and - dggs.alaska.gov

46
UNITED STATES DEPAR'MENT OF INTERIOR GEOLOGICAL SURVEY Geology Report for Proposed Norton Sound OCS Sand and Gravel Lease Sale Gordon R. Hess and C. Hans Nelson Ope n-Fi le Report 82-997 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

Upload: others

Post on 02-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: and - dggs.alaska.gov

UNITED STATES

DEPAR'MENT OF INTERIOR

GEOLOGICAL SURVEY

Geology Report for Proposed Norton Sound

OCS Sand and Gravel Lease Sale

Gordon R . Hess and C. Hans Nelson

Ope n-Fi l e Report

82-997

This report is preliminary and has not been reviewed for conformity w i t h U . S . G e o l o g i c a l Survey editorial standards and stratigraphic nomenclature.

Any use of trade names i s for descriptive purposes only and does not imply endorsement by the USGS.

Page 2: and - dggs.alaska.gov

TABLE OF CONTENTS

Page

......................................................... Introduction 1

Methods and Data Base ........................................... 2

Geophysical Records ............................................ 2

................................................. Bottom sampling 3

............................................... photographic data 3

.................................................. Geologic Background 4

...................................... Surfieial Sediment ~istribution 7

.......................................................... is cuss ion 8

................................ unconsolidated surface sediments 8

...................................... Lag gravel over bedrock 8

............................. Lag gravel over glacial deposits 9

............................. Basal transgressive medium sands 10

Inner shelf sand sheets ...................................... 11

~istribution of sand and gravel bodies .......................... 13

Data Limitations ..................................................... 17

Summary .............................................................. 18

........................................................... References 20

Figure Captions ...................................................... 24

Page 3: and - dggs.alaska.gov

In t roduc t ion

The nor thern Bering Sea i s a broad, shal low e p i c o n t i n e n t a l s h e l f r eg ion

covering approximately 200,000 ]on2 of s u b a r c t i c sea f l o o r between nor thern

Alaska and t h e U. S.S.R. (Fig. 1). The s h e l f can b e d iv ided i n t o f o u r gene ra l

morphologic a r eas : (1) t h e western pa*, a n a r e a of undulat ing, hummocky

r e l i e f formed by g l a c i a l g rave l and t r a n s g r e s s i v e - marine sand s u b s t r a t e

(Nelson and Hopkins, 1972); (2) t h e sou theas t e rn p a r t , a r e l a t i v e l y f l a t

f e a t u r e l e s s p l a i n with f ine-grained t r a n s g r e s s i v e - marine sand s u b s t r a t e

(McManus, e t a l , 1977); ( 3 ) t h e no r theas t e rn p a r t , a complex system of sand

r i d g e s and shoa l s with f i ne - t o medium- gra ined t r a n s g r e s s i v e sand s u b s t r a t e

(Nelson e t a l , 1978); and ( 4 ) t h e e a s t e r n p a r t , a broad f l a t marine r e e n t r a n t

(Norton Sound) covered by Holocene s i l t and very f i n e sand (Nelson and

Creager , 197 7 . The nor thern Bering Sea i s a f f e c t e d by a numbex of dynamic f a c t o r s :

winter s e a ice , sea l e v e l s e tup , s torm waves and s t r o n g c u r r e n t s (geostxophic,

t i d a l , and s torm). The s e a i s covered by pack ice f o r about h a l f t h e year ,

from November to May. A narrow zone of s h o r e f a s t ice develops around t h e

margin of t h e s e a during winter months. During t h e open water season, t h e sea

is subject t o occas iona l s t r o n g no r the r ly winds, i n t h e f a l l , s t r o n g

southwester ly winds cause high waves and storm su rges a long t h e e n t i r e west

Alaskan coast . Throughout t h e year , t h e r e is a con t inua l northward f low of

water with c u r r e n t s i n t e n s i f y i n g on t h e e a s t s i d e of s t r a i t a r e a s (Coachman a t

al., 1975). Although d i u r n a l t i d a l ranges a r e s m a l l , s t ong t i d a l c u r r e n t s a r e

found i n s h o r e l i n e a r e a s and wi th in c e n t r a l Norton Sound (Fleming & Haggarty,

1966; Cacehione e t al., 1982).

Page 4: and - dggs.alaska.gov

Thi s r e p o r t reviews t h e methodology employed and t h e d a t a c o l l e c t e d over

a pe r iod of near ly 20 yea r s i n t h e nor thern Bering Sea. A b r i e f geologic

h i s t o r y and background a r e presented followed by a d i scuss ion of d i s t r i b u t i o n

of sediment t ypes and d i s t r i b u t i o n of s p e c i f i c sand and g rave l bodies . The

Limi ta t ions o f t h e d a t a base and needs f o r f u r t h e r s tudy are expla ined and a

b r i e f summary of resource p o t e n t i a l and environmental cons ide ra t ions is given.

Methods and Data Base

The majo r i ty of d a t a app l i cab le t o t he eva lua t ion of sand and g rave l

resources and environmental hazards of t h e i r e x p l o i t a t i o n , were c o l l e c t e d o n

s e v e r a l U. S.G. S. c r u i s e s aimed a t assessment of p o t e n t i a l environmental

hazards t o exp lo ra t ion and product ion 05 o i l and gas resources. Much of t h e

d a t a c o l l e c t e d and ana lyses completed cannot be appl ied , however some s t u d i e s

of s u r f i c i a l sediment d i s t r i b u t i o n , s p e c i f i c sediment bodies , and dynamics of

sediment t r a n s p o r t provide t h e d a t a base f o r t h i s repor t .

Geophysical Records

High-resolut ion se i smic - r e f l ec t ion p r o f i l i n g d a t a provide ba thymetr ic

in format ion as w e l l a s subbottom informat ion on sediment t h i ckness and

morphology. A q u a l i t a t i v e assessment of the nature of t h e sediment can be

made on t h e b a s i s of a c o u s t i c cha rac t e r . Side-scan sonar imagery y i e l d s

informat ion on bottom morphology and l a t e r a l e x t e n t of d i s c r e t e sediment

bodies a s wll a s another q u a l i t a t i v e assessment of sediment nature. The

t r a c k l i n e coverage of geophysical d a t a used i n t h i s r e p o r t is shown i n F igures

2A & 2B.

Page 5: and - dggs.alaska.gov

Bottom sampling

An extens ive a r r a y of bottom samples were analyzed t o provide t h e

sediment da ta used i n t h i s repor t . Figure 3 shows t h e loca t ion of a l l sample

s t a t i o n s . The samples include simple grab samples of t h e s u r f i c i a l sediment,

box cores pene t ra t ing up t o severa l 10 ' s of centimeters i n subs t ra t e , and Kie l

and Alpine vibracores pene t ra t ing up t o 7 m i n t o t h e seafloor. I n addi t ion , a

s e r i e s of deepex holes, up t o 75 m i n depth, were d r i l l e d within 3 m i l e s of

t h e coas t o f f Nome, as p a r t of a precious metal resource evaluat ion i n t h e

l a t e 1960's.

