ann-sofi smedman uppsala university uppsala, sweden · ann-sofi smedman uppsala university uppsala,...

45
Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Ann-Sofi Smedman Uppsala University Uppsala, Sweden

Upload: others

Post on 29-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Effects of transfer processes on marine atmosphericboundary layer

orEffects of boundary layer processes on air-sea

exchange

Ann-Sofi SmedmanUppsala University

Uppsala, Sweden

Page 2: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Swell

Long wavescreateform drag

Upward momentum flux

Quasi-frictional decouplingat the surface

Turbulence resembles free convection conditions

Ocean

MABL

Effect of transfer process on MABL

Page 3: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Effect of MABL process on air-sea exchange

MABL

Detached eddiesimpinging on the surface

Increased small scaleheat flux

Increased CHNand CEN

Ocean

UVCN regime

Page 4: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

In models air-sea exchangeis described through Monin-Obukhov similarity

theorya theory which is well tested over land

but

is it valid over the ocean?

Page 5: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Large heat capacity

Small diurnal variation

Roughness (waves)increasing with

increasing wind speed

What are the differences ?

Page 6: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

10002200

2 buoys (temp, waveheight , dir. and CO2 Footprint area

Tower 30 mTemp and wind profiles 5 levels

Turbulence 3 levelsHumidity and CO2 at 2 levels

Long term measurements in the Baltic Sea

Page 7: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Turbulence, wind speed, temperature and waveparameters

Short term experiments with RV Aranda and ASIS buoy

In the mean, excellent agreement between tower and ASIS

Page 8: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Data set from Agile experiment in lake Ontario 1994-95

A 15- m research vessel Agile was equipped to measure waves and turbulence with

• Sonic R2A• Thermocouple• Licor• Wave staff array

Measurements were performed at 7.8 m during two autumn periods

Page 9: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Growing sea (slow waves)Unstable stratification

• Monin-Obukhov similarity theory is validbut

roughness length, zo, is a function of wave age

0.04 0.05 0.06 0.0710

−6

10−4

10−2

Growing sea

u*/c

p

z 0/σ

Page 10: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Swell (long waves traveling faster than the wind)

andunstable stratification

• A quite different type of boundary layer develops

Page 11: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

The swell driven BL is characterized by

• Small or positive momentum flux• Low level jet• M-O scaling does not hold• The vertical extent can be global• Turbulence spectra resemble free convection conditions• Swell represents reverse atmospheric-ocean coupling

Page 12: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

−0.04 −0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.0050

5

10

15

20

25

30

u’w’ (m2s−2)

heig

ht (

m)

C2 C

p/U

8=1.79C3

CP/U

8=1.61Shearing stress

C1C

p/U

8=4.72

F1C

p/U

8=4.66

F2C

p/U

8=1.73

Small momentum flux

Page 13: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

uw x 1000

positive uw

Aircraft measurements

Tower measurements

Positive momentum flux

Page 14: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

LES simulations Peter Sullivan

Page 15: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 20

5

10

15

20

25

30

35

U (ms−1)

heig

ht (

m)

Mean wind profiles

Cp/U

8 = 4.72 C

p/U

8 = 4.60

Case C1 Case F1

Low level jet

Page 16: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 70

5

10

15

20

25

30

35

U (ms−1)

heig

ht (

m)

Mean wind profiles

Cp/U

8 = 1.79 C

p/U

8 = 1.61 C

p/U

8 = 1.73

Case C2 Case C3 Case F2

Page 17: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

0 2 4 6 8 1010

0

101

102

103

104

U (m/s)

z (m

)

Pibal tracking 03090610−23 LST

The vertical extent is global

Page 18: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

−1 0 1 2 3 4 5 6 70

5

10

15

20

25

30

φm

heig

ht (

m)

φm

= (1−15z/L)−1/4for L= −30 m

C1Eq.C2F1F2C3

Φm calculated for five swell cases

Cp/U8=4.7

Cp/U8=1.6

Page 19: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Turbulent kinetic energy budget

ερ

θ +∂′∂

+∂

′∂⋅+′−

∂∂⋅′′=

zew

zwpw

Tg

zUwu

oo

10

P B Tp Tt D

Page 20: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

x 10−3

0

5

10

15

20

25

30

TKE (m2s−3)

heig

ht (

m)

