annual review of environmental performance - pfpi.net · annual review of environmental performance...

28
0/27 Annual review of Environmental Performance 2013 www.drax.com

Upload: vuongliem

Post on 18-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

0/27

Annual review of Environmental

Performance 2013

www.drax.com

Page 1

This is the eleventh published Environmental Performance Review produced by Drax Group which reviews the environmental performance of and environmental initiatives undertaken by Drax during 2013.

Drax Group principally consists of Drax Power Limited (“Drax”) (which has responsibility for the operation and management of Drax Power Station, and the Goole biomass pelleting plant), Haven Power Limited (which is a provider of electricity to business customers within the UK), and Drax Biomass based in the US (which is a development and operating company focused on manufacturing wood pellets). The majority of our environmental impacts are directly associated with the operation of Drax Power Station and these are described in this document. The impacts of our other operations are regularly reviewed, but are generally non-material in relation to this report.

During 2013, Drax Power Station was the largest solid fuel fired power station in the UK with five coal fired units and one biomass-fired unit totalling 3,960 megawatts (“MW”) of connected capacity. Its size and characteristics mean that it has a significant impact on the environment. We have recognised this and have put the management of the environment at the heart of our decision-making process.

The main impacts from the plant’s operations are to air, water and land. Drax is currently the largest single site emitter of carbon dioxide (“CO2”) in the UK and a significant emitter of sulphur dioxide (“SO2”) and oxides of nitrogen (“NOX”). We regularly discuss our environmental performance and activities with our stakeholders and customers and are sensitive to their views and concerns.

We understand our environmental impacts, and our business strategy will see the transformation of the power station from a high carbon, fossil fuel generator to a predominately low carbon, renewable generator fuelled by sustainable biomass. The transformation has started to take place and will continue over the next few years.

Drax has invested in emission control equipment for SO2, operating a wet Flue Gas Desulphurisation (“FGD”) system. All units are equipped with special burners and Boosted Over Fire Air (“BOFA”) systems to lower emissions of NOX. Work is being undertaken to identify suitable NOX abatement techniques and technologies needed to meet future NOX emission limits.

We abstract water from the River Ouse and the Sherwood Sandstone aquifer, discharging it back to the River Ouse. The use of water by the plant is a key issue and we understand that, in the future, its importance will increase. We ensure that we manage our water efficiently, continually looking for improvements and will progress these in the coming years.

The burning of solid fuels produces ash. Our operations produce on average 1.5Mt of ash every year. To ensure that these materials are utilised as products, they are produced to conform to European construction product standards. Around one million tonnes of ash products are sold into the construction industry every year as a replacement for virgin aggregates and cements and the unsold by-products are landfilled.

Environmental compliance at Drax is managed under an Environmental Management System (“EMS”) certified to the international standard ISO14001 (see Appendix 1 for

2 Environmental Management System

1 Introduction

Page 2

certificate). The EMS ensures that we meet our legal and policy commitments to protect and continually improve environmental performance in the course of carrying out our business.

The Chief Executive has overall responsibility for the implementation of the Drax Environmental Policy, EMS, environmental compliance and performance of the business, with other staff allocated specific responsibilities. The Company’s environmental strategy is implemented through the Environmental Policy (Appendix 2) and the EMS contains documented procedures for each significant environmental aspect. The performance of the system is monitored against a set of objectives and targets; these are monitored through internal and external audit and reviewed through the Company’s monthly environmental performance meeting. Where incidents or ‘near misses’ have occurred, they are reported, managed and investigated thoroughly through our internal reporting system. Any resulting actions and learning points are also assigned and tracked by the system.

Drax has been certified to ISO14001 for many years and the EMS was recertified in 2013. The EMS is a mature system with environmental compliance embedded into all relevant operations and decisions.

Our environmental performance record within the sector has been recognised by the Environment Agency with whom we worked to pilot the Environment Permitting Compliance Assurance Scheme. The Scheme is intended to reduce regulatory burdens on the best performing sites whilst maintaining an adequate level of oversight through combining assessment of specific legal compliance with certification to ISO14001. We are continuing to work with the Environment Agency on finalising the findings for the scheme.

Locally, we continue to engage with parish, town, district and county councillors and officers with the intention of keeping them up-to-date with our business issues and developments. Our regular communications channel with them and other local opinion formers includes an annual consultative meeting, complemented by regular meetings with local councils and other stakeholders.