Photographic da ta

TV and Black and White s t i l l photography were co l l ec ted at numerous

s t a t ions . T h i s type of da ta provide q u a l i t a t i v e information on sea f l o o r

morphology, a c t i v e processes, and t h e nature of s u r f i c i a l sediment.

U.S.G.S. operated c r u i s e s were conducted with ttm broad emphases, The

f i r s t being a regional , reconnaissance, survey t o ca tegor ize and c l a s s i f y

a reas a s t o sediment type, sediment dynamics, a c t i v e t ec ton ics , and o the r

regional c h a r a c t e r i s t i c s . Secondly, c r u i s e s o r por t ions of c ru i ses , were

devoted t o d i s c r e t e survey a reas o r ob jec t ives t o de l inea te s p e c i f i c f e a t u r e s

a nd/o r p he nome na . I n add i t ion t o information from U.S. Geological Survey c r u i s e s , numerous

data from Universi ty of Washington c r u i s e s a r e included i n t h e da ta set.

Similar ly , da ta c o l l e c t e d during opera t ions by NOAA sh ips , U.S. Coast Guard

ships , and research vesse l s of Scripps I n s t i t u t i o n were a l s o incorporated i n t o

t h e data se t .

Page 6: and - dggs.alaska.gov

Geologic Background

The nor thern Bering Sea i s bounded by t h e Seward Peninsula on t h e north,

Yukon-Koyukuk geologic province on t h e east, t h e Yukon d e l t a and St . Lawrence

I s l a n d on t h e south , and t h e Chukotsk Peninsula of S i b e r i a on t h e west (Fig.

1). The United S t a t e s - Russia Convention Line of 1867 marks t h e western end

of t h e a r e a t h a t i s l i k e l y t o b e inc luded i n any sand and g rave l resource

l e a s e sa l e .

Three subbasins u n d e r l i e t h e nor thern Bering Sea. The northwest Bering

Sea is unde r l a in by sha l low basement, mainly Precambrian through lower

Mesozoic rocks. Geophysical d a t a show t h a t t h e basement i s o v e r l a i n by an

average of 1 lan of rocks of la te Neogene and Quaternary age ( F i s h e r e t a l ,

1982). The second and t h i r d subbasins a r e s epa ra t ed by a s t r u c t u r e , t h e Yukon

Horst (See Fishe r e t a l . , 1982, Fig. l o ) , which s t r i k e s northwest from near

t h e mouth of the Yukon River. Rocks i n t h e St . Lawrence subbasin, west of t h e

h o r s t , a r e l o c a l l y a s t h i c k as 5 km. The subbas in east of t h e h o r s t con ta ins

f i l l as t h i c k as 6.5 km.

1 n t e r n of p o t e n t i a l sand and g rave l resources , t h e l a t e P le i s tocene

(>10,000 yea r s B.P.) and Holocene ( ~ 1 0 , 0 0 0 y e a r s B.P.) sedimentat ion is t h e

f a c e t of geologic h i s t o r y of t h e g r e a t e s t impact and i n t e r e s t . The

d i s t r i b u t i o n of l a te P le i s tocene and Holocene su r f ace sediment on t h e no r the rn

Bering Sea f l o o r i s patchy and dependent upon l o c a t i o n s of s e a f l o o r bedrock,

p re - l a t e P l e i s tocene g l a c i a l deb r i s , la te Holocene r i v e r borne sediment

i n f l u x , modern bottom c u r r e n t s , and p a s t e u s t a t i c sea- leve l changes.

To a s s e s s t h e e f f e c t of t h e s e f a c t o r s t h e nor thern Bering Sea c a n b e

d iv ided i n t o t w provinces, Chir ikov Basin on t h e west, and t h e shal lower

(General ly (20 m deep) Norton Basin i n the c e n t r a l and e a s t . The l a s t late-

Page 7: and - dggs.alaska.gov

Ple i s tocene and Holocene t r a n s g r e s s i o n began about 12,000 t o 13,000 y e a r s

ago. A narrow seaway developed from Anadyr S t r a i t (between S t . Lawrence

I s l a n d and S i b e r i a ) t o Bering S t r a i t (Hopkins, 19791, and t h e n from Shpanberg

Strait (between St. Lawrence Island and Yukon Del ta ) t o Bering Strait (Nelson

and Creager, 1977). The narrow seaways expanded t o f i l l t h e deeper western

area of Chirikov Basin u n t i l about 10,000 yea r s ago.

The l a t e P l e i s tocene t o Holocene s h o r e l i n e t r a n s g r e s s i o n depos i ted a t h i n

sequence of t r a n s g r e s s i v e d e p o s i t s on t h e margins of Chirikov Basin. On some

margins, only a t h i n g rave l l a g is found over bedrock outcrops or g l a c i a l

depos i t s . These Lags developed as t h e t r a n s g r e s s i v e s h o r e l i n e remrked

bedrock or g l a c i a l depos i t s , removed f i n e r gra ined sediment, and l e f t a g rave l

l a g (Nelson and Hopkins, 1972).

I n o t h e r a r e a s of Chir ikov Basin, t h e t y p i c a l sequence is la te

P le i s tocene f reshwater pea ty s i l t o v e r l a i n by t r a n s g r e s s i v e sand. The t und ra

and f reshwater si l t developed where topographic e l e v a t i o n s of bedrock o r

g l a c i a l moraines *re not present . A s t h e s h o r e l i n e t r ansg res sed over t h e

emergent f reshwater pea ty mud, a b a s a l coarse- t o medium-grained sand was

deposited. A f ine-grained i n n e r s h e l f sand was depos i ted immediately o f f t h e

s h o r e l i n e as it t r ansg res sed ; t h i s genera l ly o v e r l i e s the b a s a l coa r se r sand

and forms a b l anke t depos i t now covering most of t h e c e n t r a l and southern

Chir ikov basin.

The e n t i r e Norton Sound r e g i o n remained emergent u n t i l about 10,000 yea r s

ago. Radiocarbon d a t e s i n Norton Sound show t h a t from 10,000 t o 9,500 yea r s

B.P., t h e s h o r e l i n e r ap id ly t r ansg res sed eastward over Norton Sound and b u r i e d

tundra p e a t depos i t s . Marine sandy s i l t interbedded with very f i n e sand

Layers o v e r l i e t h e f reshwater peaty muds. Above t h i s sequence i n c e n t r a l

Page 8: and - dggs.alaska.gov

Norton Sound is b io tu rba t ed , sandy s i l t der ived from t h e Yukon River (McManus

e t a l . , 1977; Howard and Nelson, 1982). The s u r f i c i a l Holocene d e p o s i t s i n

Norton Sound vary from f ine-gra ined sand surrounding t h e d e l t a and i n a t rough

a long nor thern Norton Sound t o very f i n e sand and coa r se s i l t i n c e n t r a l and

e a s t e r n Norton Sound.

