

Page 86: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

%~C .-r O . .~l 0C- . Z . .@'l~0 .- 'f ~ l .*0 .....

> -... 0 ... . . ..... °. . ..°. .. 0

- , °,I, 0 , - , 0 . . . - , , , ,0 . .

. .. .. .. . ..... . .. . . . . .. .. .

;t i w. . . . . . . . .

£0 00 1 O1o :1-N r:4:

'C

720

C • ° °• ••. , • . ' -- . . . c- •SI-- • -

- co C T C 0C O-00C C

N£3r. 0°. , o;. 3o 4. .. . .4 ,.4 oo . .. °

Page 87: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

ell

00u

C.. . . . . . . . .

0

>-. *...

HH

, , , , . .. . . .. . . ..,,,....~ % "' - - . . . .

en4 (. 0 4 -.i,

, , O O

coP4T 7

,- o , . , ,, , , ,,, . ...

0 . . . .. . . . . . . . . . . .. . . . . .. . . . . . . . . . .

7 '1

Page 88: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

APPENDIX D

RESULTS OF EXPERIMENT 4

Corresponding to

Trim 3.5 ft (1.067 m) by the Bow

Displacement 26,390 Tons (26,810 tonnes)

7)

Page 89: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

LC 4- G~ L-I'----

FiurOD C R UM-R NT A DI.--R----.--.-- OF___ TIl _________,Aj, ________________ I)

RAIA VEOCT ____EN RAIO -__ iiDJI,

24 ______________4

TRME 3.5__ FEE BY___ ME __________ Dl~ ,CFF, -1H T'"

_ _ _ - -~~~7,-- --- - - - -

LN

Page 90: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0 II _ 1t '

3 -6------------------------------

C t

o - ;- -,-

CAIA VLCT C N - -""D T R = -

T M1TI 2 0 T O N S

C 1-- ___7

__ __ _ I- _ -I -

BN-, ,J, EE

TRI-:ED!3. FEE BYTEBW IPAEET2,9 IN

L I 77

Page 91: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

0 8j

I~ I I

z- C-I-- -4- 4Fiue_3____ETTT DSRBITO 01-_ THE LOGITM ATNT

RADIL VLOCTY MMOENT ATTS, RA PS AT N

o ~ ~ ~ ~ ~ ~ ~ ~ FPRMN 4-------------i----1--

l ulID . FE Y Tll: BM ,-1 1A I Fj 2 '~

~ ___

Page 92: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

S0 8

j__ -- j

f F

Figure D)4 -CIRCUMFERENTIAL DISTRIBUTTON OF THlE LONGTTI'PINAl., TANGEN-1TAl.'RADIAL VELOCITY COMPONENT RATIOS - AT)TJT I T I' (1 TT0 017

EXPERLMENTl 4

TRIMMIED 3.5 FEET BY TIlE. !1,1151 (FIlU ,3

Page 93: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

c L

RA IA ---+--CNTONN TT, - _ _M S AT 1.7

_ _ _ _ _ _ _ _ _ _ _EX ERIEN 4__ _ _ _ _ _ _ _ _ _ _ _

--1-- [-MF 3. FE T B H-~, (,IlM--

_______~~~~ (1------------ -* - --

Page 94: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

kC3 EXPERIMENTAL MAh-----l---

X INEMPLATED MAII

G .8 t-----i- 4 - 4 - -j

XI4 - __4_ -1- -

x - ,

- 4- -- -

cr

0.2 0.3 0.4 0.6 0 .6 0.7 0 .8 0 .9 1 .0 1.1 1.RADIUS RATIO, DIAM.= 23 ft

,~ ~ ~ I - -i - - - j - L - -- I - -

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 .1 1 .2 1.3RADIUS RATIO, DIAM.= 21 It

Figure L)6 - RADIAL. DISTRTJI'T1 [O)N OF -111E MEAN \'EIOc IT'.' (COMP()NENV RATJIOS

IK.XPl:RIMklNT /4

TPIHI'INT 3~.5 fFElF'' E I'fl. II 1F: 2,3

Page 95: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

-"- '-i 0 0 D Z EXPERIMENTAL RADII I

4 0 - - --- X INTERPOLATED RADII'

_ e ,, i t 4 - --r- --4- P -- - I V 0. 881 - -

C _

c-i

+aT -4- A - "",

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2RADIUS RATIO, DIAM.= 23 It

* I . +L.. 1 -I L I0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .0( 1.1 1 .2 1.3

RADIUS RATIO. DIAM.= 2 1 ft

- -7~ .-- --P ... T- -I W..T . . - .. .. . .. -'- . . .. \

V I Ilk B O >I1!i

Page 96: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

- c e c a rC e~ I' N N a c

* 4 NN

o ,e C .1 C U' ~0 ac.