Drax has a series of over-arching environmental objectives. In 2013, these were to:

Reducing the environmental impacts of the business where practicable;

Optimise the use of natural resources;

Improve the management of waste;

Raise the environmental awareness of staff and those acting on our behalf;

Maintain compliance with environmental legislation; and

Prevent pollution.

Over the last decade Drax has researched and developed the use of sustainable biomass for electricity generation within the power station. This programme underpins a

3 Engagement with the Local Community

4 Environmental Objectives

5 Production

Page 3

long term, sustainable future for our existing infrastructure, and necessitates significant investment in infrastructure to accommodate the burning of biomass fuels. Total generation over the last five years is shown in Table 1. In 2013, the net sales of electricity produced from biomass (renewable power) was 2.9TWh

Table 1. Generation Outturn Figures

Year 2009 2010 2011 2012 2013

Generation* TWh 22.6 26.4 26.4 27.1 26.3

Load Factor % 68 80 80 82 80

* measured net sales

Drax manages and operates under a number of permits and consents across the business. Our Environmental Permits identify the operational techniques, controls and environmental compliance limits for Drax Power Station and the associated ash disposal site, Barlow Mound. The Greenhouse Gas Emissions Permit (issued under the European Union Emissions Trading System (“EUETS”) Directive) identifies the activities, controls and calculation methodology for greenhouse gas emissions (essentially CO2) from Drax Power Station. The water abstraction licences detail the controls, uses and abstraction limits for water taken from the River Ouse and the Sherwood Sandstone Aquifer by the plant.

In 2013, Drax operated within all the conditions of its Environmental Permits in relation to management, operations, emissions, and monitoring and information requirements with a key objective being to maintain compliance with no significant* breaches of the regulatory limits defined within these permits.

Performance in 2013 was as follows:

Significant breaches of Environment Permit

0

Non-compliances with Permits 2 related to control of discharges to waters.

Justified Complaints 2 related to noise and transport fugitive dust

* significant is defined as a breach of the permit that has or is likely to lead to significant pollution as defined by the Environment Agency

The company received no fines or non-monetary sanctions in 2013.

We understand our responsibilities in ensuring that the materials used by our process are managed efficiently. The company has set itself challenging targets and made

6 Environmental Compliance

7 Material Usage

Page 4

significant investment to ensure that our generation efficiency is the highest of any UK coal fired power station.

The sections below describe the raw materials and associated process materials identified to be of importance for our operations.

Data detailing usage of fuels over the last five years are given in Table 2. All of these are non-renewable materials with the exception of biomass, which is sustainable and only purchased where in compliance with the Company’s biomass sustainability policy (see Appendix 3). In 2013, we saw the lowest consumption of non-renewable materials in the last five years.

Table 2. Fuel Usage

Other than fuels, several materials have been identified as being important within the generation process rather than for ancillary purposes. These are shown in Table 3. The only direct material used on site is limestone which is used in the Flue Gas Desulphurisation process and results in the production of gypsum. In 2013, 449kt of direct materials were used in the process resulting in the manufacture of 627kt of gypsum product.

Fuel Used

(kt measured) 2009 2010 2011 2012 2013

Coal and Petcoke 9,808 10,049 9,810 10,438 9,301

All Fuel Oils 48.0 24.9 23.5 18.8 22.5

Biomass 380.6 907.5 1,265 702.8 1,596

7.1 Fuel Usage

7.2 Other Materials

Page 5

Table 3. Key Material Usage

Material (t measured) 2010 2011 2012 2013

Gas Oil 1,351 854 458 317

Sodium Hypochlorite 875* 788 532.3 859

Hydrazine Hydrate 144* 162* 118.9 57.5

Caustic Soda 193* 344* 190.5 240.0

Ferric Sulphate 515* 607* 127.7 340.0

Sulphuric Acid 4,960* 3,693* 4,558.9 5,322.5

Propane 39 24 24 18

Limestone 458,000 449,000 485,000 449,000

* Since 2012 the figures have been calculated based on usage rather than delivery (which was used for reporting up until 2011) to allow full disclosure in accordance with Global Reporting Index (GRI).

Table 3 contains three non-renewable materials namely gas oil, propane and limestone.