The t h i c k b l anke t of Holocene s i l t and interbedded sand l a y e r s i n Norton

Sound d i f f e r s from t o t h e t h i n t r a n s g r e s s i v e sequence of sand depos i ted i n

Chir ikov Basin. Thick s e c t i o n s of Holocene sediment have been depos i ted i n

southern Norton Sound because of prograda t ion of t h e Yukon Delta. Only 2 m o r

l e s s of b i o t u r b a t e d mud has been depos i ted i n t h e more d i s t a l a r e a s of

nor thern and e a s t e r n Norton Sound (Nelson and Creager, 1977).

Numerous subsurf ace a l l u v i a l channels , covered by t h e t r a n s g r e s s i v e

depos i t s , have been mapped i n t h e Norton Sound r eg ion (Fig. 4 ) . I n Chir ikov

bas in , t h e l i m i t e d g r i d of se i smic d a t a does not permit d e t a i l e d mapping of

t h e subsurface channels , b u t major channels a r e known extending west of P o r t

Clarence, i n t h e s e a v a l l e y extending south from King I s l a n d (Hopkins et dl.,

19761, and i n t h e c e n t r a l p a r t of Chirikov Basin. These channel depos i t s have

not been i d e n t i f i e d i n cores .

Ear ly and middle P l e i s tocene c o n t i n e n t a l g l a c i a t i o n extending off S i b e r i a

t o t h e c e n t r a l Chirikov Basin, and l o c a l v a l l e y g l a c i a t i o n extending o f f s h o r e

from Seward Peninsula have been mapped by se ismic r e f l e c t i o n p r o f i l i n g and by

sediment sampling ( G r i m and Mmanus, 1970; Nelson and Hopkins, 1972; Tagg and

Greene, 1973; Hopkins, 1975, 1979). The g l a c i a l moraines a r e p r e s e n t i n t h e

subsurface of c e n t r a l Chir ikov Basin (Fig. 5) and emerge toward l and as grave l

r idges . Sequences of moraines and outwash were documented i n the nearshore

a r e a s of f Nome and from d r i l l h o l e s (Nelson and Hopkins, 1972).

Page 9: and - dggs.alaska.gov

The o t h e r major geologic event t h a t s i g n i f i c a n t l y inf luenced t h e

d i s t r i b u t i o n of l a te P le i s tocene and Holocene depos i t s is t h e change i n

p o s i t i o n of t h e a c t i v e Yukon D e l t a l obe on t h e Bering Shelf . About 16,000

y e a r s ago, t h e Yukon River apparent ly c rossed t h e p re sen t Bering s h e l f i n t h e

v i c i n i t y of Cape Romanzof, 100 km south of t h e p re sen t Yukon d e l t a , and

depos i ted a d e l t a i c sequence south of St. Lawrence I s l and (Knebel and Creager,

1973). A8 sea level rose , va r ious a c t i v e lobes developed f a r south of Norton

Sound (Nelson and Creager, 1977). The p re sen t a c t i v e d e l t a lobe f i r s t

developed i n southern Norton Sound after 2,500 years B.P. (Dupre, 1978).

Since t h e n t h e Yukon River has prograded s i g n i f i c a n t l y i n t o Norton Sound.

Surf i c i a l Sedimerrt D i s t r i b u t i o n

Analyses of s u r f i c i a l sediment samples from over 467 s t a t i o n s were

compiled and computer-contoured maps of sediment d i s t r i b u t i o n were prepared.

The r e s u l t i n g maps a r e meant t o be a n ex tens ion and refinement of maps

generated by McrJlanus and o t h e r s at t h e Unfversi ty of Washington (McManus e t

a l . , 1970, 1977).

Caut ion should b e used i n i n t e r p r e t i n g contoured data. Contours imply a

g rada t ion i n va lue from one a r e a t o another t h a t may not e x i s t . I n genera l ,

areas of r e l a t i v e l y closely-spaced contours a r e suspec t and may r ep resen t a

sha rp boundary between widely d i f f e r e n t sediment types.

The sand con ten t maps (Fig. 6A and 6B) show sandy a r e a s o r s h o a l s i n

c e n t r a l and -stern Shpanberg S t r a i t , e a s t e r n Bering Strai t , nor th-cent ra l and

no r theas t Norton Sound, south of S t . Lawrence I s land , i n shoa l s west of t h e

mouth of t h e Yukon River , and over rrmch of the c e n t r a l Chirikov basin.

Figures 7 A and 7B show a g rave l d i s t r i b u t i o n c o n t r o l l e d by t h e presence o f

Page 10: and - dggs.alaska.gov

g l a c i a l moraines and outwash, bedrock, a l l u v i a l depos i t s , and ad jacen t

t e r r e s t r i a l sources. The g rave l concen t r a t e s a r e products of t h e winnowing of

f i n e m a t e r i a l by s t r o n g c u r r e n t s through t h e straits and a long t h e Seward

Peninsula. Axeas of gxavel abundance a r e r e f l e c t e d by areas of low sand

content .

'She mean sediment g r a i n s i z e (Fig. 8 A and 8B) d i s t r i b u t i o n map was

prepared by c a l c u l a t i n g t h e f i r s t moment parameters f o r each sediment

sample. This map is a composite of t h e a r e a s of maximum content of each

sediment s i z e c l a s s , i .e . , g r ave l , sand, s i l t , and clay. Again, cau t ion must

b e used i n i n t e r p r e t a t i o n . Apparent t r a n s i t i o n o r grad ing from one average

g ra in - s i ze t o another may not be r e a l . The map of modal sediment s i z e (Fig.

9A and 9B) i s very s imi la r t o t h e mean gra in-s ize map b u t i n gene ra l shows

va lues 1/2 fl c o a r s e r t h a n t h e va lues of t h e mean gra in-s ize map. To s imp l i fy

i n t e r p r e t a t i o n and summarize t he d i s t r i b u t i o n of sediment o n t h e nor thern

Bering Seaf loor , g rave l , sand, and mud ( s i l t and c l a y ) abundances a r e

po r t r ayed on Figures 8 B and 98. F igure 8B i s based on mean gra in-s ize and

f i g u r e 9B is based on modal ana lys i s . Sand-size m a t e r i a l c h a r a c t e r i z e s t h e

ma jo r i t y of bo th s u r f i e i a l sediment maps with a plume of muddy sediment

extending northwest from t h e Yukon d e l t a , mud-rich sediment i n e a s t e r n Norton

Sound, and g rave l r i c h sediment off t h e Seward Peninsula and i n the s t r a i t s .

Discussion

Unconsolidated Surface Sediments

Lag grave l over bedrock

Very t h i n s u r f i c i a l covers of g rave l ove r o l d e r Precambrian t o Cretaceous

bedrock outcrops (Fig. 1 0 ) occur i n t h e a r e a west of Nome near Sledge I s l and ,

Page 11: and - dggs.alaska.gov

northward toward P o r t Clarence, and i n a l a r g e a r e a from P o r t Clarence a long

t h e York c o a s t l i n e t o Cape Pr ince of Wales (Nelson and Hopkins, 1972; Nelson,

1982) . Sampling i n t h e s e a r e a s r e v e a l s only s c a t t e r e d occurrences of grave l

sugges t ing t h a t on ly small , t h i n (few c m t h i c k ) pockets of g rave l a r e present:

over t h e s e bedrock l o c a t i o n s and t h a t d i s t r i b u t i o n of t h e g rave l s i s q u i t e

patchy. The sporadic , t h i n pockets of g rave l over bedrock w u l d not be a

renewable resource because t h e s e r e l i c t g rave l s = r e produced by s h o r e l i n e

sedimentat ion during pe r iods of lower s e a l e v e l and a r e not be ing replenished.

