anode effect in aqueous electrolysis

Upload: metawfik

Post on 02-Jun-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    1/10

    A n o d e E f f e c t i n A q u e o u s E l e c t r o l y s i s

    HERBERT H. KELLOGG

    Schoo l o f Mines Columbia Univers i t y Ne w York Ne w York

    ABSTRACT

    A phenomeno n which closely resembles anode effect in molten electrolysis can be

    developed in the electrolysis of aqueous solutions at high current density. Normal

    operation of the electrode ceases and a so-called tra nsit ion period begins when the

    electrode temperat ure reaches the boiling point of the electrolyte. When the app lied

    voltage is increased beyond a critical value the transition behavior suddenly changes

    to the aqueous anode-effect. Duri ng this effect the surface tempe ratur e of the anode

    rises far above the boiling point of the electrolyte. Evidence is provided which indicates

    tha t the gaseous envelope surroun ding the anode duri ng the aqueous anode-effect is

    main tain ed by the vapor ization of the electrolyte aga inst the hot anode surface. An

    aqueous cathode-effect was also obtained. The relation between aqueous anode-effect

    and anode effect in molten media is discussed.

    INTRODUCTION

    Since the earliest experiments with the electrolysis

    of molten salts, the behavior called anode effect

    has been reported and many investigators have at-

    tempted explanations of this peculiar and trouble-

    some phenomenon. The description of anode effect

    by C. S. Taylor (1) is quoted below:

    The anode, during t he normal course of electrol-

    ysis, is surrounded with a large number of gas bub-

    bles which are constantly escaping from it. These

    small bubbles seem to form on the anode, and then

    break away easily and escape from the electrolyte by

    breaking through t he surface film. This smooth, even

    evolution of gas around the anode is always a sign

    of normal operation. The moment the anode effect

    occurs, however, conditions are entirely different.

    The anede appears to be entirely surrounded by a

    film of gas, which, by covering the surface of the

    anode, pushes the fused electrolyte away, and thus

    produces the so-called 'non wetting' of the anode.

    As the electrolyte is pushed away, small arcs form

    between the electrolyte and the anode.

    The lit erature on anode effect is rich in factual in-

    formation on the occurrence and control of the

    phenomenon in a variety of molten electrolyses (2, 3,

    4). Noticeably lacking, however, is a satisfactory

    hypothesis concerning the anode effect which will ex-

    plain what forces are responsible for holding the

    molten electrolyte away from the anode in the form

    of a gaseous envelope despite the ever present hydro-

    static forces which tend to collapse this envelope.

    To the best of the author's knowledge, the idea that

    this envelope is maintained by the rush of gases

    evolved at the anode is the most widely held hypoth-

    esis at the present time.

    1 Manusc ript received August 2, 1949. This paper pre-

    pared for delivery before the Cleveland Meeting, April 19

    to

    22

    1950.

    This paper shows that a phenomenon can be ob-

    tained with electrodes which evolve gas in aqueous

    electrolysis, which phenomenon closely fits the pre-

    viously cited description of anode effect in molten

    electrolysis. Furthermore, by analysis of pertinent

    data on this aqueous anode-effect, an explanation

    of the forces which form and maintain the gaseous

    envelope has been arrived at. It seems very likely

    that the explanations of aqueous anode-effect may

    also be valid for the anode effect in molten electrol-

    ysis, and it is contemplated to investigate this possi-

    bility in a future paper.

    133

    EXPERIMENTAL

    The experiments on aqueous anode-effect were

    made with the following circuit: The cell was an 800-

    ml Pyrex beaker in which were placed the anode to

    be investigated (in most instances a platinum wire,

    1.25 mm diameter, immersed to a depth of 8 mm)

    and a platinum cathode (4 x 6 cm sheet). The elec-

    trolyte (usually 1.0N H2S04) was added so as to

    almost fill the cell. A glass stirring-rod, bent into a

    loop at the bottom, was attached to a motor and

    rotated at 450 rpm. A mercury thermometer was

    used to record the temperature of the electrolyte.

    Direct current was supplied to the electrodes by

    means of a Voltage divider connected across a 115

    volt source. An ammeter was placed in series with

    the cell, and the total cell voltage was measured

    across the electrodes with a voltmeter.

    The measurements of electrode temperature were

    made with an electrode constructed in the following

    manner: A tube Of 25-20 chromium-nickel ste el,

    closed atone end, 3.5 mm OD, 2.7 mm ID, and 50 mm

    long comprised the electrode. A copper-constantan

    thermocouple (30 gauge wire) was threaded through

    a two-hoIe ceramic insulator and inserted into the

    steel tube so that the junction was in contact with

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    2/10

    134 J O U R N A L O F T H E E L E C T R O C H E M I C A L S O C I E T Y April 1950

    t h e c l o s e d e n d o f t h e t u b e . A n e f f i c i e n t t h e r m a l c o n -

    t a c t b e t w e e n t h e t h e r m o c o u p l e j u n c t i o n a n d t h e t u b e

    w a s m a d e b y p l a c i n g a b o u t 5 0 m g o f a l o w m e l t i n g

    ( 8 0 ~ a l l o y o f l e a d , t i n , a n d b i s m u t h in t h e b o t t o m

    '

    2

    O 2

    F L

    o -o - - , ~

    4 6 eO I o t2o

    olts

    FIG. 1. An ode effect with p latinu m-w ire anode (0.314 cm~

    imm ersed area) in norm al H~SO4 at 66 ~ 4- 4 ~ C.

    FIG. 2. Normal operation of platinum-wire anode. 1N

    H2S04 at 40 ~ C, 27 vo lts, 5.4 ampe res, a bou t 8 X.

    o f t u b e a n d t h e n g e n t l y h e a t in g t h e t u b e w i t h t h e

    t h e r m o c o u p l e i n pl a ce . T h e r m M e m f w a s m e a s u r e d

    w i t h a p o t e n t i o m e t e r .

    T h e p h o t o g r a p h s w e r e m a d e w i t h a b e n c h c a m e r a

    e q u i p p e d w i t h a 4 2 - m m M i c r o - S u m m a r l e n s . T h e

    i l l u m i n a n t w a s a n I d e n t i f i c a t i o n F l a s h O u t f i t u s e d b y

    t h e S i g n a l C o r p s , a n d c o n s i s t ed o f a p o w e r s u p p l y

    a n d t w o g a s - d i s c h a r g e f l a s h - l a m p s . T h e f l a s h i n -

    t e n s i t y i s r e p o r t e d a s e l e v e n t i m e s m o r e i n t e n s e t h a n

    s u n l i g h t a n d t h e d u r a t i o n a b o u t 1 / 1 0 , 0 0 0 s e c o n d .

