ansys record

185
1 Sl. No. Date Name of the Exercise Page Number Remarks Structural Static Analysis Stress Analysis of one dimensional problems 1 Stress analysis of one dimensional Steel bar 2 Stress analysis of one dimensional Tapered steel rod 3 Stress analysis of one dimensional Stepped shaft 4 Stress analysis of one dimensional Rotating Steel Rod Stress Analysis of plane trusses 5 Stress analysis of Plane Trusses Stress Analysis of Beams 6 Stress analysis of cantilever beam 7 Stress analysis of simply supported beam 8 Stress analysis of simply supported beam 9 Stress analysis of fixed beam Stress Analysis of Two dimensional problems 10 Stress analysis of rectangular plate with hole 11 Stress analysis of simple bracket 12 Stress analysis of rectangular L - bracket Stress Analysis of Axisymmetric problems 13 Stress analysis of Axisymmetric component with Longitudinal Load 14 Stress analysis of Axisymmetric component with circumferential load Structural Dynamic Analysis of beams 15 Mode frequency analysis of cantilever beam 16 Mode frequency analysis of simply supported beam 17 Mode frequency analysis of fixed beam Structural Harmonic Analysis of beams 18 Harmonic analysis of cantilever beam Thermal Analysis of one dimensional problems 19 Thermal Stress analysis of one dimensional heat flow Thermal Analysis of Two dimensional problems 20 Conductive heat transfer analysis of 2D component 21 Convective heat transfer analysis of 2D component

Upload: gomathi-sankar-thanasekaran

Post on 30-Dec-2015

29 views

Category:

Documents


0 download

DESCRIPTION

Ansys Manual, Record, Report, B.E, mechanical, automobile

TRANSCRIPT

Page 1: Ansys Record

 

Sl.No. Date Name of the Exercise Page

Number Remarks

Structural Static Analysis Stress Analysis of one dimensional problems

1 Stress analysis of one dimensional Steel bar 2 Stress analysis of one dimensional Tapered steel rod 3 Stress analysis of one dimensional Stepped shaft 4 Stress analysis of one dimensional Rotating Steel Rod Stress Analysis of plane trusses 5 Stress analysis of Plane Trusses Stress Analysis of Beams 6 Stress analysis of cantilever beam 7 Stress analysis of simply supported beam 8 Stress analysis of simply supported beam 9 Stress analysis of fixed beam Stress Analysis of Two dimensional problems 10 Stress analysis of rectangular plate with hole 11 Stress analysis of simple bracket 12 Stress analysis of rectangular L - bracket Stress Analysis of Axisymmetric problems 13 Stress analysis of Axisymmetric component with Longitudinal

Load

14 Stress analysis of Axisymmetric component with circumferential load

Structural Dynamic Analysis of beams 15 Mode frequency analysis of cantilever beam 16 Mode frequency analysis of simply supported beam 17 Mode frequency analysis of fixed beam Structural Harmonic Analysis of beams 18 Harmonic analysis of cantilever beam Thermal Analysis of one dimensional problems 19 Thermal Stress analysis of one dimensional heat flow Thermal Analysis of Two dimensional problems 20 Conductive heat transfer analysis of 2D component 21 Convective heat transfer analysis of 2D component

Page 2: Ansys Record

 

Fig. (i) Problem Representation

Fig. (ii) Modeling and Meshing

Fig. (iii) Loading and Boundary Conditions

Page 3: Ansys Record

 

EX.NO.: 01 Stress Analysis of one Dimensional Steel Bar

DATE:

(a) Analysis

AIM:

To determine nodal displacements, Element Stresses and Reaction of the given steel bar using ANSYS software and compare with manual method.

PROCEDURE:

Step 1: Set the analysis title

1. Choose menu path Utility Menu>File>Change Title

2. Type the text one dimensional linear bar element > ok

Step 2: Define the element types

Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural > Link > 2D spar > ok > Close.

