anomalous momentum diffusion 4mm of strongly interacting ... · optical lattices : interference...

17
Laboratoire Kastler Brossel Coll ` ege de France, ENS, UPMC, CNRS Anomalous momentum diffusion of strongly interacting bosons in optical lattices Fabrice Gerbier erˆ ome Beugnon Manel Bosch Aguilera Rapha ¨ el Bouganne Alexis Ghermaoui Humboldt Kolleg, Vilnius, August 1st 2018

Upload: others

Post on 31-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Laboratoire Kastler Brossel

College de France, ENS, UPMC, CNRS

Anomalous momentum diffusion

of strongly interacting bosons in optical lattices

Fabrice Gerbier

Jerome Beugnon

Manel Bosch Aguilera

Raphael Bouganne

Alexis Ghermaoui

Humboldt Kolleg, Vilnius, August 1st 2018

Page 2: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Ytterbium team at LKB

M. Bosch

Aguilera

J. Beugnon R. Bouganne E. Soave

(now Innsbruck)

FG

A. Ghermaoui

Formermembers :

Q. Beaufils

A. Dareau

D. Doering

M. Scholl

E. Soave

Some recent works :• Revealing the Topology of Quasicrystals with a Diffraction Experiment

[Dareau et al., Phys. Rev. Lett. 119, 21530 (2017).

• Clock spectroscopy of interacting bosons in deep optical lattices[Bouganne et al., New J. Phys. 19, 113006 (2017).

Page 3: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Superfluid-Mott insulator transition for bosons

Optical lattices :

interference pattern can be used to trap atoms in a periodicstructure

Bosons in the Bose-Hubbard regime :

1 Quantum tunneling favor delocalization

2 Repulsive on-site interactions favor localization

Quantum phase transition from a superfluid, Bose-condensedground state to a Mott insulator

x

y

J

√2J

U

3U

Greiner et al., Nature 2002.

Energy/Temperature scales : nanoKelvinTime scales ∼ 10 ms

Page 4: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Quantifying phase coherence in a bosonic gas

Time-of-flight interferences :essentially a free flight revealing the momentum distribution

ntof(r, r) ≈ n(K =

Mr

~t

)= G (K)S (K)

• smooth “Wannier” enveloppe G(K)

• structure factor S(K) =∑i,j e

iK·(rj−·ri)〈a†iaj〉

Single-particle density matrix : ρ(1)(r, r′) = 〈Ψ†(r)Ψ(r′)〉

Contrast of interference fringes when two matter waves overlap.

Lattice version : C(i, j) = 〈a†i aj〉

Momentum distribution n(k): Fourier transform of ρ(1)

Lattice version : S(K)

Page 5: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Quantum-degenerate 174Yb atoms in a 3D optical lattice

How does spontaneous emission destroy the spatial coherences initially present in thesuperfluid ?

Absorption/spontaneous emission cycles with rate γsp

Page 6: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Momentum diffusion in resonant atom-light interaction

Momentum diffusion :

• Random momentum kicks after SE

• Random walk in momentum space:∆k =

√2Dt D : Diffusion coefficient

• Central role in laser cooling : limittemperature T ∝ D

friction

ωL,kLk1

k2

k3

Equivalent point of view : destruction of spatial coherences ρ(1)(r, r′)

• Spatial correlations beyond λ0/(2π) strongly suppressed [Pfau et al., PRL 1994]

• Exponential decay in time for given r, r′

• Interpretation : Modern version of Heisenberg’s microscope

continuous, weak measurements of the atom position [Marsteiner et al., PRL 1996]

Page 7: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Anomalous momentum diffusion

Basic analysis : monitor nk=0 ≡ n0 (proxy for condensed fraction)

• Exponential (linear ...) decay at short times t ≤ tcross

• Algebraic decay at long times: ∆k ∼ tα, nk=0 ∼ 1/t2α with α < 1/2

• Normal momentum diffusion : exponential decay

Page 8: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

A more precise analysis of the momentum distribution

S0(k) =∑

R∈Z2

CReik·R

≈ 1 + Cnn

(cos(kxd) + cos(kyd)

)+ · · ·

Nearest-neighbor correlation function :

Cnn =∑ri

〈a†ri ari+ex 〉

Page 9: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Continuous, weak measurement theory

Dissipative Bose-Hubbard model :

d

dtρ =

1

i~[H, ρ

]− γL

[ρ], L

[ρ]

=∑i

niρni −1

2n2i ρ−

1

2ρn2i .

Poletti et al., PRL 2012, PRL 2013 (Kollath/Georges group)

See also Pichler et al., PRA 2010 (Zoller group), Yanay and Mueller, PRA 2012

N bosons in two wells L,R.