In 2013, Drax continued to replace Heavy Fuel Oil (“HFO”) with an alternative product, Processed Fuel Oil (“PFO”) produced from recovered lubricating oils. In 2013, we used 14,318t of PFO resulting in a recycled material input of 0.13% overall.

There are comprehensive mechanisms in place to ensure that emissions are managed appropriately in accordance with our Environment Permits. These have resulted in considerable investment in the processes managing our emissions. The significant air emission species for the last five years are shown in Table 4. All species are determined through direct measurement in accordance with the permit, other than CO2 where the EUETS permit specifies a calculation methodology.

In accordance with its Environmental Permit, Drax Power Station manages and reports its emissions of SO2, NOX and particulate matter in line with the requirements of the National Emissions Reduction Plan (“NERP”). The NERP is an option to demonstrate compliance with the Large Combustion Plant Directive (“LCPD”) and is an annual mass-based emission regime. Operators such as Drax are given annual emission allowances. These can be traded with other participants of the NERP scheme, with each participant having a maximum limit to which additional allowances can be purchased.

In addition to its mass limit, there is also a maximum allowable rate of emission of NOX

and SO2 under the Environmental Permit, which is set at 1.8t/GWh.

7.3 Recycled Input

8 Emissions

Page 6

Table 4. Emissions to Air from 2009 - 2013

Total Emissions (kt)

2008 2009 2010 2011 2012 2013

Carbon Dioxide (calculated)

22,299* 19,852* 22,391* 21,466* 22,695* 20,319

Sulphur Dioxide (measured)

24.5 26.9 27.3 32.1 35.1 31.7

Oxides of Nitrogen (measured)

38.3 38.2 40.4 38.9 39.2 39.2

Particulate Emissions

(measured)

0.5 0.5 0.6 0.6 0.8 0.8

*Data for 2009-2012 have been verified under the EUETS. They include emissions from the FGD but not from biomass.

In 2013, Drax emitted 31.7kt of SO2 and purchased 1,000kt of allowances. SO2 emission rates were below the 1.8t/GWh compliance limit. Figures 1 and 2 and Table 5 provide data on the overall performance of the FGD equipment. In 2013, FGD availability improved by 0.7% compared with 2012 while efficiency remained the same. This resulted in a 0.07t/GWh decrease in the annual emission rate as shown in Figure 2.

Table 5. FGD Performance 2009-2013

2009 2010 2011 2012 2013

FGD efficiency, % 92.0 91.1 90.8 90.6 90.6

FGD availability, % 96.5 98.8 96.01 97.14 97.21

Limestone used

(kt measured) 409 458 448 485 449

Gypsum generated (kt)

646 719 692 779 627

8.1 Sulphur Dioxide (SO2)

Page 7

Figure 1. FGD efficiency and availability performance

Figure 2. Annual sulphur dioxide emission rates

NOX emission rates were below the 1.8t/GWh compliance limit and, at 39.1kt, were within the site mass limit of 41,903kt. Emission rates over the past ten years are shown in Figure 3.

84

86

88

90

92

94

96

98

100

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

FGD Efficiency and Availability

Efficiency Availability

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

T/GWH

Annual SO2 Emission Rate

8.2 Oxides of Nitrogen (NOX)

Page 8

Figure 3. Annual oxides of nitrogen emission rates

The power station emits CO2 from the combustion of fuel as well as from the chemical reaction within the FGD process. The CO2 emissions are calculated and verified in compliance with the requirements of the EUETS. The breakdown for 2013 for each of the major combustion and process sources is provided in Table 6. Note that emissions from biomass are counted as zero within the EUETS.

Table 6. CO2 emissions 2013

Actual CO2 (t calculated)

EUETS CO2 (t calculated)

Coal and Petcoke 20,089,607 20,089,607

Biomass 2,799,391 0

Propane 53 53

FGD 157,110 157,110

All Fuel Oils 72,737 72,737

Total 23,118,898 20,319,507

The use of biomass, rather than coal, saved 2.67 million tonnes of CO2 in 2013.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Annual Emission Rates of Oxides of Nitrogen

8.3 Carbon Dioxide (CO2)

Page 9

Figure 4. Biomass fuel use showing the biomass throughput since 2003.

