an#op&miza&on#and#monte#carlo# …ehart/informs_ehart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50...

17
An Op&miza&on and Monte Carlo Planning Approach for High Penetra&ons of Intermi;ent Renewables Elaine K. Hart and Mark Z. Jacobson INFORMS Annual Mee>ng, Aus>n, TX November 8, 2010 Atmosphere/Energy Program Dept. of Civil and Environmental Engineering Stanford University ABabcdfghiejkl S T A N F O R D U N I V E R S I T Y A T M O S P H E R E / E N E R G Y

Upload: others

Post on 23-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

An  Op&miza&on  and  Monte  Carlo  Planning  Approach  for  High  Penetra&ons  

of  Intermi;ent  Renewables  

Elaine  K.  Hart  and  Mark  Z.  Jacobson  

INFORMS  Annual  Mee>ng,  Aus>n,  TX  

November  8,  2010  

Atmosphere/Energy  Program  

Dept.  of  Civil  and  Environmental  Engineering  

Stanford  University   ABabcdfghiejklSTANFORD UNIVERSITY

AT

M

OSP H E R E / E NERGY

Page 2: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

1/15  

How can the grid accommodate the intermittency of wind and solar to significantly reduce carbon emissions?

Hart  and  Jacobson  

ABabcdfghiejklThe  Challenge  

Page 3: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

2/15  

Low  Carbon  PorAolio  Planning  Model  

Hart  and  Jacobson  

ABabcdfghiejkl

Page 4: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

3/15  

•  Objective Functions – Cost (including annualized capital, fixed and variable O&M,

fuel, and cost of carbon (in 2050 scenario)

– Approximate Emissions – linear function of natural gas generation and spinning capacity

•  Linear Constraints – System-wide power balance – Generator governing equations (affine w.r.t. capacity, fuel)

– Thermal plant ramp rates – Energy (integrated power) constraints

Hart  and  Jacobson  

ABabcdfghiejklProblem  Formula&ons  

Page 5: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

4/15  Hart  and  Jacobson  

ABabcdfghiejklGenerator  Technology  Models  

Page 6: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

Hart  and  Jacobson  

ABabcdfghiejklGenerator  Technology  Models  

5/15  

Page 7: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

•  System Load, Irradiance (GHI => DNI, DHI), Wind Speed

•  Linear statistical models of the form:

where                    is  comprised  of  func>ons  like:  

(a  forecast)  

(prior  forecast  error)  (diurnal  or  seasonal  bias)  

(constant  bias)  

Use  linear  regression  to  find          and  characterize          distribu>on    Hart  and  Jacobson  

ABabcdfghiejklRealiza&on  Models  

6/15  

!

f (t) = A(t)! x + ˜ b

!

A(t) = a1(t) a2(t) …[ ]

!

ai(t) = ˆ f (t)ai(t) = ˆ f (t "1) " f (t "1)ai(t) = #(t)ai(t) =1

!

! x

!

˜ b

Page 8: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

and             is  a  random  variable  

To  create  each  realiza&on,  at  each  &me  step:  -­‐Apply  linear  model  -­‐Sample  the  model  error  distribu>on     -­‐Impose  site-­‐site  correla>ons  where  appropriate  -­‐Apply  addi>onal  models  where  necessary     -­‐eg.  GHI  =>  DNI  =>  DHI  

Hart  and  Jacobson  

ABabcdfghiejklRealiza&on  Produc&on  

7/15  

!

f (t) = A(t)! x + ˜ b

!

˜ b ~ N 0,"model( )

Page 9: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

•  Dispatch optimization includes expensive deficit in case of extreme forecast error.

•  Deficit signal is used with LOLE to determine necessary spinning reserve capacity and schedule

Defi

cit  

Realiza&on  1   Realiza&on  2   Realiza&on  3   Realiza&on  N  .  .  .  

Maximum  required  spinning  reserve  capacity  

Hart  and  Jacobson  

ABabcdfghiejklEnsuring  System  Reliability  

8/15  

Page 10: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

•  Load scenarios: – 2005-2006 load data, 2050-2051 load projection

•  Renewable Portfolios produced by minimizing: – Cost, Emissions

•  Data: – Wind: Western Wind Integration Datasets (NREL, 3TIER)

–  Irradiance: NSRDB (NREL) – Load: California ISO OASIS Database

•  Solve using CVX (Grant and Boyd, 2010)

[17,520 time steps with 20 realizations each] Hart  and  Jacobson  

ABabcdfghiejklCase  Studies  

9/15  

Page 11: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

2005 Scenarios 2050 Scenarios0

50

100

150

200

250

300

350

Capa

city

(GW

)

SolarWindNatural GasGeothermalHydro

Min.Cost

Min.CostMin.