Fock basis : |n〉 = |nL = n, nR = N − n〉

Populations : ρn,n = 〈n|ρ|n〉

Coherences : ρm,n = 〈m|ρ|n〉,m 6= n

• Fock states are pointer states: 〈n|L[ρ]|n〉 = 0

• Coherences decay : 〈m|L[ρ]|n〉 = − 12

(n−m)2 ρm,n

• Role of tunneling : partial restoration of short-range spatial coherence

=⇒ allows relaxation of populations

Page 10: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Effective Pauli master equation in the decoherent regimeAdiabatic elimination of fast variables (coherences)

Effective master equation for the probability pn to find n atoms per site (∆t� γ−1) :

pn ≡∆pn

∆t= Wn+1pn+1 +Wn−1pn−1 − 2Wnpn

Poletti et al., PRL 2012, PRL 2013

0 2 4 6 8n

0.0

0.2

0.4

0.6

0.8

1.0

p(n

)

Three successive stages in the relaxation :

1 t . γ−1 : initial relaxation of coherences (not described by the master equation),

2 γ−1 < γt� t∗ : algebraic regime with slow decay of populations,

3 t & t∗ : final relaxation to the (infite temperature) steady state.

Page 11: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

From regular to anomalous diffusion

Mapping to a Fokker-Planck equation for N � 1 : n→ x =n−N

2N

, pn → Np(x)

∂p(x, t)

∂t=

∂x

[D(x)

∂xp(x, t)

]

Scaling solution: p(x) = 1τβf(u = x

τβ

)If D ∼ x−η , scaling exponent β = 1

2+η

~γ � NU : D ≈ 2J2

~2γ

• “Quantum Zeno effect”Patil, Chakram, Vengalattore, PRL 2015

• D uniform :regular diffusion

• Scaling exponent β = 1/2

~γ � NU : D ≈ J2γ(NU)2

× 1x2

• “Interaction-induced impeding ofdecoherence”

• Power-law tail :Anomalous (sub-)diffusion

• Scaling exponent β = 1/4Poletti et al., PRL 2012, PRL 2013

Page 12: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Coherence decay exponents versus lattice depth V⊥

Phase coherence, scaling regime :

Cnn = 〈a†i±1ai〉 ∝1

t2β

Cnn ≈ c0√2zγt

if

{γ → 0

n→∞100 101 102

γt

10−2

10−1

Cnn

n= 2U/J= 20γ/U= 0

Comparison with experimental decay exponents of Cnn :

Page 13: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Direct observation of Fock space dynamics using three-body losses

0 2 4 6 8n

0.0

0.2

0.4

0.6

0.8

1.0p(n

)

10−3 10−2 10−1 100

γsptdiss

0.00

0.05

0.10

0.15

p 3

V⊥ = 8.8ER

Page 14: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Conclusion

Decoherence of a bosonic many-body system under spontaneous emission

Main message : Interactions slow down decoherence

• Observation of anomalous momentum diffusion : ∆k ∼ t1/4 instead of ∆k ∼√t

• Interpretation as a signature of an underlying anomalous diffusion in Fock space

• Direct observation of Fock space dynamics using three-body losses

• Why is the “Poletti at al.” model working ?

Many effects left out : dipole-dipole interactions, superradiance, interbandtransitions ...

• Numerical study of XXZ chains [Cai and Barthel, PRL 2013] under dephasing :

similar power-law slowdown of behavior as we observed (but not the Ising chain)

Universality classes also relevant for non-equilibrium phenomena/decoherence ?

Page 15: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Loss dynamics after freezing

• Same experiment as before : illumination with near-resonant laser for tdiss

• then raise the horizontal lattice to “freeze” the density distribution

• wait for thold : three-body losses empty sites with n ≥ 3

• monitor losses to extract p(n ≥ 3)

0 1000 2000 3000 4000 5000twait [ms]

15000

20000

25000

30000

N

SF 5Er – tdiss = 2500 µs

Solid lines : fit with known loss time constants to extract N3 = 3p(3), etc ...

Page 16: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Evolution of triply-occupied sites

0 1 2 3 4 5 6tdiss (Γ−1

sp )

0

2500

5000

7500

10000

12500

15000N

3

V⊥ = 5ER

10−1 100

Γsptdiss

103

104

N3

0 1 2 3 4 5 6tdiss (Γ−1

sp )

0

2500

5000

7500

10000

12500

15000

N3

V⊥ = 9ER

10−1 100

Γsptdiss

103

104

N3

Page 17: Anomalous momentum diffusion 4mm of strongly interacting ... · Optical lattices : interference pattern can be used to trap atoms in a periodic structure Bosons in the Bose-Hubbard

Excited band populations

From fits to momentum profiles :