andrew jones flaviu cipcigan vlad sokhan jason crain glenn … · 2015. 11. 4. · a. jones, f....

23
Electronically coarse grained water Andrew Jones Flaviu Cipcigan Vlad Sokhan Jason Crain Glenn Martyna

Upload: others

Post on 05-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Electronically coarse grained waterAndrew Jones Flaviu Cipcigan Vlad Sokhan Jason Crain Glenn Martyna

  • Problem

    Challenge

    Intermolecular interactions depend on environment

    Develop simplest water model with electronic responses

    Problem

  • 1. Quantum Drude Oscillator (QDO)Light negative particle tethered harmonically to heavy positive, oppositely charged nucleus

    Free parameters

    reduced mass

    spring constant

    charge

  • Polarisabilities

    Dispersion coefficients

    dipole

    dipole–dipole

    dipole–quadrupole

    1. Quantum Drude Oscillator (QDO)

  • 2. The responses of QDOs are realistic

    CH4 H2O

    He Ne Ar Kr Xe

    H Li K Rb Cs

    1.5

    1.5

    1.5

    0.5

    0.5

    0.5

    1

    1

    1

    Polarisation

  • Dispersion

    1.5

    1.5

    1.5

    0.5

    0.5

    0.5

    1

    1

    1

    CH4

    BH3 NH

    3 H2O

    He Ne Ar Kr Xe

    H Li K Rb Cs

    2. The responses of QDOs are realistic

  • 3. QDO waterFrame: ground state charge distribution

    + 0.605 e

    - 1.21 e

    0.2667 Å0.957

    2 ÅO

    H

    M

    H 104.52º

    Frame: ground state charge distribution

  • = 0.3656 amu

    = 0.6287

    = -1.1973 e

    3. QDO waterQDO: responses

  • 3. QDO waterShort range: empirical repulsion

  • 4. Liquid QDO water

    Radial distribution function

    r / Å2345 67

    g OO(r

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5Skinner et al. (exp).Exp. (Soper)QDO, N = 300

  • 4. Liquid QDO water

    Radial distribution function Vapour pressure

    exp: 43.91 kJ/mol

    r / Å2345 67

    g OO(r

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5Skinner et al. (exp).Exp. (Soper)QDO, N = 300

    46 ± 2 kJ / mol

  • 4. Liquid QDO water

    Radial distribution function Vapour pressure

    exp: 43.91 kJ/mol

    r / Å2345 67

    g OO(r

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5Skinner et al. (exp).Exp. (Soper)QDO, N = 300

    46 ± 2 kJ / mol

    Dielectric constant

    exp: 7879 ± 2

  • 4. Liquid QDO water

    Radial distribution function Vapour pressure

    exp: 43.91 kJ/mol

    r / Å2345 67

    g OO(r

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5Skinner et al. (exp).Exp. (Soper)QDO, N = 300

    46 ± 2 kJ / mol

    Dielectric constant

    exp: 7879 ± 2

    Surface tension

    exp: 71.73 mN / m72.6 ± 1 mN / m

  • 5. Liquid–vapour interface of QDO water

  • 5. Liquid–vapour interface of QDO water

  • 5. Liquid–vapour interface of QDO water

    loss & gain of electronic chargein bulk

  • 5. Liquid–vapour interface of QDO water

    loss & gain of electronic chargeat surface

  • 5. Liquid–vapour interface of QDO water

    loss & gain of electronic chargelast surface layer

  • 6. Conclusions

    simple, but with a complex electronic structure

    transferability may be good, under investigation

    QDO water

    model of the isolated molecule, condensed properties emerge naturally

  • A. Jones, Quantum drude oscillators for accurate many-body intermolec-ular forces, PhD thesis, The University of Edinburgh

    A. Jones, F. Cipcigan, V. Sokhan, J. Crain, G. Martyna, Electronically coarse grained model for water, PRL 110, 227801 (2013)

    Electronically coarse grained waterAndrew Jones Flaviu Cipcigan Vlad Sokhan Jason Crain Glenn Martyna