CO2

Min.CO2

2005 Scenarios 2050 Scenarios0

50

100

150

200

250

300

350

400

450

500

Annu

al G

ener

atio

n (!

103 G

Wh)

SolarWindNatural GasGeothermalHydro

Min.Cost

Min.Cost

Min.CO2

Min.CO2

Capacity   Genera&on  

Hart and Jacobson, 2011. [In Review]!

Hart  and  Jacobson  

ABabcdfghiejklSolved  Generator  PorAolios  

10/15  

Page 12: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

Carbon-­‐Free  Genera&on   Carbon  Emissions  

Hart and Jacobson, 2011. [In Review]!

Hart  and  Jacobson  

Carbon  Emissions  Characteris&cs   ABabcdfghiejkl

11/15  

0

20

40

60

80

100

2005 Scenario 2050 Scenario

Car

bon-

Free

Gen

erat

ion

(%) Low-Cost

Low-Carbon

0

20

40

60

80

100

2005 Scenario 2050 Scenario

Car

bon

Emis

sion

s (1

06 tC

O2)

Low-Cost

Low-Carbon

Page 13: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

5 10 15 200

50

100

150

Hour of Day

Pow

er G

ener

atio

n (G

W)

26!Jul!2051

5 10 15 200

50

100

150

Hour of Day

Pow

er G

ener

atio

n (G

W)

15!Nov!2050

5 10 15 200

50

100

150

Hour of Day

Pow

er G

ener

atio

n (G

W)

01!Jun!2050

5 10 15 200

50

100

150

Hour of Day

Pow

er G

ener

atio

n (G

W)

26!Feb!2050GeothermalWindPhotovoltaicSolar ThermalHydroelectricNatural GasNG ReserveDemand + T&D Losses

Winter  

Summer  

Spring  

Autumn  

Hart and Jacobson, 2011. [In Review]!Hart  and  Jacobson  

Example  Realiza&ons  (2050  Low-­‐CO2)   ABabcdfghiejkl

12/15  

Page 14: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

0 0.1 0.2 0.3 0.4 0.5 0.60

50

100

150

200

250

Penetration of Wind and Solar

Carb

on In

tens

ity (t

CO2/G

Wh)

Stochastic SimulationsDeterministic Assumption

Porbolios  produced  by  scaling  2005  low-­‐carbon  capaci>es  uniformly  

Stochas&c  simula&ons:  Monte  Carlo  simula>on  with  forecast  error  

Determinis&c  assump&on:  Simulate  single  realiza>on  where  forecast  =  actual  data  

Hart and Jacobson, 2011. [In Review]!Hart  and  Jacobson  

ABabcdfghiejklStochas&c  vs.  Determinis&c  

13/15  

Page 15: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

•  We can provide >99% of generation from non-carbon based generators while meeting an LOLE requirement of 1 day in 10 years

•  With conservative assumptions regarding thermal plant operation, can still achieve significant reductions in carbon emissions from base case levels

•  Stochastic analyses are needed in system planning

•  Low capacity factors will require enhanced capacity markets for thermal plants

Hart  and  Jacobson  

ABabcdfghiejklConclusions  

14/15  

Page 16: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

•  Include hour-ahead forecasts •  Improve forecast error characterization – Include phase errors

•  Improve flexibility of hydroelectric generators •  Build participating load and storage models – EV’s, Batteries, Fuel Cells, CAES

Hart  and  Jacobson  

ABabcdfghiejklNext  Steps  

15/15  

Page 17: An#Op&miza&on#and#Monte#Carlo# …ehart/INFORMS_EHart.pdf · 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 Penetration of Wind and Solar Carbon Intensity (tCO 2 /GWh) Stochastic

Thanks  to:  

•  Gil  Masters,  Nick  Jenkins  

•  Precourt  Ins>tute  for  Energy  Efficiency,  Stanford  Graduate  Fellowship,  NSF  Graduate  Research  Fellowship  

•  Bethany  Corcoran,  Mike  Dvorak,  Graeme  Hoste,  Eric  Stoutenburg,  John  Ten  Hoeve  

For  more  informa&on                      

(and  a  copy  of  this  presenta>on):  

www.stanford.edu/~ehart/  

Ques&ons?   ABabcdfghiejkl

Hart  and  Jacobson