Figure 5. Carbon dioxide emission rates

Figure 4 shows the impact of improvements in generation efficiency and increased levels of biomass burn in 2013 this is due to the ongoing transformation of Drax to a predominately biomass fuelled generator and the conversion of one of our six generating units to biomass. As shown in Figure 5, in 2013 the rate of CO2 emissions per unit of electricity generated decreased by 0.05t/GWh compared to the previous year due to increased quantities of biomass burnt during the year. The upgraded turbines continue to have their expected performance and impact on our CO2 performance.

The scope 2 CO2 emissions (indirect emissions) generated from the import of electricity for production by the Group in 2013 were 292.8kt CO2e and the total CO2 EUETS emissions for 2013 was 20,319 Mt (excluding biomass).

This is the first year we have had to report in accordance with the Greenhouse Gas Emissions (Directors’ Reports) Regulations (Table 7). This has required the collection of additional greenhouse gas emission sources that are currently outside of the scope of our Greenhouse Gas Emissions Permit, such as associated emissions from heavy mobile plant and the gas and electricity use from our fuel pelleting operations. We have developed a system to collect, assess and report the additional emissions information.

0

200

400

600

800

1000

1200

1400

1600

1800

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

KILO TONNES

Biomass

Biomass

0.65

0.7

0.75

0.8

0.85

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

T/GWH

CO2 Emission rates (2005‐2012 EUETS data)

CO2 (t/GWh)

Page 10

Table 7. Mandatory Greenhouse Gas Emissions

In accordance with the Greenhouse Gas Emissions (Directors’ Reports) Regulations the Group’s total scope 1 and 2 emissions are 20,612 million tonnes CO2e. The majority of the material emissions are collected and verified as required by the Greenhouse Gas Permit for Drax Power Station. The remaining material sources are gathered and calculated in accordance with Defra guidance using the UK Government conversion factors.

All identified sources of scope 1 and 2 CO2 emissions are collected, monitored and assessed to determine their materiality ensuring that our report gives those emissions that will allow our investors to see the major trends and significant events while eliminating the immaterial emissions.

As part of our biomass transformation strategy our GHG reporting has been expanded to incorporate scope 3 emissions from our fuel logistics operations. These scope 3 emissions are identified in Table 8 below.

Table 8. Scope 3 Greenhouse Gas Emissions

Activity 2013

kt 2013

t/GWh 2012

kt 2012

t/GWh Scope 1

Fossil fuel combustion 20,162 720 22,513 777

Operations 157 6 180 7

Total Scope 1 20,3202 725 22,6931 784

Scope 2 Purchased electricity 293 10 341 10

Total Scope 1 and 2 20,612 736 23,038 794

Biologically-sequestered carbon (biomass combustion)

2,799 1,214

Gross generation TWh 28 29

CO2e

(t calculated)

Fuel Logistics 2013 2012

459,472 396,017

Page 11

The particulate emission limit for the station, is 25mg/m3 averaged over each month. Throughout 2013, the plant was compliant with the particulate limits, the average emission rate being 9.3mg/m3 and with a total mass emission of 0.8kt.

The emissions of minor species are given in Table 9.

Table 9. Emissions to air of minor species

Species Emission (t)

N2O 272 CO 11,512

Methane 146 Volatile Organic Carbon

283

SO3 298

The majority of the ash produced at the plant is sold to the construction industry with the remainder sent for disposal at the adjacent Barlow Mound. Details are shown in Table 10.

The station produces ash materials in two different forms, Pulverised Fuel Ash (“PFA”) and Furnace Bottom Ash (“FBA”).

- PFA consists of the very fine particles of ash that pass through the boiler and are removed from the exhaust gases. These can be used to replace cement, filler or aggregates in concretes.

- FBA consists of the larger pieces of ash that fall to the bottom of the boiler and are subsequently removed. These materials are used as an aggregate to make light weight aggregate blocks.

To allow these by-products to be utilised, the industry has agreed a Quality Protocol with the Environment Agency. This document provides a number of criteria to be satisfied for the materials to achieve an ‘end of waste’ status. The key principle of the Protocol is to ensure conformance with the appropriate European product standards.