Environmental change from mining, however, m u l d leave a s u b s t r a t e of

s c a t t e r e d pebbles over bedrock and muld a l t e r t h e a l r eady high concen t r a t ion

of suspended sediment. Also high va lues of suspended sediment a l ready occur

s p o r a d i c a l l y i n t h e Alaskan c o a s t a l water of t h i s reg ion because of large

q u a n t i t i e s of suspended sediment c r e a t e d by storm even t s (Nelson, 1971; Nelson

and Creager, 1977; Cacchione and Drake, 1982).

Lag g rave l over g l a c i a l d e p o s i t s

Gravels were depos i ted by t h e Holocene s h o r e l i n e t r a n s g r e s s i o n a s it

r e m r k e d g l a c i a l till. A s u b s t a n t i a l s u r f a c e a r e a of t h i s grave l t ype occurs

o u t to t h e t h r e e mile l i m i t off N o m e , in a large area southwest of Cape P r ince

of wales, and nor th and northwest of St. Lawrence Island (Fig. 10 1. The

l o c a t i o n of t h e s e g rave l s c o r r e l a t e s with subsurface occurrence o f g l a c i a l

till. Where t h e g rave l has been pene t r a t ed it is t h i n , l e s s t h a n 30 c m t h i c k ,

and without a mat r ix of silt o r mud. Beneath t h e t h i n veneer of r e l i c t l a g

g rave l over glacial depos i t s , t h e till is composed of pebbly sandy silts.

Page 12: and - dggs.alaska.gov

The complete lack of any shal low c o r i n g i n t h e s e reg ions , p revents

d e t a i l e d knowledge of t h e th i ckness of t h e gravel lags and t h e resource

p o t e n t i a l cannot be estimated. The techniques f o r mining w u l d b e d i f f i c u l t

t o a s c e r t a i n because of unknown th i cknesses and v a r i a b i l i t y of g rave l type.

Addi t iona l complications e x i s t i n t h e Nome nearshore reg ion because t h e r e l i c t

g rave l s a r e r i c h i n gold i n c e r t a i n l oca t ions . The gold resource should b e

considered a long with the sand and g rave l resource. A s s e s s i n g t h e gold

resource is complex because of t h e he te rogenei ty of depos i t s near Nome,

e s p e c i a l l y where s u r f a c e and subsurface a l l u v i a l channels have been i n - f i l l e d

by f i n e r sands (Nelson and Hopkins, 1972).

The mining o r skimming o f f of t h i s c l e a n r e l i c t l a g g rave l would change

t h e s u b s t r a t e of t h e mined region. The new s u b s t r a t e w u l d be one of muddy

g rave l t h a t m u l d not provide t h e same bouldery, c l e a n g rave l s u b s t r a t e as a t

present . The mining of such g rave l s and t h e genera t ion of large sediment

plumes by mining t o some e x t e n t emulates t h e Seward Peninsula coas t where

c o a s t a l water f r equen t ly con ta ins e l eva t ed l e v e l s of suspended sediment caused

by storm surge ebb flow (Nelson, 1971; Nelson and Creager, 1977; Cacchione and

Drake, 1982).

Basal t r a n s g r e s s i v e medium sands

Coarse- t o medium-grained sand covers reg ions p a r a l l e l i n g t h e g rave l s ;

p a r t i c u l a r l y a long t h e w s t e r n edge of Seward Peninsula from Sledge I s l and t o

Cape P r ince of Wales and perhaps i n bands through Bering S t r a i t and Anadyr

Strait (Fig, t o ) . They are poor ly assessed i n t e r m s o f th ickness ; where they

have been pene t r a t ed they t e n d t o b e only a few cent imeters (Fig. 11) . The

Page 13: and - dggs.alaska.gov

only except ion t o t h i s is northwest of P o r t Clarence where large, l i n e a r

r i d g e s of t h i s sand have been r e m r k e d by s t r o n g c u r r e n t s i n t o sand wave

f i e l d s ( F i e l d e t al . , 1981).

The resource p o t e n t i a l of t r ansgxess ive sands in most reg ions w i l l b e

inf luenced by t h e i r t h i n n e s s and in te rbedding with over ly ing f iner -gra ined

sands and underlying P le i s tocene muds. I n terms of environmental

cons ide ra t ions t h i s sand produces a d i s t i n c t s u b s t r a t e f o r c e r t a i n s e t s of

fauna such a s sand d o l l a r s (Nelson e t a l . , 1981). I f t h e mil-sorted sands

a r e mined o u t t h i s s u b s t r a t e w u l d no longer e x i s t . A t t h i s p o i n t t h e

r e l a t i o n s h i p s of t h e s e coarse- and medium-grained sands t o b i o l o g i c a l food

cha ins and mammals a r e not w e l l assessed. Determination of long term e f f e c t s

of mining this s u b s t r a t e cannot be made with t h e p re sen t data base.

Inner s h e l f sand s h e e t s

Throughout most of c e n t r a l Chir ikov Basin and extending toward Norton

Sound and i ts western edge is a s h e e t of f ine-grained sand of about 125

microns mean g r a i n s i z e diameter and c o n s i s t i n g of about 8 0 % sand and 20%

coa r se to medium s i l t (Fig. 10). This sand s h e e t c o n s i s t s of sands layed down

by t h e shore l i n e t r a n s g r e s s i o n throughout t h e Holocene and i s a t h i n shee t

ove r ly ing a very widespread a r e a of Northern Bering Sea. Its th i ckness is not

wel l assessed , s i n c e only a few v ib raco res have pene t r a t ed i t s e n t i r e

t h i ckness (Fig. 11, co re s i n Chir ikov b a s i n ) ; i n d i c a t i o n s a r e t h a t it rarely

exceeds more t h a n L meter, except where it may f i l l i n subsur face and su r f ace

channels (Fig. 4 ) .

Thi s widespread sand s h e e t i s a p o t e n t i a l resource i f t h i s very f i n e sand

is of t h e proper grade for development purposes. It can be skimmed o f f over

Page 14: and - dggs.alaska.gov

wide regions and i s a very cons i s t en t ma te r i a l throughout t h e e n t i r e Chirikov

Basin region. This uniformity means t h a t l i t t l e processing o r s i z i n g of t h e

ma te r i a l might b e required t o provide f i n e sand sources.