    D I s c u s s i O N

    Description of Aqueous A node Effect

    T h e d i s c u s s io n o f t h e m a i n b o d y o f t h e d a t a a n d

    t h e d e v e l o p m e n t o f a h y p o t h e s i s f o r t h e a q u e o u s

    anode-e f fec t wi l l be fo l lowed wi th g rea te r ea se i f p re -

    ceded by a desc r ip t io n o f a typ ica l e lec t ro lys i s which

    resu l t s in the anode e f fec t .

    F i g . 1 r e c o r d s in g r a p h i c a l f o r m t h e v o l t - a m p e r e

    re la t ionsh ips fo r a cel l cons i s t ing o f a shee t - p la t inum

    ca thode (4 x 4 e ra ) and a p la t inum -wire anode (0 . 31

    e m 2 i m m e r s e d a r e a ) , w i t h a n e l e c t r o l y t e o f n o r m a l

    H=S 04 . The fo l lowing desc r ip t ion app l ie s to the be -

    h a v i o r o f th e w i r e a n o de , w h e n t h e b u l k t e m p e r a t u r e

    i s m a i n t a i n e d a t 6 6 ~ 4 - 4 ~ W i t h a lo w v o l t a g e i m -

    pres sed on the ce l l , bubb les o f oxygen a re evo lved

    a t t h e a n o d e i n a p e r f e c t l y n o r m a l m a n n e r . T h e

    v o l t - a m p e r e r e l a t i o n f o r t h e c e l l i s t h a t g i v e n b y t h e

    reg ion A-B in F ig . 1 ; the cur ren t inc reases a lm os t

    l inea r ly wi th inc reased vo l tage . F ig . 2 i s a pho to-

    g r a p h o f t h e g a s e v o l u t i o n a t t h e w i r e a n o d e d u r i n g

    t h i s n o r m a l o p e r a t i o n o f t h e c e ll ( c o m p a r e w i t h F i g .

    3 w h i c h s h o w s t h e w i r e a n o d e w h e n n o c u r r e n t i s

    f l o w i n g ) . T h e o x y g e n b u b b l e s f o r m r a p i d l y , b r e a k

    a w a y f r o m t h e e l e c t r o d e , a n d r i s e q u i c k l y t o t h e s u r -

    f a c e o f t h e e l e c t r o l y t e w h e r e t h e y b r e a k . T h e o p e r -

    a t ion o f the ce l l i s qu ie t and s teady .

    W h e n a c u r r e n t d e n s i t y r e p r e s e n t e d b y t h e p o i n t

    B on F ig . l i s reached , a new behav ior beg ins . The

    v o l t - a m p e r e r e l a t i o n o f t h e c e l l i s e r r a t i c . S p i t t i n g

    a n d h i s s i n g n o i s e s a r i s e f r o m t h e a n o d e , a n d m a n y

    o f t h e g a s b u b b l e s a r e p r o j e c t e d d o w n a n d a w a y f r o m

    t h e a n o d e b y t h e s u d d e n s p i t s . T h e e l e c t r o l y t e

    c l o s e t o t h e a n o d e i s h o t a s e v i d e n c e d b y t h e p r e s -

    e n c e o f c o n d e n s e d w a t e r v a p o r i n t h e e v o l v e d g a s e s .

    A f u r t h e r i n c r e a s e in i m p r e s s e d v o l t a g e c a u s e s n o i n -

    c r e a s e ( o r e v e n a d e c r e a s e ) i n c u r r e n t t h r o u g h t h e

    ce l l , a s shown by B-C on F ig . 1 . F ig . 4 i s a pho to-

    g r a p h o f t h e w i r e a n o d e d u r i n g t h i s b e h a v i o r , w h i c h

    t h e w r i t e r h a s c a l l ed t h e t r a n s i t i o n p e r i o d .

    When the vo l t age i s ra i s ed to a c r i t i ca l va lue (nea r

    C in F ig . 1 ) , an ins tan taneous change t akes p lace .

    T h e v o l t a g e r i s e s s u d d e n l y a n d t h e c u r r e n t d r o p s

    to a low va lue (po in t D in F ig . 1 ) . The loud sp i t t ing

    a n d h i s s i n g , w h i c h a c c o m p a n i e d t h e p r e v i o u s s t a g e ,

    c e a s e . T h e w i r e a n o d e i s c o m p l e t e l y s u r r o u n d e d b y a

    g a s e o u s f i l m . O c c a s i o n a l t i n y s p a r k s c a n b e s e e n t o

    f o r m i n t h e f i lm . F ig . 5 i s a p h o t o g r a p h o f t h e a n o d e

    d u r i n g t h i s b e h a v i o r . T h i s is t h e p h e n o m e n o n w h i c h

    t h e w r i t e r h a s c a l l ed a q u e o u s a n o d e - e f f e c t .

    I n c r e a s e o f v o l t a g e t o p o i n t E o n F i g . 1 d o e s n o t

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    3/10

    Vol. 97 No. 4 ANODE EF FEC T IN AQUEOUS ELECTR OLYSI S 135

    alter the behavior described for point D, except tha t

    a dull red glow can be seen at the lower tip of the

    anode. The writer has taken this glow to indicate

    that the temperature of the electrode is high--proba-

    bly 750~ Fur the r indication th at the electrode is

    hot is that, if the circuit is suddenly opened while

    the anode is operating anywhere in the E-F region

    an elect rolyte of normal NaOH 2. Fig. 6, 7, and 8

    summarize the volt-ampere relations and the anode

    temperature for three different bulk-electrolyte tem-

    peratures. The behavior for each electrolyte temper-

    ature can again be conveniently divided into three

    periods: (a) normal operation, A-B in Fig. 6, 7, and

    8; (b) transition period, B-C; (c) anode effect, F-D-E.