8.5 Emissions of Minor Species to Air

8.6 Disposals to Land

8.4 Particulate Emissions

Page 12

Table 10. Total ash landfilled and sold 2011-2013

2011 2012 2013

Ash to Landfill (t dry) 362,480 546,024 235,800

FBA Sold under Quality Protocol (t)

230,344 288,454 248,598

PFA Sold under Quality Protocol (t)

842,438 711,792 828,762

FBA Sold outside Quality Protocol (t)

49,943 0 5106

PFA Sold outside Quality Protocol (t)

121,369 37,639 14,510

The quantities and disposal methods for the waste generated can be found in Figure 6, Table 11 and Table 12. The methods of disposal identified in this figure are determined from information provided by the waste management contractors with the exception of ash which is managed internally. The majority of the non-hazardous waste sent to landfill was lagging material removed from the boiler and turbines during maintenance works for which recycling opportunities are limited. The hazardous waste sent to landfill was predominately asbestos-contaminated material for which no alternative disposal option currently exists.

Figure 6. Waste disposal by route

Table 11. Waste and recycling

Waste Type (t calculated) 2010 2011 2012 2013

Ash Disposal (landfill) 523,970 362,480 546,024 235,800

The diversion of waste generated during our operations away from landfill (excluding ash) improved from 90% in 2012 to 96% in 2013.

9906

1075

414 216216 32

Tonnes of Waste by Disposal Route 2013

Non‐hazardous waste (recycledor composted)

Non‐hazardous waste (energyrecovery)

Non‐hazardous waste(landfilled)

Hazardous waste (recycledcomposted)

Hazardous waste (energyrecovery)

Page 13

Table 12. Hazardous waste movements

2010 2011 2012 2013 Total hazardous transported

(t measured) 231 420 456 464

Hazardous waste treated outside UK within the EU

(t measured) 28.1 0 0 0

% of hazardous waste treated internationally

12 0 0 0

The majority of the raw water is abstracted from the River Ouse and used as process water for cooling. Additionally it is used for conditioning the PFA for disposal at Barlow Mound and for dust management on the Mound.

The high quality water required for boiler make-up water is supplied from licensed boreholes abstracting from the Sherwood Sandstone aquifer. The natural quality of this water makes it suitable for use, after treatment, within the steam system.

Additionally, municipal mains water is used for drinking and amenities. This is supplied by Yorkshire Water whose infrastructure is designed to enable the supply of water from a diverse portfolio of assets. Hence, they are unable to identify the precise source of the water they supply to Drax. Water use for 2011-2013 is shown in Table 13.

Table 13. Water use

Water Abstraction for Use

(Mm3 measured) 2011 2012 2013

River Ouse Water (surface water) 57.9 56.7 56.9

Mains Water (municipal water) 0.2 0.2 0.3

Borehole Water (groundwater) 2.0 1.8 1.9

Total Water Abstracted 60.1 58.8 59.1

Water Used and Returned (surface water)

30.9 30.8 31.5

% Water used and returned 51 52 53

Water Use (m3/GWh) 1.1 1.0 1.1

9 Water

Page 14

The Sherwood Sandstone aquifer is currently identified as ‘over-licenced’ but not ‘over-abstracted’ by the Environment Agency. Under the definition (given in GRI EN9, see Appendix 6) we are currently not significantly affecting this water source.

The site has a single water discharge point to the River Ouse which is regularly monitored either through extractive testing or using appropriate online monitoring. The mass discharges to the river are shown in Table 14 for the most material permit parameters.

The river is not identified as a protected area nationally or internationally at or below the point of discharge and we do not significantly affect its quality.

Table 14. Water quality mass emissions

The groundwater under Barlow Mound is monitored in accordance with the site Environmental Permit which requires monitoring of six boreholes. There are compliance requirements on three boreholes (BH4, BH5 and the abstraction borehole) for six parameters and these are shown in Figures 7, 8, 9, 10, 11, and 12, together with the ‘trigger levels’. During 2013 these were well within the compliance limits.

Figure 7. Barlow arsenic groundwater monitoring

0

10

20

30

40

50

60

70

80

90

UG/L

Arsenic Groundwater Monitoiring Results 2013

BH4 As(ug/l) BH5 As(ug/l) Abs BH As(ug/l) Trigger Level As(ug/l)

Parameter 2009 2010 2011 2012 2013

Copper (kg) 727 292 198 223 124

Mercury (kg) 0.11 0.02 0.13 0 0

Cadmium (kg) 18 27 62 34 13

Page 15

Figure 8. Barlow boron groundwater monitoring

Figure 9. Barlow molybdenum groundwater monitoring

0

200

400

600

800

1000

1200

UG/L

Boron Groundwater Monitoring Results 2013

BH4 B(ug/l) BH5 B(ug/l) Abs BH B(ug/l) Trigger Level B(ug/l)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