I£ t h i s s u b s t r a t e i s s t r ipped off t o t h e coarser sands below or more

l i k e l y t o t h e underlying Ple is tocene peaty mud, t h e su r face s u b s t r a t e i n such

regions would be changed. Environmental e f f e c t s of t h i s a r e p red ic tab le

because t h i s f i n e sand sheet i s a h a b i t a t f o r Ampilicid amphipods. The

Ampilicid amphipods are a food source f o r whales, p a r t i c u l a r l y t h e Grey whale

species. I f wide regions of t h i s sand are used as a resource and it is

s t r ipped o f f completely t h e d i s t r i b u t i o n of a major food source f o r t h e grey

whales tmuld be changed. I n addi t ion , mining operat ions causing l a r g e

sediment plumes could a l t e r t h e normal environment of t h i s region which is not

prone to high q u a n t i t i e s of suspended sediment i n t h e water column (Drake e t

a l . , 1979).

Holocene sediment covers t h e region of Norton Sound (Fig. 1 0 ) . This

deposi t v a r i e s from 14 meters th ickness , close t o t h e Yukon Delta, to a t h i n

( 1-2 meter) , very f i n e sand sheet over northern Norton Sound and may be absent

i n t h e north c e n t r a l region. Again t h i s widespread sheet of very f i n e sand-

coarse s i l t is a minable resource i f such sands a r e required f o r any

development purposes.

Like t h e inner shel f sands, i f s u r f i e i a l Holocene deposi t s of Norton

Sound a r e s t r ipped o f f , t h e underlying Pleistocene peaty mud w i l l form t h e new

subst ra te . The food source and ecologica l r e l a t ionsh ips of t h i s change i n

s u b s t r a t e are not -11 known and relationshLp t o higher mammal food chains a r e

not w e l l es tabl ished.

Page 15: and - dggs.alaska.gov

D i s t r i b u t i o n of sand and g rave l bod ie s

A number of sand and g rave l bod ie s have been def ined i n the Norton Basin

a r e a on t h e b a s i s of topography and su r f ace g r a i n size. The th i ckness of

t h e s e bod ie s and consequent ly t o t a l volumes cannot be es t imated because t h e r e

a r e only very shal low vibracoxes, genera l ly l e s s than 2 meters i n ' pene t r a t ion ,

a v a i l a b l e over t h e s e regions. Their geometry can only be determined from

s u r f a c e r e l i e f and e s t ima te s of t h e i r genera l th ickness . This a l s o holds t r u e

f o r t h e genera l grade of material s i n c e t h e r e a r e no sha l low s t r a t i g r a p h i c

c o r e s through t h e s e sand and g rave l bodies . The homogeneity of t h e m a t e r i a l

is unknown and t h e only d a t a a v a i l a b l e i s i n t h e upper 2 meters o r from t h e

s u r f a c e samples c o l l e c t e d over them. Table I summarizes t h e c h a r a c t e r i s t i c s

of t h e s e s h e l f sand bodies .

Two g rave l bodies are known i n t h e Northern Bering Sea a rea . The first

Lies west of St. Lawrence I s l a n d and appears t o b e a l a r g e o l d beach r i d g e

formed by a Holocene s t i l l - s t a n d of t h e sea level. a t approximately minus 30

meters of water depth (Fig. 12) . The r idge c o n s i s t s of f i n e g rave l and

extends approximately 30 km t o t h e no r theas t from t h e northwest Cape of St .

Lawrence Island and has a n undefined th i ckness because t h e r e are no sha l low

c o r e s wi th in t h i s g rave l body.

The second known g rave l depos i t occurs e a s t of N o m e off t h e Nome River

a r e a wi th in 3 mi l e s of shore. It is a n outwash f a n c r e a t e d dur ing P le i s tocene

t imes of lower s ea l e v e l (Nelson and Hopkins, 1972). This grave l body is -11

shown i n t h e topography and se ismic p r o f i l e s of t h e region ( ib id ; Tagg and

Green, 1973) and has been pene t r a t ed by d r i l l ho l e s provid ing co re c u t t i n g s

b u t no d e t a i l e d s t r a t i g r a p h i c sec t ions . It appears t o b e a t l e a s t s e v e r a l

meters t h i c k . However, t h e r e i s not s u f f i c i e n t d e t a i l i n t h e se i smic

Page 16: and - dggs.alaska.gov

p r o f i l i n g d a t a nor i n t h e d r i l l i n g t o assess t h e s p e c i f i c known volumes o r

size d i s t r i b u t i o n of t h i s outwash f a n depos i t .

The s e r i e s of t h i n , re l ic t , l a g g rave l s over g l a c i a l till has been

descr ibed i n t h e previous s e c t i o n of t h i s repor t . A s ha s been noted, t h e s e

cover wide a r e a l reg ions over t h e nor thern Bering Sea b u t where t h e y have been

pene t r a t ed by v ib raco res or box co res t hey a r e q u i t e t h i n , genera l ly lass t h a n

.5 m i n th ickness . They do not r ep re sen t thick grave l depos i t s b u t do

r ep re sen t wide r eg ions of a g rave l occurrence. Outwash channels and a l l u v i a l

channels i n t h e s e re l ic t g l a c i a l d e p o s i t s have t h e g r e a t e s t p o t e n t i a l as

grave l resources. I n add i t i on , t h e subsurface s t r u c t u r e i s poor ly known

because of t h e d i f f i c u l t y of ob ta in ing good p r o f i l e d a t a i n coarse-grained

s u r f i c i a l depos i t s . The only good way t o a s s e s s such a l l u v i a l channels is t o

have a shallow-core d r i l l i n g program and such work has not y e t been undertaken

i n t h e nor thern Bering Sea.

Large, deep, outwash and/or f l u v i a l channels a r e observed on se i smic

r e f l e c t i o n p r o f i l e s c o l l e c t e d over c e n t r a l Chirikov bas in . These deep,

f i l l e d , channels t y p i c a l l y a r e i n c i s e d 60 t o 80 meters i n t o t h e sea f l o o r and

occas iona l ly over 100 meters. Assessment of t h e t r u e width is somewhat

d i f f i c u l t as t h e c r o s s i n g ang le is not known. Oblique c ros s ings produce

expansive c ross -sec t ions whereas more or thogonal c ros s ings y i e l d a narrow,

s teeper -s ided record of the channel (Fig. 13 A & B).

Txackline d e n s i t y is not g r e a t enough t o r e l i a b l y connect t h e s e d i s c r e t e

c ros s ings i n t o a coherent drainage system. The channels a r e completely f i l l e d

and show no s u r f a c e expression, s o s idescan records a r e of no a i d i n

determining t r e n d o r c o n t i n u i t y of channels. Thei r occurrence i n Chir ikov

Basin sugges ts t h e upper p a r t o f the f i l l has been revmrked dur ing

Page 17: and - dggs.alaska.gov

t r a n s g r e s s i o n and a thin veneer of coarse- t o medium-grained sand deposited.

A complete lack of deep c o r e informat ion from wi th in t h e channels l eaves t h e

na tu re of t h e f i l l i n g m a t e r i a l unknown. The d e t a i l of i n t e r n a l s t r u c t u r e s een

wi th in t h e channel f i l l sugges ts it is not coarse-grained b u t r a t h e r con ta ins

numerous s i l t and mud horizons. Good subsur face p e n e t r a t i o n i n hi.gh-

r e s o l u t i o n se i smic p r o f i l e s i n r a r e l y observed i n coarse-grained depos i t s .