P B Tp Tt D

Growing sea

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Frequency − n (Hz)

Ene

rgy

− S

(n)

(m2 s−

1 )

Growing sea case

npeak

= 0.42 Hz

Turbulent energy budgetGrowing sea

Page 21: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10−4

0

5

10

15

20

25

30

TKE (m2s−3)

heig

ht (

m)

Case F1

BTp P Tt ε

Turbulent energy budgetcp/U=4.7

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 20

5

10

15

20

25

30

35

U (ms−1)

heig

ht (

m)

Mean wind profiles

Cp/U

8 = 4.72 C

p/U

8 = 4.60

Case C1 Case F1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Frequency − n (Hz)

Energ

y −

S(n

) (m

2s

−1)

Case F1

nswell

= 0.22 Hz

Page 22: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

−5 −4 −3 −2 −1 0 1 2 3 4

x 10−3

0

5

10

15

20

25

30

TKE (m2s−3)

heig

ht (

m)

Case C3

P B Tt Tpε

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 70

5

10

15

20

25

30

35

U (ms−1)

he

igh

t (m

)Mean wind profiles

Cp/U

8 = 1.79 C

p/U

8 = 1.61 C

p/U

8 = 1.73

Case C2 Case C3 Case F2

Turbulent energy budgetcp/U=1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.005

0.01

0.015

0.02

0.025

0.03

Frequency − n (Hz)

Energ

y −

S(n

)(m

2s−

1)

Case C3

nswell

= 0.22 Hz

nmin

=0.35 Hz

Page 23: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

)2

''''(''

1 2

εθ ++∂∂

+−−=∂∂

pv Tqwz

wTg

wuzU

'')(

wuT

zU p

Tp −=∂∂

dzuT

mUzUz

m

p∫=−5.2

2*

)5.2()(

From the turbulence energy eq,

The effect of Tp can be isolated

Page 24: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 60

5

10

15

20

25

30

35

U (ms−1)

heig

ht

F2 (based on numerical expressions for Tp)

blue: measured U−curve

red: measured U−curve minus Tp/u*2

Page 25: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Heat fluxes

All turbulent fluxes in models must be expressed as mean variables

)( soH TTU

wC−′′

Wind speed Air-sea temperaturedifference

Stanton numberHeat flux

In the same way for latent heat, CE

Page 26: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

)}/)}{ln(/{ln( 00

2

THN zzzz

C κ=

Reduced to neutral stability

Von Karman constant=0.4

Roughness length Roughness lengthfor temperature

In the same way for latent heat, CEN

Page 27: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Heat fluxes, unstable stratificationΔT>3o

• Traditional parametrization (COARE algorithm) is valid

• No variation with wave age

Heat fluxes, stable stratification

• Low-level jets cause shear suppression leading to decreased fluxes

Page 28: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Heat fluxes, unstable stratification, very close to neutral

Wind speed > 10 m/s and ΔT< 3o

Fluxes are underestimated with COARE algorithm

Page 29: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

10−4

10−3

10−2

10−1

100

101

102

10−4

10−3

10−2

10−1

100

101

nSu,

w(n

)/u*2 Φ ε2/

3 nS T(n

)/T*2 Φ ε−1

/3Φ N

T

f=nz/U

Tuw

Unstable stratification -- horizontal rolls

U T

w

Page 30: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

10−4

10−3

10−2

10−1

100

101

10−3

10−2

10−1

100

101

f=nz/U

nSu,

w(n

)/u *2 Φ

ε2/3 n

ST(n

)/T

*2 Φε−1

/3Φ

NT

Tuw

Unstable near neutral -- detached eddies

UT

w

Page 31: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

10−4

10−3

10−2

10−1

100

101

102

0

0.05

0.1

0.15

0.2

0.25

f=nz/U

nCO

wt(n

)/w

t

Norm. heat flux Östergarnsholm

L=−10 m

L=−42 mL=−140 m

L=−250 m

Normalized heat fluxes

Page 32: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

2 4 6 8 10 12 140

0.5

1

1.5

2

2.5

3x 10

−3

U10

CH

NMIUU, L > −150m

data2

R2, 1 m/s bins

MIUU, L <−150m; 0.5<(Tw − T10) <1.0K

MIUU, L < −150m; 1.0 < (Tw − T10) < 1.5K

MIUU, L < −150m; 1.5 < (Tw − T10) < 2.0 K

ΔT<3o

Sonic temp.