Step 3: Define the real constants

Main Menu > Preprocessor > Real constants > Add/Edit /Delete > Add > ok > Enter the Cross-sectional area AREA > Enter 50 > ok > Apply > ok

Step 4: Define the material properties

Main Menu>Preprocessor>Material Props> Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2E5 and PRXY 0.33 > ok

Step 5: Create the Nodes

Main Manu > Preprocessor> Modeling > Create > Nodes > In Active CS > Enter Co-ordinates of Nodes > ok

Node locations Node number X co-ordinate Y co-ordinate

1 0 0 2 1000 0 3 2000 0

Page 4: Ansys Record

 

Fig. (iv) Displacement Vector Sum

Fig. (v) Von Mises stress

Page 5: Ansys Record

 

Step 6: Create elements

Main Menu > preprocessor > Modeling > Create > Elements > Elem Attributes > ok > Auto Numbered > Thru nodes > Pick 1st and 2nd node > ok > Auto Numbered > Thru nodes > Pick 2nd and 3rd node > ok

Step 7: Apply boundary conditions and loads

Constraint

Main Menu > Preprocessor > Loads > Define Loads > Apply > structural > Displacement > On Nodes > Pick the 1st node > Apply > All DOF = 0 > ok

Apply Loads

Main Menu > Preprocessor > Loads > Define Loads > Apply > structural > Force/Moment > On Nodes > Pick the 3rd node > ok > Enter then Force/Moment value = 100 in FX direction > ok

Step 8: Solve the model

Main Menu > Solution > solve > Current LS > ok > close

Step 9: Review the results

Displacement

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > DOF Solution > Displacement vector sum > ok

Stress

Main Menu > General Postproc > Element Table > Define Table > Add > Select By sequence num and 1 after LS > ok

Main Menu > General Postproc > Plot Results > Contour Plot > Elem Table > Select LS1 > ok

Result

Maximum Displacement:

Maximum Von Mises Stress:

Page 6: Ansys Record

 

(b). Manual Method

Aim:

To determine nodal displacements, Element Stress and reaction of the given steel bar.

Page 7: Ansys Record

 

Result

Maximum Displacement:

Maximum Stress:

Page 8: Ansys Record

 

Page 9: Ansys Record

 

EX.NO.:02 Stress Analysis of One Dimensional Tapered Steel Rod

DATE:

(a) Analysis

AIM:

To determine nodal displacements, Element Stress and reaction of the given tapered steel

bar using ANSYS software and compare with Manual Method.

PROCEDURE:

Step 1: Set the analysis title

1. Choose menu path Utility Menu>File>Change Title

2. Type the text one dimensional linear bar element with tapered rod > ok

Step 2: Define the element types

Main menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural Link > 2D spar 1 > ok > Close

Step 3: Define the real constants

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > ok

For element 1

Cross-sectional area AREA > Enter 12500 > ok > Add > ok

For element 2

Cross-sectional area AREA > Enter 7500 > ok > Close

Step 4: Define the material properties

Main menu > Preprocessor > Material Props > Material Models > Material Model

Number 1, click Structural > Linear > Elastic > Isotropic > Enter EX = 200E3 and PRXY = 0.3 >

ok

Page 10: Ansys Record

10 

 

 

Fig. (ii) Modeling and Meshing 

 

Fig. (iii) Loading and Boundary Conditions 

Page 11: Ansys Record

11 

 

Step 5: Create the Nodes

Main menu > Preprocessor > Modeling > Create > Nodes > In Active CS > Enter

coordinates of nodes > ok

Step 6: Create the elements

Main menu > Preprocessor > Modeling > Create > Elements > Elem Attributes > ok >

Auto Numbered > Thru nodes Pick 1st and 2nd node > ok

Elem Attributes > change the Real constant set number to 2 > ok > Auto Numbered >

Thru nodes Pick 2nd and 3rd node > ok

Step 7: Apply boundary conditions and loads

Constraint

Main menu > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement

> On Nodes Pick 1st node > Apply > All DOF = 0 > Ok

Apply loads

Main menu > Preprocessor > Loads > Define Loads > Apply > Structural >

Force/Moment > On Nodes Pick 3rd node > Ok > Force/Moment value = -212.5e3 in FY

direction > Ok > Force/Moment > On Nodes Pick 2nd node > Ok > Force/Moment value = -25e3

in FY direction > Ok > Force/Moment > On Nodes Pick 1st node > Ok > Force/Moment value =

-12.5e3 in FY direction > Ok

Step 8: Solve the model

Main Menu > Solution > solve > Current LS > ok > close

Step 9: Review the results

Node locations Node number X coordinate Y coordinate

1 0 0 2 0 -1000 3 0 -2000

Page 12: Ansys Record

12 

 

 

Fig. (iv) Displacement Vector Sum 

 

Fig. (v) Von Mises stress 

Page 13: Ansys Record

13 

 

Displacement

Main menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > DOF Solution >

Displacement vector sum > ok

Stress

Main menu > General Postproc > Element Table > Define Table > Add > Select By sequence num and LS and type 1 after LS > ok

Main menu > General Postproc > Plot Results > Contour Plot > Element Table > Select LS1 > ok

Result

Maximum Displacement:

Maximum Von Mises Stress:

Page 14: Ansys Record

14 

 

(b). Manual Method

Aim:

To determine nodal displacements, Element Stress and reaction of the given tapered steel bar.