UG/L

Molybdenum Groundwater Monitoring Results 2013

BH4 Mo(ug/l) BH5 Mo(ug/l) Abs BH Mo(ug/l) Trigger Level Mo(ug/l)

Page 16

Figure 10. Barlow potassium groundwater monitoring

Figure 11. Barlow sulphate groundwater monitoring

0

5

10

15

20

25

30

35MG/L

Potassium Groundwater Monitoring Results 2013

BH4 K(mg/l) BH5 K(mg/l) Abs BH K(mg/l) Trigger Level K(mg/l)

0

50

100

150

200

250

300

350

400

450

500

MG/L

Sulphate Groundwater Monitoring Results 2013

BH4 Sulphate(mg/l) BH5 Sulphate(mg/l)

Abs BH Sulphate(mg/l) Trigger Level Sulphate(mg/l)

Page 17

Figure 12. Barlow cadmium groundwater monitoring

There are currently no areas of protected or high biodiversity value adjacent to the power station or on any land that Drax leases or manages. The Company has no significant direct impacts in relation to its activities on areas of high biodiversity value outside of protected areas.

Drax manages and maintains Barlow Mound, the restoration of which has had a positive impact on biodiversity generally. Since the construction of the power station, the ash disposal area has been transformed from an old Ministry of Defence munitions site to a mix of agricultural grazing, woodland and wild flower meadows.

The ash produced by the power station has always been used as an alternative to virgin aggregates or as a direct replacement for cement in concrete thereby reducing the demand of virgin materials.

The ash products produced by the site conform to European technical standards appropriate to their use. The ash products are registered with the European Chemicals Agency as required by the Registration, Evaluation and Authorisation of Chemicals Directive (“REACH”).

Gypsum is also produced as a by-product of our operations and is sold to local manufacturing facilities, used to manufacture products such as plasterboard. Gypsum is also registered in accordance with REACH.

0

0.2

0.4

0.6

0.8

1

1.2UG/L

Cadmium Groundwater Monitoring Results 2013

BH4 Cd(ug/l) BH5 Cd(ug/l) Abs BH Cd(ug/l) Trigger Level Cd(ug/l)

11 Products and Services

10 Biodiversity

Page 18

Table 15. Percentage products sold

% of Product Sold 2009 2010 2011 2012 2013

Pulverised Fuel Ash 55 62 72 58 77

Furnace Bottom Ash 100 100 100 100 100

Gypsum 96 98 99 100 100

The energy used in the plant is given in Table 16 and Table 17.

Table 16. Energy consumption by source

Direct energy purchased* by primary source

(PJ calculated)

Energy Source 2012 2013

Coal and Petcoke (non-renewable) 241.4 216.4

Fuel Oils (non-renewable) 0.8 1.0

Biomass (renewable) 12.3 28.5

Total Direct Energy Consumption (PJ calculated)

Total 254.5 245.8

Electricity consumption by primary source

(PJ measured)

Energy Source 2012 2013

Electricity 6.3 6.0

Table 17. Direct energy consumption by type

Energy Source Energy Consumption (PJ)

Non Renewable 217.4

Renewable 28.5

Overall energy consumption from the stations operations was down 3% with a 10% drop in energy from non-renewable sources.

The success of the project to upgrade the high pressure and low pressure turbines has resulted in the Company taking the decision to upgrade three intermediate turbines on selected units from 2014.

12 Energy Consumption

Page 19

To monitor compliance with ambient Air Quality Standards, all coal fired power stations in the UK have installed continuous emission monitors for NOX and SO2 at off-site locations. Drax, Eggborough and Ferrybridge power stations jointly operate a set of monitors in the Aire Valley in line with this requirement. Drax has submitted annual reviews for each year since 2005 to demonstrate compliance with the National Air Quality Strategy (“NAQS”) standards and objectives, and for publication on the public register. Compliance with the air quality criteria in the region is very good with no exceedances of any statutory air quality criteria being caused by Drax.