    FIG. 3. Platinum-wire anode. No current flowing, im-

    mersion 0.8 cm, about 87

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    4/10

    136 J O U R N A L O F T H E E L E C T R O C H E M I C A L S O C I E T Y Apr i l 1950

    p a s s a g e o f c u r r e n t f r o m t h e b u l k o f t h e e l e c t r o l y t e

    t o t h e e l e c t r o d e s u r f a c e a r e t h e b u b b l e w a l l s o f t h e

    e v o l v i n g g a s . T h e c u r r e n t d e n s i t y i n t h e s e b u b b l e

    w a l l s i s c o r r e s p o n d i n g l y h i g h , a n d t h e h e a t d i s s i p a t e d

    b y I2R ' ' h e a t i n g i n t h e b u b b l e w a l l s i s h i g h e r t h a n

    e l sewhere in the e lec t ro ly te .

    T h e t e m p e r a t u r e o f t h e b u l k e l e c t r o l y te h a s o n l y

    a m i n o r e f f e c t o n t h e v o l t - a m p e r e r e l a t i o n s i n t h i s

    n o r m a l o p e r a t i o n p e r io d . F o r a g i v e n v o l t a g e , t h e

    c u r r e n t i s s l i g h t l y h i g h e r f o r t h e h o t e l e c t r o l y t e t h a n

    f o r t h e c o o l , a s w o u l d b e e x p e c t e d f r o m t h e h i g h e r

    c o n d u c t i v i t y o f t h e h o t e l e c t r o l y t e .

    e l e c t r o l y t e t e m p e r a t u r e . T h i s i s r e a d i l y e x p l a i n e d

    s ince the co ld e lec t ro l y te wi l l o f fe r be t t e r cond i t ions

    FIG. 5. Aque ous anode effect with platinum -wire

    anode. IN H2SO4 at 40 ~ C, 70 volts, 1.[ am peres, abo ut 8X .

    2. Tran sition Period]

    F o r a l l t h r e e e l e c t r o l y t e t e m p e r a t u r e s t h e c h a n g e

    f r o m t h e n o r m a l o p e r a t i o n t o t h e t r a n s i t i o n

    p e r i o d i s c o i n c i d e n t w i t h t h e p o i n t a t w h i c h t h e

    e l e c t r o d e t e m p e r a t u r e r e a c h e s 10 0 ~ 2 ~ T h e

    r e g i o n c l o s e t o t h e e l e c t r o d e h a s b e c o m e s u f f i c i e n t l y

    h o t t o v a p o r i z e t h e e l e c t r o l y t e , a n d t h e s p i t t i n g a n d

    h i s s in g n o i s es w h i c h a c c o m p a n y t h e t r a n s i t i o n

    p e r i o d a r e e v i d e n ce t h a t v a p o r i z a t i o n d o e s t a k e

    p lace .

    F i g . 6 , 7 , a n d 8 s h o w t h a t t h e c u r r e n t d e n s i t y a t

    w h i c h t h e n o r m a l o p e r a t i o n e n d s a n d t h e t r a n s i -

    t i o n p e r i o d b e g i n s is h i g h e r t h e l o w e r i s t h e b u l k -

    FIG. a. Aqueous anode-effect with l)latinum-wire

    anode. 1N ]|2SO4 at 90 ~ C, 74 volts, 0.12 ampe res, abou t 8X .

    10

    E

    le ~

    i

    s

    / 50C

    /

    /

    I

    i

    , j , . 4 0

    . ~

    Amp

    ~ ? 1

    F D

    2 o 4 0 6 0 8 0 /0 0 1 2 0

    Vo l t s

    FIG. 6. Anode effect with alloy~steel anod e (0.956 cm2

    immersed area) in normal NaOH at 39~177~ C.

    f o r h e a t t r a n s f e r a w a y f r o m t h e e l e c t r o d e , a n d , c o n se -

    q u e n t l y , a h i g h e r c u r r e n t d e n s i t y w i l l b e r e q u i r e d t o

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    5/10

    Vol. 97, 25o. 4 A N O D E E F F E C T I N A Q U E O U S E L E C T R O L Y S I S 13 7

    r a i s e t h e e l e c t r o d e t e m p e r a t u r e t o t h e b o i l i n g p o i n t

    o f t h e e l e c t r o l y t e .

    F i g . 6 , 7 , a n d 8 s h o w t h a t d u r i n g t h e t r a n s i t i o n

    p e r i o d t h e c u r r e n t f a i ls t o i n c r e a s e a n d e v e n f a ll s

    a s t h e v o l t a g e is f u r t h e r i n c r e a s e d . T h e e x p l a n a t i o n

    o f t h i s b e h a v i o r i s f o u n d b y e x a m i n a t i o n o f t h e

    e l e c t r o d e s u r f a c e d u r i n g t h e t r a n s i t i o n p e r i o d . F i g .

    4 s h o w s t h a t t h e v a p o r i z a t i o n o f t h e b u b b l e w a l l s

    d u r i ng t h e t r a n s i t i o n p e r i o d r e s u l ts i n t h e f o r m a -

    t i o n o f a w i d e v a p o r f i l m w h i c h e n c l o s e s a l a r g e s e c -

    t i o n o f t h e e l e c t r o d e . D u r i n g t h e t r a n s i t i o n p e r i o d

    t h e s e f il m s h a v e a v e r y s h o r t l if e a n d a r e c o n s t a n t l y

    I0

    Amos

    4OO

    p

    6 ~ 4 ' x 3 g

    / ,.

    ,,

    9 1 0 (

    . * - '

    0 20 40 6 0 80 /oo Igo

    Volts

    Fro. 7 . Anode effect with alloy- steel a node (0.956 em 2

    imme rsed area) in norm al N aOH at 66 ~ 4 - 4 ~ C .

    4

    2

    L ,.:

    g

    2 0

    40 go

    V o l t s

    ~ ~

    A m p ~

    ~o~

    I0

    80 I00 120

    FIG. 8. Anode effe ct with alloy- steel anode (0.95g em 2

    im m ersed a rea ) i n n o rm a l N aO H a t 8 9 ~ 2 ~ C .

    f o r m i n g a n d b r e a k i n g - - a b e h a v i o r w h ic h i s r es p o n s i-

    b l e f o r t h e u n s t e a d y r e a d i n g s o f v o l t a g e a n d c u r r e n t

    d u r i n g t h i s p e r i o d . T h e p r e s e n c e o f t h e s e v a p o r f i l m s

    w h i c h p a r t i a l l y e n c l o s e t h e a n o d e r e s u l t s i n a l a r g e

    i n c r e a s e i n t h e r e s i s t a n c e o f t h e e l e c t r o l y t e p a t h n e a r

    t h e a n o d e a n d , h e n c e , t h e c u r r e n t m a y d r o p e v e n

    t h o u g h t h e v o l t a g e i n c r e a s e s .