Platinum sensor ( o ***)

Heat flux from Östergarnsholm

Page 33: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Latent heat flux, Östergarnsholm

COARE

ΔΤ<2ο

Page 34: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

2 4 6 8 10 12 14 16 180.5

1

1.5

2

2.5

3

3.5

4x 10

−3

CH

N

U10

SonicTC

ΔT>3

ΔT>3

0.8

0.9

0.8

0.6 0.7

2.18

0.752.2

2.7

2.0 3.0

2.3 2.0

..

Agile heat flux

thermocouple

sonic

ΔT<3o

Page 35: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

2 4 6 8 10 12 140

0.5

1

1.5

2

2.5

3x 10

−3

U (ms−1)

CE

N

2.98 3.04

3.1

3.13.17

3.13

3.2

2.06

2.05

2.32

6.19

6.14

6.22

5.562.26

Agile Licor, ΔT<3

Agile latent heat flux

Solid curves data from Östergarnsholm

Page 36: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

2 4 6 8 10 12 14 16 18−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04Comparison of heat fluxes, differences, Agile−94,95

w´t

´ TC −

w´t

´ S (

m s

−1 K

)

U10

(m s−1)

Agile heat flux: (wt)TC- ( wt) sonic

Page 37: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

The unstable very close to neutral regime

• The UVCN regime is defined for ΔT<3o and U>10m/s

• It is found both over land and sea in the lowest region (z<15 m) of the surface layer

• Small scale heat flux is a result of detached eddies originating from the upper part of the surface. This is in contrast to a convective surface layer ruled by horizontal rolls.

Page 38: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Frequency (%) of occurrence of UVCN conditions

ERA-40 reanalysis

Page 39: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Increase (W/m2) in latent heat flux with UVCN regime included

ERA-40 reanalysis

Page 40: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Global mean values of the increase of heat fluxes with UVCN regime included

• Sensible heat flux= 0.8 W/m2

• Latent heat flux (evaporation)= 2.4 W/m 2

• The effect of increased anthropogenic greenhouse gases (2006) on net radiation = 2.63±0.26 W/m 2

Page 41: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Conclusions

Unstable stratification

• M-O similarity theory is only valid for growing waves

During swell the MABL is characterized by

• Low-level jet (LLJ) at 5-10 m height• Constant wind speed above LLJ• Small or positive momentum flux varying with height• Energy is transported from waves to atmosphere by

pressure transport term Tp

Page 42: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Mixed seas

As soon as a small portion of the waves are travelling faster than the wind (mixed seas) MABL is slowly changing from an ordinary boundary layer to a ‘swell dominated ‘ boundary layer and

Monin-Obukhov similarity theory is not valid

During stable stratification wave effects are small

Page 43: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Heat fluxes

• The dynamics of the MABL influence the air-sea exchange of sensible and latent heat.

• When the convective boundary layer is ruled by horizontal rolls the well known COARE algorithm is valid.

• When detached eddies originating from the upper part of the surface layer is present (UVCN regime) the heat fluxes are increased and the Φh-function goes to zero

Page 44: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Why has not the UVCN regime been observed earlier?

• sonic temperature fails to measure temperature fluctuations correctly when σT is small (high wind speed, small ΔT)

• data with small ΔT are often removed from the data set

• measurements are taken at heights above the UVCN layer.

Page 45: Ann-Sofi Smedman Uppsala University Uppsala, Sweden · Ann-Sofi Smedman Uppsala University Uppsala, Sweden. Swell Long waves create form drag Upward momentum flux Quasi-frictional

Thanks to• Ulf Högström, Erik Sahlee, Anna Rutgersson,

Hans Bergström, Cecilia Johansson, MIUU

• Will Drennan, RSMAS, Miami, Kimmo Kahmaand Heidi Pettersson, FMRI, Helsinki

• Phd-students: Andreas Karelid , Björn Carlsson, Maria Norman, Alvaro Semedo

• Former Phd-students: Cecilia Johansson Birgitta Källstrand, Anna Rutgersson, Anna Sjöblom, Xiaoli Guo Larsen