The monitoring of the background levels of nickel and vanadium was originally undertaken in line with Drax Power Station’s permission to burn petroleum coke (petcoke). The data from local villages at Barlow and Hemingbrough are shown in Figures 13 and 14 and continue to confirm the lack of impact of petcoke on local communities. The data indicate local concentrations to be well below statutory or health limits and, because of the similarity of data between the two sites located ‘upwind’ and ‘downwind’ of Drax, are good evidence of an absence of an effect from the power station.

The World Health Organisation (“WHO”) has a guideline level of 1µg/m3 in 24 hours period for airborne vanadium and 1µg/m3 for nickel. Figures 13 and 14 show that the average vanadium and nickel ambient concentrations in 2013 were 0.0017µg/m3 and 0.0011µg/m3, significantly lower than the WHO guidelines.

Figure 13. Nickel in ambient air

0.00000

0.00200

0.00400

0.00600

0.00800

0.01000

9/8/2006

9/10/2006

9/12/2006

9/2/2007

9/4/2007

9/6/2007

9/8/2007

9/10/2007

9/12/2007

9/2/2008

9/4/2008

9/6/2008

9/8/2008

9/10/2008

9/12/2008

9/2/2009

9/4/2009

9/6/2009

9/8/2009

9/10/2009

9/12/2009

9/2/2010

9/4/2010

9/6/2010

9/8/2010

9/10/2010

9/12/2010

9/2/2011

9/4/2011

9/6/2011

9/8/2011

9/10/2011

9/12/2011

9/2/2012

9/4/2012

9/6/2012

9/8/2012

9/10/2012

9/12/2012

9/2/2013

9/4/2013

9/6/2013

9/8/2013

9/10/2013

Ambient Air Quality Monitoring ‐ Nickel

Barlow Hemingbrough

13 Air Quality and Other Monitoring

Page 20

Figure 14. Vanadium in ambient air

The Global Reporting Initiative is an organisation promoting economic, environmental and social sustainability. To achieve these goals they have produced a sustainability reporting framework, the goal of which is to help companies to measure and report on their sustainability performance.

This report forms part of our reporting framework, with the performance indicators and the level to which we report against them identified and referenced in Appendix 6. We are continually looking to improve our reporting and increase the number of performance criteria against which we report.

0.00000

0.00200

0.00400

0.00600

0.00800

0.01000

9/8/2006

9/10/2006

9/12/2006

9/2/2007

9/4/2007

9/6/2007

9/8/2007

9/10/2007

9/12/2007

9/2/2008

9/4/2008

9/6/2008

9/8/2008

9/10/2008

9/12/2008

9/2/2009

9/4/2009

9/6/2009

9/8/2009

9/10/2009

9/12/2009

9/2/2010

9/4/2010

9/6/2010

9/8/2010

9/10/2010

9/12/2010

9/2/2011

9/4/2011

9/6/2011

9/8/2011

9/10/2011

9/12/2011

9/2/2012

9/4/2012

9/6/2012

9/8/2012

9/10/2012

9/12/2012

9/2/2013

9/4/2013

9/6/2013

9/8/2013

9/10/2013

Ambient Air Quality Monitoring Vanadium

Barlow Hemingbrough

13 Global Reporting Initiative

Page 21

Appendix 1. ISO14001:2004 Certificate of approval

Page 22

Appendix 2. Environmental policy

Page 23

Appendix 3. Biomass sustainability policy

Page 24

Appendix 5 Global Reporting Initiative indicators reported

Indicator Aspect Disclosure

Level Location

EN1 Materials

Pages 4, 5 and 25 EN2 Pages 5 and 25 EN3

Energy Pages 18 & 25

EN4 Page 18 & 25 EN8

Water Page 13, 14 and 25

EN9 Page 13,14, 25 and 26 EN11

Biodiversity Page 17

EN12 Page 17 EN16

Emissions, Effluents and Waste

Pages 5, 6, 8, 9, 10 & 26 EN17 Page 26 EN18 Page 1, 8 & 9 EN20 Pages 5, 6, 7, 8, 11 & 26 EN21 Pages13, 14 & 26 EN22 Pages 11, 12 & 13 EN24 Page 12, 13, 26 & 27 EN25 Page 13 & 14

EN26

Initiatives to mitigate environmental impacts

of products and services, and extent of

impact mitigation

Page 27

EN27

Percentage of products sold and their packaging

materials that are reclaimed.