    D u r i n g t h e t r a n s i t i o n p e r i o d t h e e l e c t r o d e t e m -

    p e r a t u r e r e m a i n s c o n s t a n t a t 1 00 ~ 4 - 2 ~ T h e r e

    r e m a i n s s o m e d ir e c t c o n t a c t b e t w e e n t h e a n o d e a n d

    t h e e l e c t r o l y te w i t h t h e r e s u l t t h a t t h e e l e c t r o d e

    t e m p e r a t u r e i s p r e v e n t e d f r o m r i si n g a b o v e t h e b o i l -

    i n g t e m p e r a t u r e o f t h e e l e c t r o l y te . T h e g a s e v o l v e d

    b y t h e e l e c t r o l y s i s c o n t i n u e s t o e v o l v e as b u b b l e s ,

    t h o u g h t h e f o r c e of t h e s u d d e n v a p o r i z a t i o n s o f t e n

    p r o j e c t s t h e g a s b u b b l e s f a r a w a y f r o m t h e e l e c t ro d e .

    3. Anode-EffectRegion

    T h e c h a i n o f e v e n t s t h a t l e a d s t o t h e i n s t a n t a n e o u s

    c h a n g e f r o m t h e t r a n s i t i o n p e r i o d t o t h e a n o d e

    e f f e c t w i ll b e b e t t e r u n d e r s t o o d i f t h e c h a r a c t e r i s t i c s

    o f t h e a l r e a d y f o r m e d a n o d e e f f e c t f i l m a r e f i r s t d i s -

    c u s s e d .

    T h e m o s t s t r i k i n g f a c t s , s h o w n i n F i g . 6 , 7 , a n d

    8 , a r e t h e v e r y h i g h e l e c t r od e t e m p e r a t u r e s w h i c h

    p r e v a i l w h e n t h e a n o d e - e f f e c t f il m i s p r e s e n t . T h e

    l o w e s t a n o d e t e m p e r a t u r e r e c o r d e d u n d e r t h e s e c i r -

    c u m s t a n c e s w a s 1 6 5 ~ ; t h e h i gh e s t w a s a b o u t 6 2 0 ~

    T h e s e h i g h a n o d e t e m p e r a t u r e s , t o g e t h e r w i t h t h e

    f a c t s o n t h e v a p o r i z a t i o n o f t h e e l e c t r o l y t e d u r i n g

    t h e t r a n s i t i o n p e r i o d , s u g g e s t a s i m p l e a n d c o m p e l -

    l in g e x p l a n a t i o n f o r t h e f o r c e s w h i c h m a i n t a i n t h e

    g a s e o u s e n v e l o p e d u r i n g t h e a n o d e e f f e c t .

    The anode-effect ilm is prima rily a water-vapor film

    surrounding a hot wire. T h e e l e c t r o ly t e is p u s h e d b a c k

    f r o m t h e e l e c t r o d e s u r f a c e b y t h e v a p o r p r e s s u r e o f

    t h e e l e c t r o l y t e , w h i c h e x c e e d s o n e a t m o s p h e r e a s a

    r e s u l t o f t h e h i g h e l e c t r o d e t e m p e r a t u r e . I f t h e f il m

    a t t e m p t s t o c o l la p s e u n d e r t h e i n f lu e n c e of h y d r o -

    s t a t ic f o r c e s w h e n t h e e l e c t r o l y t e s u rf a c e a p p r o a c h e s

    c l os e t o t h e a n o d e , f u r t h e r v a p o r i z a t i o n w i l l t a k e

    p l a c e a n d p u s h t h e e l e c t r o l y t e b a c k .

    T h i s h y p o t h e s i s o f t h e f o r c e s w h i c h m a i n t a i n t h e

    f i l m i s i n a c c o r d a n c e w i t h t h e v i s u a l o b s e r v a t i o n o f

    t h e a n o d e - e f f e c t f i l m . T h e s u r f a c e o f t h e f i l m i s n o t

    s t a t io n a r y , b u t v i b r a t e s r a p i d ly t o w a r d a n d a w a y

    f r o m t h e e l e c t r o d e s u r f a c e ( s ee F i g . 5 ). S i n c e t h e

    e l e c t ro d e c a n lo s e h e a t b y c o n d u c t i o n u p t h r o u g h i t s

    l e n g th , t h e b o t t o m t i p o f t h e w i r e i s t h e h o t t e s t p a r t

    ( th i s w a s e s t a b l i s h e d e x p e r i m e n t a l l y b y t h e o b s e r v a -

    t i o n o n t h e p l a t i n u m - w i r e a n o d e t h a t t h e b o t t o m

    s e c t i o n c o u l d b e m a d e t o g l o w a t a r e d h e a t , w h i l e

    t h e t o p g a v e n o v i s i b l e r a d i a t i o n ) .

    I n o r d e r t o p r o v e t h a t a h o t w i r e i s c a p a b l e o f s u p -

    p o r t i n g a fi l m , s u c h a s i s f o r m e d d u r i n g t h e a n o d e

    e f f e c t , t h e f o l l o w i n g e x p e r i m e n t w a s p e r f o r m e d : A

    n i e h r o m e w i r e , 0 . 1 0 c m d i a m e t e r a n d 1 2 c m l o n g ,

    w a s f o r m e d i n to a l o o p a n d c o n n e c t e d t o a d i r e c t -

    c u r r e n t s o u r c e ; a c u r r e n t o f 3 9 a m p e r e s w a s p a s s e d

    t h r o u g h t h e w i r e . A s s o o n a s t h e w i r e w a s r e d h o t i t

    w a s p l u n g e d i n t o a b e a k e r o f w a t e r , w i t h o u t d i s-

    c o n n e c t i n g t h e c u r r e n t s o u rc e . A v a p o r f i lm w a s s e e n

    t o s u r r o u n d t h e e n t i r e l e n g t h o f t h e w i r e . F i g . 9 is a

    p h o t o g r a p h o f t h a t p a r t o f t h e w i r e c lo s e t o t h e s u r -

    f a c e o f t h e w a t e r .

    a By use o f a n ickel wire, 0 .81 ma t d iam eter , as an anode

    the au thor was ab le to ob tain s ' ach a h igh elect rode tem-

    pera tu re the n ickel mel ted ( rap - - 1452 C) .