Coarse-grained m a t e r i a l m u l d l i k e l y b e p re sen t i n t h e channel f i l l as

channel-lag d e p o s i t s and i n point-bar p o r t i o n s of t h e f i l l . Exp lo i t a t i on of

disseminated pockets of sand and g rave l m u l d r e q u i r e removal of f ine-grained

depos i t s t o ga in access t o t h e t a r g e t g rave l lenses . Del inea t ion of p o t e n t i a l

g r a v e l zones w u l d r e q u i r e d e t a i l e d se i smic surveys t h a t a t p r e s e n t do not

e x i s t . Working and removal of s i g n i f i c a n t volumes of f i n e r gra ined d e p o s i t s

would genera te a n ex tens ive sediment plume i n a n a r e a of t y p i c a l l y low

suspended sediment concent ra t ions (Drake e t al . , 1979).

A series of l a r g e , l i n e a r , medium- t o f ine-grained sand s h o a l s are

p re sen t sou theas t of Bering S t r a i t s near P o r t Clarence (F ig . 14A). These sand

shoa l s a r e m l l mapped i n t h e s u r f i c i a l bathymetry and a number of shal low

v ib raco res p e n e t r a t i n g up t o 6 m i n t o t h e s h o a l s have been taken. Soma

d e f i n i t i o n of t h e s e sand bodies i s p o s s i b l e from s u r f i c i a l r e l i e f (Fig. 14B)

and subsurface c o r i n g informat ion (Fig. 14C) (Nelson e t al . , 1982).

These anc i en t s h o r e l i n e shoa l s a r e 15-30 km i n length , 3-7 km i n width,

and 10-15 m i n r e l i e f with a known minimum th i ckness of 6 m of c l ean , very

wel l s o r t e d medium-to-fine-sand with a very low mat r ix content . They comprise

a p o s s i b l e clean-sand source but it is a non-renewable source because t h e s e

s h o a l s were depos i ted as anc ien t s h o r e l i n e sediments during a series of s t i l l-

s t ands in t h e l a te Pleistocene-Holocene rise of sea l e v e l i n t h e p a s t 18,000

Page 18: and - dggs.alaska.gov

bod ie s a r e by-in-large r e l i c t o r pal impsest d e p o s i t s and a s such r ep resen t a

non-renewable resource. Once mined, t h e s u b s t r a t e w u l d be changed.

The na ture of t h e d a t a base makes assessment of environmental impacts

specu la t ive and i n f e r e n t i a l . I n a r e a s where t h e under ly ing m a t e r i a l d i f f e r s

from t h e sand and grave l , a change i n s u b s t r a t e i s one of t h e l i k e l y products

of mining or s t r i p p i n g . Such a change a f f e c t s bottom dwell ing organisms t h a t

depend o n a c e r t a i n bottom c h a r a c t e r f o r t h e i r h a b i t a t . Dis rupt ion of t h i s

lower p o r t i o n of t h e food c h a i n could have a n e f f e c t o n t h e b i o l o g i c community

of a g iven area.

The genera t ion of a suspended sediment plume will change t h e background

suspended sediment l eve l s . High l e v e l s of suspended sediment a r e not unusual

i n much of t h e nor thern Bering Sea, however, t h e r e are d i s t i n c t areas of low

suspended sediment va lues , and i n t r o d u c t i o n of sediment laden water could

i n c r e a s e suspended sediment concent ra t ions .

Addit ional data aimed s p e c i f i c a l l y a t sand and g rave l assessment i s

needed i n much of t h e area. Once t a r g e t e d a s a p o t e n t i a l resource a rea ,

d e t a i l e d s t u d i e s w u l d be necessary t o accu ra t e ly de f ine t h e resource and any

p o t e n t i a l environmental hazards a s s o c i a t e d with i ts exp lo i t a t i on .

Page 19: and - dggs.alaska.gov

R e f e r e nces - Cacchione, D. A., Drake, DO E., and Wiberg, P., 1982, Veloc i ty and bottom-

s t r e s s measurements i n t h e bottom boundary l aye r , o u t e r Norton Sound,

Alaska, Geoloqie e n Mijnbouw, v. 61, p. 71-78.

Cl ine , J. D, and Holmes, M. L., 1977, Submarine seepage of n a t u r a l gas i n

Norton Sound, Alaska, Science, 198, p. 1149-1153.

Coachman, L. K., Aagaard, K., and Tripp, R. B., 1975, Bering S t r a i t : The

r e g i o n a l phys i ca l oceanography, Univ. of Washington Press, S e a t t l e ,

Washington.

Drake, D. E. , Totman, C. E., and Wiberg, P. L., 1979, Sediment t r a n s p o r t

dur ing t h e winter on t h e Yukon p r o d e l t a Norton Sound, Alaska, Your. Sed.

Pe t ro l . , v. 49, p. 1171-1180.

Dupre, W. R. , 1978, Yukon d e l t a c o a s t a l p rocess s tudy , In: Annual Report of

P r i n c i p a l I n v e s t i g a t o r s f o r Year Ending March, 1978, NOAA/OCSEAP, p. 384-

446.

Dupre, W. R., 1980, Seasonal v a r i a t i o n s i n d e l t a i c sedimentat ion on a high-

l a t i t u d e ep icon t inen ta l s h e l f , In: Nio, S. C., Schattenhelm, R. T., and

Van Weering, T. C. E., eds., I A S Spec. Pub., Blackwell Sci . Pub., London,

i n press.

F i e l d , M. E., Nelson, C . H e , Cacchione, D. A., and Drake, D. E., 1981,

Migra t ion of sand waves o n t h e Bering Sea ep ieon t inen ta l shelf, In:

N i t t roue r , C. A., ed., Sedimentary Dynamics of Cont inenta l Shelves,

E l sev ie r , Amsterdam, i n press.

Fi she r , M . A., Pat ton , W. W. Jr., and Holmes, M. L., 1982, Geology of Norton

Basin and c o n t i n e n t a l s h e l f beneath northwestern Bering Sea, Alaska, Am.

Assoc. Petrol. Geol. Bull . , v. 66, p. 225-285.

Page 20: and - dggs.alaska.gov

Flaming, R. Ha and Heggarty, DO, 1966, Oceanography of t h e sou theas t e rn

Chukchi Sea, In: Wilimovsky, N. J., and Wolf , J. M. , eds., Environment of

Cape Thompson, Alaska, U . S . Atomic Energy Coxrunission, pr 679-694.

G r i m , M. S. and MManus, D. A * , 1970, A sha l low se ismic-prof i l ing survey of

t h e nor thern Bering Sea, Marine Geology, v. 8, p. 293-320. .

Holmes, M. L. and Thor, D. R., 1982, D i s t r i b u t i o n of gas-charged sediment i n

Norton Basin, nor thern B r i n g Sea, Geologie e n M i jnbouw, v. 61, p. 79-90.