Fig. (i) Given Problem

Page 15: Ansys Record

15 

 

Fig.( ii) Problem Representation

Page 16: Ansys Record

16 

 

Page 17: Ansys Record

17 

 

Result

Maximum Displacement:

Maximum Stress:

Page 18: Ansys Record

18 

 

 

 

Fig. (i) Problem Representation 

 

 

 

Fig. (ii) Modeling and Meshing 

 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 19: Ansys Record

19 

 

EX.NO.:03 Stress analysis of one dimensional Stepped shaft

DATE:

(a) Analysis

AIM:

To determine nodal displacements, Element Stress and reaction of the given stepped shaft using ANSYS software and compare manual method.

PROCEDURE:

Step 1: Set the analysis title

1. Choose menu path Utility Menu>File>Change Title

2. Type the text Step Bar Analysis > ok.

Step 2: Define the element types

Main Menu>Preprocessor>Element Type>Add/Edit/Delete>Add>Structural>Link>2D spar>OK>Close.

Step 3: Define the real constants

Main Menu>Preprocessor>Real constants>Add/Edit>Delete>Add>OK

1st element: Cross-sectional area AREA>Enter 2400>OK>Add>OK

2nd element: Cross-sectional area AREA>Enter 1200>OK>Add>OK

3rd element: Cross-sectional area AREA>Enter 600>OK>Add>OK>close.

Step 4: Define the material properties

Main Menu>Preprocessor>Material Props> Material Models

Material Model Number 1:

Click Structural > Linear > Elastic > Isotropic

Enter EX = 0.83E5 and PRXY 0.34 > OK

Enter the coefficient of thermal expansion α

Click Structural > Thermal expansion > Secant coefficient > Isotropic

Enter ALPX = 18.9E-6 >OK

Page 20: Ansys Record

20 

 

 

Fig. (iv) Displacement Vector Sum 

 

Fig. (v) Von Mises stress 

Page 21: Ansys Record

21 

 

Material Menu > New Model > OK

Material Model Number 2:

Click Structural > Linear > Elastic > Isotropic

Enter EX = 0.75E5 and PRXY 0.35 > OK

Enter the coefficient of thermal expansion α

Click Structural > Thermal expansion > Secant coefficient > Isotropic

Enter ALPX = 23E-6 >OK

Material Model Number 3:

Click Structural > Linear > Elastic > Isotropic

Enter EX = 2E5 and PRXY 0.3 > OK

Enter the coefficient of thermal expansion α

Click Structural > Thermal expansion > Secant coefficient > Isotropic

Enter ALPX = 11.7E-6 >OK

Step 5: Create the Nodes

Main Manu > Preprocessor> Modeling > Create > Nodes > In Active CS >Enter Co-ordinates of Nodes

Node locations Node number X co-ordinate Y co-ordinate

1 0 0 2 800 0 3 1400 0 4 1800 0

Step 6: Create elements

Main Menu > preprocessor > Modeling > Create > Elements > Elem Attributes > ok > Auto Numbered > Thru nodes > Pick 1st and 2nd node > ok

Elem Attributes > Change the material number to 2 > change the Real constant set number to 2 ok > Auto Numbered > Thru nodes > Pick 2nd and 3rd node > ok

Page 22: Ansys Record

22 

 

Elem Attributes > Change the material number to 3 > change the Real constant set number to 3 ok > Auto Numbered > Thru nodes > Pick 3rd and 4th node > ok

Step 7: Apply boundary conditions and loads

Constraint

Main Menu > Preprocessor > Loads > Define Loads > Apply > structural > Displacement > On Nodes > Pick the 1st node and 4th node > Apply > All DOF = 0 > ok

Apply Loads

Main Menu > Preprocessor > Loads > Define Loads > Apply > structural > Force/Moment > On Nodes > Pick the 2nd node > ok > Force/Moment value = -50e3 in FX direction > ok > Force/Moment > On Nodes > Pick the 3rd node > ok > Force/Moment value = -75e3 in FX direction > ok