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    6/10

    138 J O U R N A L O F T H E E L E C T R O C H E M I C A L S O C I E T Y April 195

    I n t h i s e x p e r i m e n t t h e r e i s n o q u e s t i on b u t t h a t

    t h e g a s e o u s e n v e l o p e a r o u n d t h e h o t w i r e i s a w a t e r

    v a p o r f i l m . T h e r e i s n o e l e c t r o l y s i s d u r i n g t h i s e x -

    p e r i m e n t a n d n o o t h e r p o s s i b l e s o u r c e o f l a r g e q u a n -

    t i t i e s o f g a s o t h e r t h a n w a t e r v a p o r . T h e s t r i k i n g

    s i m i l a r i t y b e t w e e n t h e h o t - w i r e f i l m ( F i g . 9 ) a n d

    the aqu eous anode -e f fec t fi lm (F ig . 5 ) i s s t ron g ev i -

    d e n c e t h a t t h e a n o d e - e f f e c t f i l m i s a l s o m a i n t a i n e d

    b y t h e v a p o r i z a t i o n o f w a t e r .

    FIG. 9. Vapor fihn surrounding hot wire (about 8X). A

    nichrome wire (0.10 cm diam) was heate d to red heat b y

    passing 29 amperes through it; the red hot wire was then

    plunged into distilled w ater at 72 ~ C, witho ut disconnecting

    the current source. Wire passes through the surface of the

    water at the top of the picture.

    A n o t h e r p o i n t o f si m i l a r it y b e t w e e n t h e a n o d e -

    e f f e c t f i l m a n d t h e h o t - w i r e f i l m i s t h a t t h e t h e r m a l

    e n e r g y w h i c h m u s t b e d i s s i p at e d i n o r d e r t o m a i n -

    t a i n t h e s e f i lm s is o f t h e s a m e o r d e r o f m a g n i t u d e

    f o r b o t h f i l m s. W i t h w a t e r a t 8 7 ~ t h e c r it i c al cu r -

    r e n t r e q u i r e d t o m a i n t a i n t h e h o t - w i r e f i lm i s a b o u t

    2 9 a m p e r e s . T h i s c o r r e s p o n d s t o a h e a t d i s s i p a t i o n

    o f a b o u t 4 0 w a t t s p e r s q u a r e c e n t i m e t e r o f s u r f a c e

    a r e a o f t h e w i re . T o j u s t m a i n t a i n t h e a n o d e e f f e ct ,

    w i t h a n e l e c t r o l y t e t e m p e r a t u r e of 8 7 ~ r e q u i r e s

    a b o u t 4 5 v o l t s a n d 0 . 3 5 a m p e r e s , w h e n t h e p l a t i n u m -

    wire anode , i m m ers ed to a d ep t h o f 0 . 8 cm , is used .

    N o t a l l o f t h i s v o l t a g e d r o p o c c u r s a t t h e a n o d e f i l m ,

    h o w e v e r . T h e a p p r o x i m a t e v o l t a g e d r o p a t t h e f i l m

    c a n b e o b t a i n e d b y s u b t r a c t i n g f r o m t h e t o t a l v o l t -

    a g e d r o p , t h e v o l t a g e d r o p o f th e c e ll w h e n i t i s

    o p e r a t i n g w i t h o u t a n o d e e f f e c t a t t h e s a m e c u r r e n t .

    Thus , wi th norm a l H2S O4 a t 87~

    T o t a l v o l t a g e d r o p t o j u s t m a i n t a i n a n o d e e f f e c t

    = 45 vo l t s .

    V o l t a g e d r o p f o r n o r m a l o p e r a t i o n a t 0 .3 5 a m -

    pe res = 3 . 5 vo l t s .

    Vol ta ge d rop a t f i lm = 45 - 3 . 5 = 41 . 5 vo l t s .

    I m m e r s e d a r e a o f e l e c t r o d e = 0 . 31 4 c m 2 ( P t w i r e

    i m m e r s e d 0 . 8 c m ) .

    41.5 X 0.35

    He a t d i s s ipa te d by f i lm = - = 46

    0.314

    w a t t s / c m 2.

    T h e c l o s e a g r e e m e n t o f t h e s e t w o f i g u r e s f o r t h e

    p o w e r r e q u i r e d t o m a i n t a i n t h e t w o k i n d s o f f i l m

    a l so s u p p o r t s t h e w a t e r - v a p o r t h e o r y o f t h e a n o d e -

    effect f i lm.

    A p r o p e r t y o f t h e a n o d e - e f f e c t f i l m w h i c h i s o f

    c o n s i d e r a b l e in t e r e s t a n d i m p o r t a n c e i s i t s a b i l i t y t o

    c o n d u c t e l e ct r i c c u r r e n t. T h e a n o d e e f f e ct w o u l d b e

    im poss ib le i f the f ilm were a non cond uc tor , s ince i t i s

    t h e h e a t d i s s ip a t e d b y t h e c u r r e n t t h a t h e a t s t h e

    e l e c t r o d e s u r f a c e a n d m a i n t a i n s t h e v a p o r f i l m . T h e

    m e c h a n i s m o f c o n d u c t i o n t h r o u g h t h e v a p o r f i lm i s

    b y n o m e a n s c le ar , b u t t h e f o l l o w i ng o b s e r v a t i o n s

    and d i s cus s ion th row som e l igh t on i t .

    W h e n t h e p l a t i n u m - w i r e a n o d e i s u s e d i n a n e l ec -

    t ro ly te o f su l fu r ic ac id , the on ly v i s ib le s igns o f

    c u r r e n t c o n d u c t i o n a r e r a t h e r i n f r e q u e n t a n d t i n y

    s p a r k s a c r o s s t h e a n o d e f i l m . O n t h e o t h e r h a n d , i f

    a l i t t l e sod ium su l fa te i s added to the e lec t ro ly te (o r

    i f s o d i u m h y r o x i d e i s t h e e l e c t r o l y t e ) , t h e a n o d e f i lm

    is s een to em i t a ye l low g low, cha rac te r i s t i c o f so -

    d i u m e m i s s i o n . W i t h a c e l l v o l t a g e o f 7 0 v o l t s a n d

    a n e l e c t r o l y t e t e m p e r a t u r e o f 4 0 ~ t h e a n o d e s u r -

    f a c e i s c o v e r e d w i t h a g r e a t m a n y ( p e r h a p s 1 0 0 )

    br igh t ye l low spo t s , bu t the re i s no gene ra l g low.