Hopkins, D. Me, 1975, Time s t r a t i g r a p h i c nomenclature f o r t h e Holocene epoch,

Geology, v. 3, p. 10.

Hopkinst D. M e I 1979, Landscape and c l ima te of Beringia dur ing l a t e

P l e i s tocene and Holocene t i m e , In: Laughlin, W. S. and Harper, A. B. ,

eds., The F i r s t Americans: Or ig ins , a f f i n i t i e s and adap ta t ions , Gustav

F isher , New York, p. 15-41.

Hopkins, D. M., Nelson, C . H., Per ry , R. B., and ~ l p h a , Tau Rho, 1976,

Physiographic subdiv is ions of the Chirikov Basin, nor thern Bering Sea,

USGS Prof. Paper 759-B.

Howard, J. D. and Nelson, C . H. , 1982, Sedimentary s t r u c t u r e s o n a delta-

in f luenced sha l low s h e l f , Norton Sound, Alaska, Geologie en M i j nbouw, v.

Knebel, H. J. and Creager, J. S., 1973, Yukon River: evidence f o r ex t ens ive

migra t ion dur ing t h e Holocene t r ansg res s ion , Science, v. 179, p. 1230-

1232.

Maanus, Do A., Venkatarathnam, K. , Echols, R. J., and Holmes, M. L., 1970,

Bottom samples and se ismic p r o f i l e s of t h e nor thern Bering Sea, and

a s s o c i a t e d s t u d i e s , U. S. Geol. Survey, Office of Marine Geology F i n a l

Report, Contract No. 14-08-0001-11995, 115 p.

Page 21: and - dggs.alaska.gov

MManu8, D. A * , Ventkatarathnam, K., Hopkins, D. M . , and Nelson, C. H., 1977,

D i s t r i b u t i o n of bottom sediments on t h e c o n t i n e n t a l s h e l f , Northern Bering

Sea, U.S. Geol. Survey P ro fes s iona l Paper 759-C, 31 p.

Nelson, C. H., 1971, Northern Bering Sea, a model f o r depos i t i ona l history of

A r c t i c s h e l f p l ace r s : e c o l o g i c a l impact of p l a c e r development, Proc. F i r s t

In t e rna t . C o d . on Por t and Ocean Eng. Under Arctic Conditions, v. 1, p.

246-2540

Nelson, C. H., 1982, La te Pleistocene-Holocene t r a n s g r e s s i o n i n d e l t a i c and

non-deltaic areas of t he Bering e p i c o n t i n e n t a l s h e l f , In: Nelson, C. H.

and Nio, S. C., eds., The Northeas te rn Bering Shelf : New Pe r spec t ives of

Epicont inenta l Shelf Processes and Deposi t ional Products , Geologie e n

Mijnbouw, v. 61, p. 5-18.

Nelson, C. H., Cacchione, D. A., Drake, D. E., and F ie ld , M . E., 1978, Areas

of a c t i v e l a rge - sca l e sand wave and r i p p l e f i e l d s with scour p o t e n t i a l o n

t h e Norton Basin sea f loo r , In: Environmental Assessment of t h e Alaskan

Cont inenta l She l f , Annual Reports of t h e P r i n c i p a l Inves t iga to r s , U.S.

Dept. o f Commerce, NOAA, OCSEAP, Boulder, CO, 12: 29 1-307.

Nelson, C. H. and Creager, J. S O , 1977, Displacement of Yukon-derived sediment

from Bering Sea t o Chukchi Sea dur ing Holocene t i m e , Geology, v. 5, p.

141-146.

Nelson, C. H., Dupre, W. R., Field, M. E., and Howard, J. D., 1982, V a r i a t i o n

i n sand body types on t h e Eas te rn Bering Sea e p i c o n t i n e n t a l s h e l f ,

Geologie e n M i jnbouw, v. 61, p. 37-48.

Nelson, C. H. and Hopkins, D. M., 1972, Sedimentary processes and d i s t r i b u t i o n

o f gold i n t h e nor thern Bering Sea, USGS prof . paper 689, 27 p.

Page 22: and - dggs.alaska.gov

Nelson, C. H., Rowland, R. W . , Stoker, S O , and Larsen, B. R., 1981, Interplay

of physical and b i o l o g i c a l sedimentary structures of the Bering

epicontinental s h e l f , In: Hood, DO W . and Calder, J. A., eds., The Eastern

Bering Sea Shelf: I t s Oceanography and Resources, v. 2, NOAA-OCSEAP

Juneau Regional Of f i ce , Univ. o f Wash. Press , Sea t t l e , Wash., p. 1265-

1296.

Tagg, A. R. and Greene, H. G., 1973, High-resolution se i smic survey of a

nearshore area, Nome, Alaska, USGS prof. paper 795-A, p. A1-A23.

Page 23: and - dggs.alaska.gov

Figure 1.

Figure 2A.

Figure 2B.

Figure 3.

Figure 4.

F igure 5.

Figure 6 A .

Figure 6B.

Figure 7A.

Figure 713.

Figure 8A.

Figure 8B.

F igure 9A.

Figure 9B.

Figure 10.

F igure Captions

Locat ion map and gene ra l i zed bathymetry of nor thern Bering Sea.

Contour i n t e r v a l i s 10 m.

Trackl ines and d a t a t y p e c o l l e c t e d p r i o r t o 1980. Inc ludes USGS,

NOAA, and Univers i ty of Washington.

Survey lines and sample s t a t i o n s of 1980 USGS c ru i se .

S t a t i o n l o c a t i o n map. Locat ions of p r o f i l e s of f i g u r e 11 shown

by s o l i d l i n e s A-A' and B-8'.

Locat ion of f i l l e d and b u r i e d channels.

Elements of p re - t r ansg res s ive geologic history i n no r theas t e rn

Bering Sea showing l o c a t i o n s of s e a f l o o r and near-surface bedrock

outcrops , g l a c i a l moraines, and a l l u v i a l channels. (For complete

coverage of a l l u v i a l channel d i s t r i b u t i o n s e e figure 4) .

Percent sand i n surface sediment. Contour i n t e r v a l 5%.

Simpl i f ied map of sand-size m a t e r i a l content of s u r f i c i a l

sediment.

Percent g rave l i n s u r f a c e sediment. Contour i n t e r v a l 5%.

Simpl i f ied map of g rave l size m a t e r i a l i n s u r f i c i a l sediment.

Mean g r a i n s i z e for s u r f a c e sediment. Contour i n t e r v a l 0.5 g.

Gravel, sand, and mud con ten t of s u r f i c i a l sediment based on mean

g r a i n size.

Modal g r a i n s i z e f o r s u r f a c e sediment. Contour i n t e r v a l 0.5 g.

Gravel, sand, and mud con ten t of s u r f i c i a l sediment baaed on

modal ana lys i s .

Map of no r theas t e rn Bering s h e l f s u r f i c i a l geology.