Page 27

EN28 Compliance Page 6 full disclosure partial disclosure

Page 25

Appendix 6. Global Reporting Initiative definitions

The Global Reporting Initiative (”GRI”) disclosures in this report have been prepared in accordance with the GRI Indicator Protocol (available at https://www.globalreporting.org/resourcelibrary/G3.1-Environment-Indicator-Protocols.pdf). The following definitions provide further clarification where required.

Indictor Attribute Definition or information

EN1 Materials used

by Weight

For reporting the coal and petroleum coke usage have been reported together

Limestone has been defined as a direct material, as it and its derivatives are present in the final by-product The nature of our business means that we currently do not package or use any semi-manufactured parts

in any of our products.

EN2 Recycled input Material that replaces virgin materials that has been

recovered from discard materials

EN3

Primary Energy Purchased for

own consumption

Energy purchased for our own consumption excludes any fuel which is available for trading within the

reporting year No direct primary energy was produced as defined by

the scope of this indictor (0 PJ) Trading of direct primary energy sources was

excluded from the scope of this indicator to ensure an appropriate comparable consumption figure for the

Company’s activities was reported Total primary direct energy sold within the scope of

the report was 0 PJ Total direct primary energy consumption PJ (direct

primary energy purchased plus direct primary energy produced less direct primary energy sold) = 254.5 + 0

- 0 = 254.5 PJ

EN4 Indirect Primary

Energy

Total electricity consumption includes both electricity generated by the station, as well as electricity

purchased from the grid; these numbers are not recorded separately

The source of the electricity supplied to the power station cannot be identified and comes from a mix of

renewable and non-renewable sources

EN6

Initiatives to provide energy

efficient products and

services

This indicator has no relevance to our operations

EN8 Total Water

withdrawal by Source

The amount of rainwater used by the organisation is not material in relation to reporting under this

indicator No waste water from other organisations was used

as a water source

Page 26

EN9

Water sources significantly affected by

withdrawal of water

Withdrawal of water from the River Ouse is not significant in accordance with the criteria provided for

GRI reporting. Considering the nature of Yorkshire Water’s

capabilities, our use is significantly less than 5% of the total source requirement for GRI reporting.

EN16

Direct Greenhouse

Gas Emission

Direct greenhouse gas emissions for the scope of this report are those required to be reported in

compliance with the European Union Emissions Trading System in accordance with the Greenhouse

Gas Emissions Permit The greenhouse gas emissions is determined by

Calculation based on site specific data

Indirect Greenhouse

Gas Emission

This is calculated using the electrical power required by the station as an input to Annex 3, Table A in the

2012 greenhouse gas conversion factors for company reporting spread sheet (1,669.9GWh)

The only source of indirect greenhouse gas emissions reported against this indicator are from electricity used in operation of Drax Power Station (including both electricity generated by the power station, and sourced from the grid); there are no

sources from other combustion processes, physical and chemical processing, transportation of materials,

products and waste, venting or fugitive emissions

EN17

Other relevant indirect source

greenhouse gas emissions

. Greenhouse gas emission from transportation of fuels has been calculated and determined to be

material.

EN20 NOX, SOX and

other significant air emissions

Measurements of NOX, SOX and particulate matter are directly measured in accordance with the Large

Combustion Plant Directive and the Environment Agency’s MCerts scheme

EN21

Total Water Discharge by Quality and Destination

The following parameters have been identified as material in relation to water quality within the scope of

this report; copper, cadmium and mercury No water discharged is used by another organisation

The majority of the water discharged from site does not undergo any treatment; the quantity of water

discharge from site that has undergone treatment is not material for reporting

EN24 Treated

Hazardous waste

Where appropriate hazardous waste discarded is treated to reduce mass and or hazard, with the general exception of asbestos; the asbestos is

landfilled in licenced landfill. In Figure 6, hazardous waste (landfilled) represents

untreated asbestos, whilst hazardous waste (recycled

Page 27

/ composted) and hazardous waste (energy recovered) represent treated waste

No hazardous waste has been imported by the Company

No hazardous waste is exported outside the EU in accordance with EU regulation

EN26

Initiatives to mitigate

environmental impacts of

products and services, and

extent of impact mitigation

The indicator has no relevance to our operations as we cannot mitigate the environmental impacts of the

end-use of electricity

EN27

Percentage of products sold

and their packaging

materials that are reclaimed.

This indicator has no relevance to our operations as electricity is not packaged or reclaimed