    W h e n t h e v o l t a g e i s r a i s e d t o 1 10 v o l t s a y e l l o w

    g l o w p e r v a d e s m o s t o f t h e a n o d e s u r f a c e . T h e i n -

    t e n s i t y o f t h e g l o w v a r i e s o n a n y o n e p o s i t i o n o f t h e

    s u r f a c e w i t h a p e r i o d i c i t y t h a t i s s i m i l a r t o t h e v i -

    b r a t i o n o f t h e v a p o r f i lm d e s c r i b e d e a r li e r . T h e g l o w

    does no t ex i s t ou t in the wide por t ions o f the f i lm ;

    i t i s conf ined c lose to the anode sur face .

    B a s e d u p o n t h e a b o v e o b s e r v a t i o n s , a n d w i t h o u t

    r i g o r o u s p r o o f , t h e f o l l o w i n g h y p o t h e s i s r e g a r d i n g

    c u r r e n t c o n d u c t i o n a c r o s s t h e f i l m i s o f f e r e d :

    V e r y l i t t l e c o n d u c t i o n c a n t a k e p l a c e a c r o s s t h e

    wide por t ions (0 .2 to 2. 0 m m th ick) o f the f i lm , a s

    e v i d e n c e d b y t h e l a c k o f s o d i u m g l o w i n t h e w i d e

    p o r t i o n o f t h e f il m . I n t h o s e p o r t i o n s o f t h e f i lm

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    7/10

    Vol. 97 No. 4 ANODE EF FE CT IN AQUEOUS ELECT ROLYS IS 139

    which are sufficiently thin (perhaps 0.2 mm judging

    from the photograph in Fig. 5), the potential gradient

    is sufficiently high to cause ionization of the gases

    within the film and c urren t conducti on will take place

    by migrat ion of the gaseous ions. This ionization may

    be sufficiently intense to cause a visible discharge in

    the gas, as evidenced by the sodium glow noted

    above. Since any one position on the film is periodi-

    cally approaching closer to the electrode and then

    receding, the conductio n across the film at th at point

    will also var y and the intens ity of th e glow will vary,

    thus, the flickering aspect of the glow is described.

    Since appreciable current still flows during the

    anode effect, there must be some electrolytic reaction

    taking place at the anode. On the other hand, visual

    observation of the anode during the anode effect

    shows no formation of gas bubbles. The seat of the

    electrolytic reaction must now be the electrolyte-gas

    interface. This type of electrolysis, where the metal

    electrode is separated from the electrolyte by a

    gaseous region, has been described as long ago as

    1887 by Gubkin (5) and studied at len gth by Klemenc

    (6). However, these studies involved low pressures

    (5-15 mm of Hg) in the gas phase and real glow-

    discharge conduction was obtained.

    To prov e that during the anode effect oxygen gas

    is evolved into the water-vapor envelope and exits

    through the neck of this envolope to the atmosphere,

    the following experiment was performed: The upper

    portion of the platinum-wire anode was sheathed

    with a close-fitting ceramic insulator, so that a tip

    about 0.5 cm long of platinum was exposed. The up-

    per end of the sheath was cemented to the wire to

    prevent gas leakage. The electrode was immersed so

    that the 0.5 cm of bare platinum and about 0.2 cm

    of the sheath were below the electrolyte surface.

    When the anode effect was developed with this elec-

    trode a large bubble of noneondensable gas formed

    at the top of the bare platinum and broke off from

    time to time when it grew too large. Tests proved

    the gas to be oxygen. Fig. 10 shows the anode effect

    under these conditions.

    Fig. 6, 7, and 8 show that the el ectrolyt e temper -

    ature has a marked effect on both the current and

    the electrode temperat ure during the anode effect.

    A low electrolyte temperature gives rise to a high

    current and a high electrode tempera ture during the

    anode effect. The explanation of this peculiar re-

    lationship is to be found in the thickness of the vapor

    films formed at different electrolyte temperatures.

    Fig. 5 and Fig. 5a show the anode film at electrolyte

    tempe ratu res of 40~ and 90~ respectively. With

    the high electrol yte temp erat ure the film is quite uni-

    form and it vibrates only slightly. With the low elec-

    trolyte temperature the film vibrates violently and

    is very wide (1-2 mm) in some places and extremely

    thin in others. It is reasonable to expect that the

    cooler the electrolyte, the more closely the film can

    approach the electrode before it is heated sufficiently

    by the hot surface to cause vaporization. As dis-

    cussed previously, the main conduction through the

    film occurs at the very thin sections; thus, the cold

    electrolyte makes possible a larger current because

    the film approaches closer to the electrode surface.

    As would be expected, the intensity of agitation

    of the electrolyte also affects the current during the

    anode effect. At a given electrolyte temperature, in-

    FIG. 10. Aqueous anode-effect with par tly insulated

    platinum wire. The top part of the electrode is sheathed

    with a ceramic insulator. The large bubble breaks off

    periodically when it grows too large. 1N H2SO4 at 67~ C,

    77 volts, 0.15 amperes, about 8X.

    creased agitation causes an increased current to flow.

    Agitation makes possible a more rapid rate of heat

    transfer away from the electrolyte-gas interface, with

    the result that this interface remains cooler, can ap-

    proach more closely to the electrode surface, and can

    allow a larger current to flow.

    The high electrode temperature obtained with the

    cold electrolyte is a secondary effect. Since the cold

    electrolyte allows a large current to flow, and the

    large current will dissipate more heat than the small

    one, the electrode will become hotter. In brief, the

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    8/10

    140 J O U R N A L O F T H E E L E C T R O C H E M I C A L S O C I E T Y April 1950

    e l e c t r o d e t e m p e r a t u r e i s a f u n c t i o n o f, a m o n g o t h e r

    fac tors , t he r a t e of hea t d i s s ipa tion .

    4. Change rom Transition Period to Anode-Effect

    With the foregoing d i s cus s ion of the anode-e f fec t

    f i lm after i t i s formed, i t i s now poss ible to discuss

    the c r i t i ca l f ac tors which re su l t i n the change f rom

    t h e t r a n s i t i o n p e r i o d t o t h e a n o d e e f fe c t.