Apply temperature load

Main Menu > Preprocessor > Loads > Define Loads > Apply > structural > Temperature > On Elements > Pick the 1st element, 2nd element, 3rd element > ok > Enter Temperature at location N =75 > ok

Step 8: Solve the model

Main Menu > Solution > solve > Current LS > ok > close

Step 9: Review the results

Displacement

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > DOF Solution > Displacement vector sum > ok

Stress

Main Menu > General Postproc > Element Table > Define Table > Add > Select By sequence num and 1 after LS > ok

Main Menu > General Postproc > Plot Results > Contour Plot > Elem Table > Select LS1 > ok

Result:

Maximum displacement: Maximum stress: Reactions:

Page 23: Ansys Record

23 

 

(b). Manual Method

Aim:

To determine nodal displacements, Element Stress and reaction of the given stepped shaft.

Page 24: Ansys Record

24 

 

Result

Maximum displacement:

Maximum stress:

Reactions:

Page 25: Ansys Record

25 

 

 

 

 

 

Fig. (i) Problem Representation 

Page 26: Ansys Record

26 

 

EX.NO.:04 Stress analysis of one dimensional Rotating Steel Rod

DATE:

(a) Analysis

AIM:

To perform stress analysis of rotating rod under angular velocity using ANSYS software. PROCEDURE: Step 1: Set the analysis title 1. Choose menu path Utility Menu>File>Change Title 2. Type the text one dimensional quadratic bar element > ok Step 2: Define the element types

Main menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural Link > 2D spar 1 > ok > Close Step 3: Define the real constants

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > ok > Enter the Cross-sectional area AREA = 350 > ok > close Step 4: Define the material properties

Main menu > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 70E3 and PRXY = 0.3 > ok

Linear > Density > Enter a density of 7850 > ok Step 5: Create the Nodes

Main menu > Preprocessor > Modeling > Create > Nodes > In Active CS > Enter coordinates of nodes > ok

Step 6: Create the elements

Main menu > Preprocessor > Modeling > Create > Elements > Elem Attributes > ok >

Auto Numbered > Thru nodes > Pick 1st and 2nd node > Apply > Pick 2nd and 3rd node > Apply >

Pick 3rd and 4th node > Apply > Pick 4th and 5th node > ok

Step 7: Apply boundary conditions and loads

Constraint

Node locations Node number X coordinate Y coordinate

1 0 0 2 0 250 3 0 500 4 0 750 5 0 1000

Page 27: Ansys Record

27 

 

Main menu > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement

> On Nodes > Pick 1st node > Apply > All DOF = 0 > ok

Apply loads

W=45 angular velocity

Step 8: Solve the model

Main Menu > Solution > solve > Current LS > ok > close

Step 9: Review the results

Displacement

Main menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > DOF

Solution > Displacement vector sum > ok

Stress

Main menu > General Postproc > Element Table > Define Table > Add > Select By sequence num and LS and type 1 after LS > ok

Main menu > General Postproc > Plot Results > Contour Plot > Element Table > Select LS1 > ok

Result

Thus stress analysis of rotating rod under angular velocity using ANSYS software is

performed

Page 28: Ansys Record

28 

 

(b). Manual Method Aim: To determine nodal displacements, Element Stress and reaction of the given rotating shaft.

Page 29: Ansys Record

29 

 

Page 30: Ansys Record

30 

 

Page 31: Ansys Record

31 

 

Result

Maximum displacement:

Maximum stress:

Reactions:

Page 32: Ansys Record

32 

 

Page 33: Ansys Record

33 

 

EX.NO.: 05 STRESS ANALYSIS OF PLANE TRUSSES

DATE:

(a) Analysis

AIM:

To determine the Nodal displacement and Element stresses of a given plane trusses using ANSYS software and compare with manual method.

PROCEDURE:

Step 1: Set the analysis title

1. Choose menu path Utility Menu > File > Change Title

2. Type the text stress analysis of plane trusses > ok.

Step 2: Define the element types

Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural > Link > 2D spar > ok > Close.

Step 3: Define the real constants

Main Menu > Preprocessor > Real constants > Add/Edit/Delete > Add > ok > Enter Cross-sectional area AREA = 625 > ok > close.