Page 24: and - dggs.alaska.gov

Figure I I. Near-surface l a t e P l e i s tocene and Holocene s t r a t i g r a p h y i n Norton

Sound (A-A' ) and Chirikov Basin (B-B'). (See f i g u r e 3 f o r

l o c a t i o n s ) . In p r o f i l e A-A' the d a t e of 1500 yea r s BP i n c o r e C

d a t e s i n f l u x of f reshwater and Yukon River Delta lobe. Xn

p r o f i l e B-B', t h e r eg ion of sand r i d g e s i n northeast ' Chir ikov

Basin extends from King I s l a n d shoa l t o P o r t Clarence.

F igure 12. Locat ion of sand bod ie s on t h e e a s t e r n Bering epiccrntinerrtal

s h e l f .

F igure 13. High-resolution se i smic r e f l e c t i o n p r o f i l e s over f i l l e d a l l u v i a l

channels , c e n t r a l Chirikov Basin.

F igu re 14A. Locat ion map of a c t i v e l a r g e sandwaves o f f P o r t Clarence.

Bathymetric p r o f i l e s of f i g u r e 14B shown by s o l i d l i n e s .

F igure 14B. Bathymetxic p r o f i l e s a c r o s s a r e a of l a r g e sandwaves.

Figure 14C. Mean g r a i n s i z e of s u r f a c e sediment i n a r e a of l a r g e sandwaves.

Page 25: and - dggs.alaska.gov

Tah le 1. o l a r a c t e r i s t i c s of Ilcrinq SllelF Sand Dndit?a

Linea r t i d a l Macrot ida l f unne l- sand r l d q e s s h a p d bay and

e s tua ry .

Shore -pa ra l l ek Outer edge of sub- s h o ~ l s t i d a l f l a t a In i+ b a r r i e r r c s o t i d a 1 r eq ions. i a l m d s l

D a l t a f r o n t Of Zmhore ex t ena iona ( sub - i ce ) of major c h u r n e l s d i n t r l b u t a r lea.

5-35 1-3 4-32 Fine sand

5-10 0.5-1 15 do.

20-30 2-4 5-15 Ftru? t o v e r y f l ne sand In t h a l v c q , g raded sand beds i n overbank mud

Lees ide s h o a l s Lee of i s l a n d s or 25-100 5-25 10-20 Very f i n e s and peninsulas i n t e r - r u p t ing s t r o n g g e o s t r o p h l c hot tam c u r r e n t s .

P a r a l l e l l amina t ion , s u r f a c e r i p p l e f i e l d s , sand waves obse rved

Sam? a s & w e

Trough c rosebedd tnq graded sand beds wi th f l a t l m i n a - t i o n , c r o s s lamina- t i o n l n v e r t i c a l sequence

Enclosed by t i d a l f l a t and s h e l f mud, shore- pe rpend icu la r , v a t y lng Ln s i z e and shape--stmetimes s t a o i d a l .

Enclosed by t i d a l f l a t and a h e l C mad, s h o r e p a r a l l e l , c o n s t s t e n t l l l i t e d size and shape.

Enclosed by g raded avcrbank sand beds i n mud, ahore p e r p e n d i c u l a r , Large-scale t r o u q h c r o s a b e d s i n t h a l r a q sand beds.

Rhythlc f l a t 1-t- Enc lowd b y a h e l f nand and n a t l o n a a l t e r n a t i n g aud, o r i e n t a t i o n p a r a l l e l to w i t h occas t o n a l she 1 f c u r r e n t s no t mhorel l n e , t h i n r i p p l e l a a i n a - widely va ry lnq m h a p and mi=, t t o n n ve ry Cine sand slza w i t h r y t h i c

f l a t l a a l n a t l o n i n t e r r u p t e d by r i p p l e s .

Ancient shore- S h o r e l t n e d e p o s i t s 15-30 3-7 10-15 Pine t o n e d i m s a n d i n t e r - i l t e r n a t i n g r l p p l e E n c l o a e d b y s h e l f n a n d a n d m u d , ltn s h o a l s fo-d d u r i n q st l l l - i n t e r r u p t e d nea r s u r f a c e and t r o u g h c r o e r p r a l l e l t o a n c i e n t s t r m d l i n a a ,

s t and6 of ma l eve l . b y p b b l e l a y s and mud i m l n a t t o n v t t h h lqh ang le f o r e a t s i n t e r r u p t e d t l r a p l s h iqh-anqla f o r e s e t by r i p p l e u rd t r o u g h c r o s a l r i -

beds , b ~ o t u r h a t i o n n a t m n , a t o m pebble and a h e l l COnmOn l a g s , b i o t u r b a t i m Ln l o u r and

off ahore sequences .

Morainal G l a c i a l deposition 5-75 5-25 10-15 Mediurrcoarse sand and Rare. t r ough c r o s s - Encloaed by s h e l f s and and md, f e a t u r e s during l w s t a n t i s of q r ave 1 l a m i n a t t o n anel aCze and u h a p v a r i a b l e , not

s e a l e v e l . shell l a m i n a t i o n s s h o r e p a r a l l e l or p a r p e d i c u l u , c o a r s e and v a r i a b l e g r a i n size.

Page 26: and - dggs.alaska.gov
Page 27: and - dggs.alaska.gov

- 150 j Sparker (USGS/UW, 1967,1969) 450 j Sparker 1 km grid (USGS, 1967) 40 cu. in. Air gun (USGS/NOAA, 1969)

- - - - -. -. - -

60 kj Areer, Uniboom, and 3.5 kHz -..-..-. . . . . . . . . . . . . . . . . . Uniboorn and 3.5 kHz

- 20 0 20 40 60 80

_,_._.-- - - - -.- -

Page 28: and - dggs.alaska.gov

Vlbracore station r

Page 29: and - dggs.alaska.gov
Page 30: and - dggs.alaska.gov
Page 31: and - dggs.alaska.gov

Fig: 6

Page 32: and - dggs.alaska.gov
Page 33: and - dggs.alaska.gov
Page 34: and - dggs.alaska.gov
Page 35: and - dggs.alaska.gov
Page 36: and - dggs.alaska.gov
Page 37: and - dggs.alaska.gov
Page 38: and - dggs.alaska.gov
Page 39: and - dggs.alaska.gov
Page 40: and - dggs.alaska.gov

(Yukon) modern river sandy silt inter- bedded with thin sand layers Holocene

(Chirikov) transgressive inner shelf fine sand

trons-

,S

Pleistocene

Pre - Cambr ian- Cenozoic

Fig. 10

Page 41: and - dggs.alaska.gov
Page 42: and - dggs.alaska.gov
Page 43: and - dggs.alaska.gov

0 S O 0 ' 1000 1500 V,E. 2 1 x 1 1

M e t e r s

Page 44: and - dggs.alaska.gov
Page 45: and - dggs.alaska.gov

BATHY METRIC PROFILES

VERTICAL SCALE Datum is sea level

HORlf ONTAL SCALE

0 5 10 15 20 - (Kilometers) (Meters)

Fig. 1 4 8

Page 46: and - dggs.alaska.gov