    I t i s e v i d e n t t h a t t h e a q u e o u s a n o d e - e f f e c t b e g i n s

    a t a c r i t i ca l vo l t age ra the r tha n a t a c r i t i ca l cur re n t

    dens i ty . F ig . 1 , 6 , 7 , and 8 show tha t fo r the evolu-

    t i o n o f o x y g e n t h e c r i t i ca l v o l t a g e i s a b o u t 4 5 - 5 0

    v o l t s. I f h y d r o c h l o r i c a c i d i s t h e e l e c t r o l y t e a n d

    chlor ine i s evolved , t he c r i t i ca l vo l t age for anode

    e f fec t i s abo ut 30-35 vol t s . App aren t ly , t he re fore , t he

    n a t u r e o f t h e g a s e v o l v e d a t t h e a n o d e h a s s o m e

    bear ing on the c r i t i ca l vo l t age . These fac t s sugges t

    the fo l lowing hypothes i s for the ch a in of event s which

    l e a d f r o m th e t r a n s i t i o n p e r i o d t o t h e a n o d e e f fe c t.

    D u r i n g t h e t r a n s i t i o n p e r i o d t h e r e i s s u ff i ci e nt

    h e a t d i s s i p a t e d t o v a p o r i z e m u c h o f t h e e l e c t r o l y t e ;

    howev er , an anode-e f fec t f i lm canno t form unless the

    20 40 ~ 0 ~0 /00 f20

    olts

    FIG. II. C ~thode effect w ith I)l~tinu m-wire catho de

    (0.314 cm 2 im me rs ed are ~) in no rm fl H,,SO4 at 66 ~ -4- 3 ~ C.

    a n o d e t e m p e r a t u r e r i s e s a p p r e c i a b l y a b o v e t h e b o i l -

    i n g p o i n t o f t h e e l e c t r o l y t e . T h e t y p e o f c o n d u c t i o n

    d u r i n g t h e t r a n s i t i o n p e r i o d t h a t r es u l t s i n t h e

    vapo r i za t ion of the bu bble wa l l s can neve r g ive a

    t e m p e r a t u r e a b o v e t h e b o i l i n g p o i n t o f t h e e l e c t r o -

    ly t e , s ince a s soon as a pa r t i cu la r bubble wa l l i s

    v a p o r i z e d c o m p l e t e l y th e c i r c ui t is b r o k e n a t t h a t

    p o i n t a n d t h e c u r r e n t c e as e s f o r t h a t p a r t i c u l a r p a t h .

    However , a s the vo l t age i s p rogres s ive ly inc reased ,

    a po in t i s r eached where the re i s suf f i c i en t po ten t i a l

    drop ac ros s some th in s ec t ion of one of the t rans i en t

    f i lms to cause conduc t ion th rough the gas f i lm. As

    soon as th i s occurs , t he hea t d i s s ipa ted by th i s cur -

    r e n t c a n r e s u l t i n a l o c a l e l e c t r o d e - t e m p e r a t u r e i n

    exces s of 100~ Th e hea t can be cond uc ted a long

    t h e m e t a l e l e c t r o d e a n d c a u s e t h e v a p o r f il m t o s p r e ad

    and be s t ab le a s a comple te enve lope . In shor t , i t i s

    s u g g e s te d t h a t f o r a q u e o u s a n o d e - e f fe c t u n d e r t h e

    condi t ions c i t ed , t he c r i t i ca l f ac tor for the onse t o f

    anode e f fec t i s a suf fi c i en t po te n t i a l d rop ac ros s a

    t r a n s i e n t v a p o r f il m t o c a u s e a n a p p r e c i a b l e c o n -

    d u c t i o n t h r o u g h t h e g a s p h a s e .

    Aqueous Cathode-effect

    In a l l o f t he exp e r iment s and h ypoth eses d i s cus sed

    above the re i s no fac tor which i s pecul i a r t o anodes

    a lone . I f t he hypotheses a re cor rec t , t hen one could

    p r e d i c t t h a t a c a t h o d e w h i c h e v o l v e d g a s, a n d w h i c h

    i s ope ra t ed a t a h igh cur ren t dens i ty should show a

    s imi l a r behavior and deve lop a vapor f i lm under

    proper condi t ions . Such i s found to be the case . I f

    the p l a t inum-wi re e l ec t rode i s made a ca thode in a

    1N su l fur i c -ac id e l ec t ro ly te , i t fo l lows a behavior

    exac t ly s imi l a r t o th a t o f t he anod e . F ig . 11 records

    FIG. 12. Aqueous cathode- effec t with platinum- wire

    cath ode. 1N H2SO4 at 49 ~ C, 70 volts, 1.0 ampe res, about 8X.

    t h e v o l t - a m p e r e c h a r a c t e r i s t i c s f o r t h e p l a t i n u m

    c a t h o d e a n d F i g . 1 2 i s a p h o t o g r a p h o f a q u e o u s

    c a t h o d e - e f f e c t . T h e c a t h o d e e m i t s a b r i g h t b l u e

    glow, cha rac te r i s t i c o f hyd roge n emis s ion , if t he

    vol t age i s ra i s ed to 110 vol t s .

    W i t h c a t h o d es , h o w e v e r , t h e r e i s y e t a n o t h e r p h e -

    n o m e n o n t h a t t a k e s p l a c e . I f t h e s o l u t i o n c o n t a i n s

    sodium su l fa t e , o r i f sod ium hydroxide i s used a s the

    e l e c t r o ly t e , t h e c a t h o d e ef f e c t i s n o t o b t a i ne d , i ~ -

    s t ead , t he ca tho de sur face i s cove red wi th a mul t i -

    r u d e o f w h a t a p p e a r t o b e s p a r k d i s c h a r ge s ( b lu e

    color ) , no wide vap or f i lm deve lops , and the sur -

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    9/10

    Vol . 97 No . 4

    ANODE EF FEC T IN AQUEOUS ELECTROL YSIS 141

    face of the catho de remains at 100~ or slightly

    lower. Appare ntly some kind of film does form around

    the cathode because the meniscus at the electrolyte

    surface dips down, just as during the "cat hode effect"

    or anode effect. However, the wide vapor-envelope

    which can be clearly seen during the true "cathode

    effect" is absent in this case. The explanation of

    this phenomenon lies out of the scope of this paper,

    but the writer feels that a different mechanism of

    electric conduction between electrolyte and the elec-

    trode surface is probably responsible for this phe-

    nomenon.