Step 4: Define the material properties

Main Menu>Preprocessor>Material Props> Material Models > Structural > Linear >

Elastic > Isotropic > Enter EX = 2E5 and PRXY 0.3 > ok

Step 5: Create the Nodes

Main Manu > Preprocessor> Modeling > Create > Nodes > In Active CS >Enter Co-ordinates of Nodes > ok

Node locations Node number X co-ordinate Y co-ordinate

1 0 0 2 1000 0 3 1000 750 4 0 750

Page 34: Ansys Record

34 

 

 

Fig. (ii) Modeling and Meshing 

 

Fig. (iii) Loading and Boundary Conditions 

Page 35: Ansys Record

35 

 

Step 6: Create elements

Main Menu > preprocessor > Modeling > Create > Elements > Elem Attributes > ok >

Auto Numbered > Thru nodes > Pick 1st and 2nd node > Apply > Pick 2nd and 3rd node > Apply >

Pick 3rd and 4th node > Apply > Pick 1st and 3rd node > ok

Step 7: Apply boundary conditions and loads

Constraint

Main Menu > Preprocessor > Loads > Define Loads > Apply > structural > Displacement > On Nodes > Pick the 1st node and 4th node > Apply > All DOF = 0 > ok

Apply Loads

Main Menu > Preprocessor > Loads > Define Loads > Apply > structural > Force/Moment > On Nodes > Pick the 2nd node > ok > Force/Moment value = 10000 in FX direction > ok > Force/Moment > On Nodes > Pick the 3rd node > ok > Force/Moment value = -12000 in FY direction > ok

Page 36: Ansys Record

36 

 

 

Fig. (iv) Displacement Vector Sum 

 

Fig. (v) Von Mises stress 

Page 37: Ansys Record

37 

 

Step 8: Solve the model

Main Menu > Solution > solve > Current LS > ok > close

Step 9: Review the results

Displacement

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > DOF Solution > Displacement vector sum > ok

Stress

Main Menu > General Postproc > Element Table > Define Table > Add > Select By sequence num and 1 after LS > ok

Main Menu > General Postproc > Plot Results > Contour Plot > Elem Table > Select LS1 > ok

Result

Maximum displacement

Maximum stress

Reactions

Page 38: Ansys Record

38 

 

(b). Manual Method

Aim:

To determine the nodal displacements and element stresses of a four bar plane truss as shown in the figure. Take E = 2x105 N/mm2 and Ae = 625 mm2 for all elements.

Page 39: Ansys Record

39 

 

Page 40: Ansys Record

40 

 

Page 41: Ansys Record

41 

 

Page 42: Ansys Record

42 

 

\

Page 43: Ansys Record

43 

 

Page 44: Ansys Record

44 

 

Page 45: Ansys Record

45 

 

Page 46: Ansys Record

46 

 

Page 47: Ansys Record

47 

 

Page 48: Ansys Record

48 

 

 

Fig. (i) Problem Representation 

 

 

 

Fig. (ii) Modeling and Meshing 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 49: Ansys Record

49 

 

Ex. No. : 06 STRESS ANALYSIS OF CANTILEVER BEAM WITH POINT LOAD AT THE END

Date:

AIM:

To determine Maximum Displacement, Maximum Stress, Maximum Shear force and Maximum Bending Moment using ANSYS software.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Stress Analysis of Cantilever Beam

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3> Ok

4. Define Section Type

Preprocessor > Sections > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z =0 > Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line >pick Key points 1 and 2 > Ok

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

Page 50: Ansys Record

50 

 

 

Fig. (iv) Displacement Vector Sum 

 

 

Fig. (v) Von Mises stress 

Page 51: Ansys Record

51 

 

8. Mesh the model Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Static Ok.

10. Apply Constrain Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select left key point 1 > Ok > select All DOF > Enter Displacement Value = 0 > Ok

11. Apply Loads Preprocessor > Loads > Define loads >Apply > Structural > Force /Moment > On Key Points >select right key point 2 > Ok > pull down select FY > Enter Force / Moment Value = -100 > Ok

12. Solving the system Solution > Solve > Current LS > Ok

VIEWING THE RESULTS 13. Deformation plot

General Postproc > Plot Results > Deformed Shape > select Def + undeformd > Ok

14. Deflection plot General Postproc > Plot Results > Contour Plot > nodal Solu > select DOF Solution > select Displacement Vector sum > Ok