* 1 N Nc4

fl - Cl C C I' 4 0J '40

0 0 4 ', N C IC CC *J 14 £

70

7 F-' a a - C C S 1'.Ct 1

rC

114 N C N '~I~ S

Tfl '-0

F--70 -

L~2 - 1< ' 1"

U, 9~2 '. . Cl~ ON

C -

F-0Z~U2-~ TJ~

('4 N IC 9', 4,

* ~> .2

0 ''

~ Z2~C SI C '1 " N as

4 --c- '- - U'--3- . . .

a I-' -~ -

I- U'

o SI 12 II 1 U' I4' I-a l~~'I - C U -21 N 11 '1 . It

Ii~

'1 '''-3

0 '1 0 V 11 U' III P4 '3 C C --

-, U' -fl 'II F 1.11...,4 I~ - r , UT

U' '. U'- I I U

Page 97: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

(D. C) C:) 4= O

4 ~ (\ '-4 C

o c~ ~ C)

CD ~ C- .-4

HE-4

C-. C))C- C) '-

0 ~ ~ I -4 f 0 C -

0 C) (n 30 cr)

0n E- C C:

-r) (\j) C Cf0

0 >-2I I I I

_0

Page 98: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

AD-AU97 930 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/r 2014I MEASUREMENTS OF THE EFFECT OF TRIM ON THE NOMINAL WAKE OF THE N--ETCIU)I MAR Al R B WILSON, G A HAMPTON

UNCLASSIFIED DTNSRDC/SPD0544-19 NL

Page 99: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

..4 c 0 N f. r 4cCD C 0 N Nl N N 14 .4

G) C3 C30 C-3 C13 C2

%D N - 4 cc Nr-4 U 4 0D W4 4 4 C 4n

C- o C0 C: C: oz

a- Pi % CD CNc0 (Y N .4 M N mN' V40 U ~ N 1

0 1C-4

u' x t1 D N or '-0 tA '1 . N (71 r'- -

A ID (% 4 N c-3 N rwi 6. ca t.3 C3 2 C- C.) ca I

Z E -4 W 4 LlrP- -t CO) CJCV) U r Cj

.4 -4 f. Lf' 0 N D

4I UN L -1 -

N~- -T N 4 D ~4- , 0l -4 C-4 N N .-

E" "

C.-,

0 9 0

E- o 3 T-4N - c O

a i U% m .4 3 CP cc '.2N N) .1V N 04 -j. .

Wj W. 'Aj LjJ uLJ Lu Wi ~ uiL) I~ 11 C ISO 11 Im itC If- SI Itr fl

o Z.-4= "*- .-. P-44 6 * Z-46-.4 44. -j 1-4l -J 5.4.4 *-4_j 1-4 _

85

Page 100: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

~c CD~

C3 ci CD co C0 0

W I' CDaL'4 U0 P- C3 V- C) C, C

H 3 4 2 C' 0

zE-4 0

0' Nr r_

0

tf v -4 14 '. .o-a '~ r3 C2 C.3

'0 N 0

N 1-4 C3 %D %I1- 14M3 I g

.4 In UN C=1Cin -0 .4 4 .

4

wnC~ w w r L&J 4

L0 C4 -4 NI- P". J* l

HC Oa (3 C2 C3 CDL

C2 04 r.4

-86

Page 101: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

N~ do. I~t~I N C)do CD .t CD 0. fn W4C C2 C3 4 W4 -4 * C2 CDco 2 ca cm C3 C3 C3 CD

Unc IM cc UN Ok

S m- 1.0 V- C2 C2 CI C)oCD C) CD C CD w Nz C3

z 0' NC0 ' ~ Co7 to 0 W4 C 2 C

nC2 t- C 'M CD~* 0

0' ~ 0' ~ p4 .4 4 p

oC C31 ON N Vp 4 CUS .4 C 2 C2 C

ZC -4C C c C c~ cm0-iP4 : C C C C C

C m If W I

In >4 ON Q4 .4 -4 C 0W0

'7' C2 .4 Nr -1~

1-4 C In ry C (NJ

C- :3 *f r- it of If It to

C ) C C C C

aj II 'A Ij I I

10 p4- it of If - 1 r- 11 1 C!

0 V,

x l -j L3 Cl CL ': &~N ~ 7 jl 4 1. ) 43

* a S S * * S 87

Page 102: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

I It oV Ia 0, C Sat 4 4 II, N ' T IAf 0,A N Ng sP 4 0 N 4- 0 4

%A It 1: t -. t' IA 4 As, n! t .4 - As C As 0 As 1! .0 AdI -: e , IAs-! AE-

CIOS IDI*

1-4

Il~ll~ll . I~ III

SAAI A a~ o 1

N 2 A 4 4 1 40 11 woA mm asV 5 00 , s AN n, 04 0 ' As a , A

E-4

E-4

Cflt

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ i AQ 4.4AIs.0dA dU.4CI: C0I.~UC -~131 .- PIS W N O 404 G04IAC~s ~ -O .-.IA In t O S 0 s W A~'.

U'e 2 s U 4 4, sw.1- , 0 ,rAs , A I 04 N ' d4~~~~ adN~AII~AAAAI

~C88

Page 103: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

rn

0 0

ontx 1 C l 1

LMn-4 l - o SC C C N S'U

14C .EI - . N C C C C - t C

1.-4

~~"no 0~~NONC OC4NN N0ICO~tCCCP b m0 -M.NbN-.O04

0 ~C CP.- A0 N 1M 1,r0.~-N- tN .Z c.u89C~

Page 104: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OFTHEiR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATIONOF LIMITED US* AND 4NIEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THENUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDCMUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE BY-CASEBASIS.

Page 105: AND DEVELOPMENT CE--ETC iiIIIIIIII19. K(EY WORDS (Continue on reverse side if necessary and Identify by block nL~uber) Wake Survey, Wake Velocities, Wake Harmonics, Effect of Trim

ATE

FL1

1T I C