    Rela t i on Between Anode Ef f ec t i n Aqueous

    and Mo l ten Electrolysis

    The writer does not claim that the explanations

    found valid for aqueous anode-effect are necessarily

    valid for anode effect in molten media. I n p articular,

    the chain of events which leads to molten anode-

    effect is very likely different. In molten media with

    a graphite anode, the e lectrol yte usually has a high

    contact-angle against graphite (7, 8). On the other

    hand, platinum and the alloy steel used in this paper

    are completely wet (have 0 ~ conta ct angle) by the

    electrolyte used. The non-wettability of the graphite

    anode by the molten media may contribute to the

    incidence of anode effect by making it possible for

    gas bubbles to adhere strongly to the anode. More-

    over, the high temperatures found in molten elec-

    trolysis undoubtably have some effect upon the ease

    with which the gas film can ionize and thus con-

    duet current.

    The writer does feel, however, that the concept of

    the gaseous envelope stabilized by the vaporization

    of the electrolyte close to the surface of a hot anode

    should be closely investigated for molten anode-

    effect. The explanations for the stability of the

    gaseous envelope to be found in the literature all

    center about a

    gaseous f i lm- -one

    stabilized by a

    rush of noneo ndensable gases (02, CO, CO2) (9).

    There are at least two considerations that make such

    an explanation untenable. In the first place, in a

    laboratory cell, when the anode effect starts, the

    current will usually drop to ~ or ~ao of its previous

    value. This means that during anode effect only 89

    or ~o as much gas is being evolved as before anode

    effect. Thus, one is forced to explain how a small

    amount of gas will cause a gaseous envelope to form,

    where five or ten times that amount of gas was un-

    able to do so. Second, it is not hard to show by

    means of hydrodynamics th at the velocity of gas re-

    quired to hold back the electrolyte from the anode,

    at any reasonable depth in the electrolyte, is very

    large and far more than one could obtain from molten

    electrolysis.

    The writer is planning a future paper which will

    attempt to apply the vapor-film theory of aqueous

    anode-effect to anode effect in molten electrolysis.

    At this time, however, it can be pointed out that it

    is entirely possible that the electrolyte in the Hall

    aluminum cell could vaporize if in contact with

    a hot anode. Waddington and Pearson (10) have

    recently pointed out that the current carriers in

    cryolite are Na + and possibly AIF~. The tra nsfer-

    ence of these ions will result in an anode layer of

    electro lyte which is impoverish ed in NaF and rich

    in A1Fa. A1Fa is a relativ ely unstabl e compou nd a nd

    volatilizes with decomposition ar ound 1000 to 1100 ~

    C (11). Thus, the anode may be surrounded with an

    electrolyte which can volatilize at a temperature

    about 100~ higher than the operating tempera ture

    of the cell (1000~ and it is possible tha t a vapor

    film could be formed if the anode became over-

    heated.

    CONCLUSIONS

    1. A phenomenon which occurs when electrodes

    which evolve gas in aqueous media are operated at

    high current densities has been described and named

    "aqueous anode-effect" because of its similarity to

    anode effect in molten electrolysis.

    2. Normal operation of the anode was found to

    cease when the electrode temperature reached the

    boiling point of the electrolyte. Under these condi-

    tions, the anode enters a so-called "transition period"

    where vaporization of the bubble walls leads to an

    increased electrical resistance at the anode and the

    current through the cell falls as the voltage is in-

    creased.

    3. The "transition period" behavior instantane-

    ously changes to the "aqeueous anode-effect" when

    the voltage is raised to a critical value that will per-

    mit conduction through the gas phase.

    4. The gaseous envelope which encloses the anode

    during "aqueous anode-effect" is maintained by the

    vaporization of the electrolyte close to the surface of

    tile anode, which surface was found to be at a tem-

    perature far above the boiling point of the electro-

    lyte.

    5. It was also shown that an "aqueous cathode-

    effect," entirely similar to the anode effect, could be

    obtained.

    6. The relation between "aqueous anode-effect"

    and anode effect in molten media was discussed and

    it was pointed out that there is a possibility that the

    anode-effect film in molten media is also stabilized

    by vaporization of the electrolyte.

    CKNOWLEDGEMENTS

    The writer is indebted to Professors M. D. Hass-

    ialis, T. A. Read, and A. F. Taggart for helpful

    criticisms and suggestions. Mr. M. A. Kaei, Asso-

    Downloaded 07 Jun 2012 to 192.12.88.157. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp

  • 8/10/2019 Anode Effect in Aqueous Electrolysis

    10/10

    42

    J O U R N A L OF T H E E L E C T R O C H E M I C A L S O C I E T Y

    A p r i l 1 9 5 0

    ciate in Metal lurgy, aided with much of the experi-

    menta l work .

    Any discussion of this paper will appear in a Discussion

    Section, to be published in the December 1950 issue of the

    JOURNAL.

    REFERENCES

    1. C. S.

    TAYLOR

    Trans. Electrochem. Soc.

    47,301 (1925).

    2. G. OESTERHELD AND

    E.

    BRUNER Z Electrochem.

    22,

    38 (1916).

    3. K. ARNDT AND H. PROBST,

    Z. Electrochem.

    29, 323

    (1923).

    4. H. WARTENBERG E. MANTHEY AND W. CONZELMANN

    Z. Electrochem.

    32,330 (1926).

    5. J. GUBKIN,

    A n n . P h y s i k

    32, 114 (1887).

    6. A. KLEMENC AND H. F. ]-IOHN

    Z phys ik . Chem.

    154A,

    385 (1931).

    7. H. V. WARTENBERG Z

    Electrochem.

    41,448 (1935).

    8. H. H. KELLOGG AND K. K. BHASlN, Unp ubl ish ed Re-

    search.

    9. J. D. EDWARDS F. C. FRARY AND Z. JEFFRIES

    Alu~

    minum and its Production , pp. 310-312, McGraw-

    Hill Book Co., Inc., New York (1930).

    10. W. G. PEARSON AND J. WADDINGTON Discuss ion Faraday

    Soe.

    1, 307 (1947).

    11. E.

    BAUDAnn. chim. et . phys.

    Series 8, 1, 60 (1904).