15. Stress General Postproc > List Results > Element Solution > select Stress > select Von Mises stress > Ok > Close

16. Shear Force Plot General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num right side Enter SMISC, 6 > Apply > Again pull down left side select By sequence num > right side Enter SMISC, 19 > Ok > Close General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS6 > select LabJ Elem table item at node J SMIS19 > Ok

Page 52: Ansys Record

52 

 

 

 

Fig. (vi) Shear Force Diagram 

 

Fig. (vii) Bending Moment  Diagram 

 

Page 53: Ansys Record

53 

 

17. Bending Moment Plot

General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num right side Enter SMISC, 3> Apply > Again pull down left side select By sequence num > right side Enter SMISC, 16 > Ok > Close

General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS3> select LabJ Elem table item at node J SMIS16 > Ok

RESULT:

Displacement vector sum =

Von Mises Stress =

Shear force =

Maximum bending moment =

Page 54: Ansys Record

54 

 

 

Fig. (i) Problem Representation 

 

 

 

 

Fig. (ii) Modeling and Meshing 

 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 55: Ansys Record

55 

 

Ex. No. : 07 STRESS ANALYSIS OF SIMPLY SUPPORTED BEAM WITH POINT LOAD AT THE CENTRE

Date:

AIM:

To determine Maximum Displacement, Maximum Stress, Maximum Shear force and

Maximum Bending Moment using ANSYS software.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Stress Analysis of Stress Analysis of stress analysis of simply supported beam with point load at the centre

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points > Ok > Close

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3> Ok

4. Define Section Type

Preprocessor > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line >using mouse pick Key points 1 and 2 > Ok

Page 56: Ansys Record

56 

 

 

Fig. (iv) Displacement Vector Sum 

 

 

Fig. (v) Von Mises stress 

 

 

Page 57: Ansys Record

57 

 

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

8. Mesh the model

Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Static Ok.

10. Apply Constrain

Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select key points 1 and 2 > Ok > select UX and UY > Enter Displacement Value = 0 > Ok

11. Apply Loads

Preprocessor > Loads > Define loads >Apply > Structural > Force /Moment > On Nodes >using mouse select Mid point of the line > Ok > pull down select FY > Enter Force / Moment Value = -100 > Ok

12. Solving the system Solution > Solve > Current LS > Ok

Viewing the Results

13. Deformation plot

General Postproc > Plot Results > Deformed Shape > select Def + undeformd > Ok

14. Deflection plot

General Postproc > Plot Results > Contour Plot > nodal Solu > select DOF Solution > select Displacement Vector sum > Ok

15. Stress

General Postproc > List Results > Element Solution > select Stress > select Von Mises stress > Ok > Close

Page 58: Ansys Record

58 

 

 

Fig. (vi) Shear Force Diagram 

 

Fig. (vii) Bending Moment Diagram 

Page 59: Ansys Record

59 

 

16. Shear Force Plot

General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num > right side Enter SMISC, 6 > Apply > Again pull down left side select By sequence num > right side Enter SMISC, 19 > Ok > Close

General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS6 > select LabJ Elem table item at node J SMIS19 > Ok

17. Bending Moment Plot

General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num > right side Enter SMISC, 3 > Apply > Again pull down left side select By sequence num > right side Enter SMISC, 16 > Ok > Close

General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS3> select LabJ Elem table item at node J SMIS16 > Ok

RESULT:

Displacement vector sum =

Von Mises Stress =

Shear force =

Maximum bending moment =

Page 60: Ansys Record

60 

 

 

Fig. (i) Problem Representation 

 

 

 

 

Fig. (ii) Modelling and Meshing 

 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 61: Ansys Record

61 

 

Ex. No. : 08 STRESS ANALYSIS OF SIMPLY SUPPORTED BEAM WITH UNIFORMLY DISTRIBUTED LOAD

Date:

AIM:

To determine Maximum Displacement, Maximum Stress, Maximum Shear force and Maximum Bending Moment using ANSYS software.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Stress Analysis of Cantilever Beam

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points > Ok > Close

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3> Ok

4. Define Section Type

Preprocessor > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line >using mouse pick Key points 1 and 2 > Ok

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

Page 62: Ansys Record

62 

 

 

Fig. (iv) Displacement Vector Sum 

 

 

Fig. (v) Von Mises stress 

 

 

Page 63: Ansys Record

63 

 

8. Mesh the model

Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Static Ok.

10. Apply Constrain

Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select key points 1and 2 > Ok > select UX and UY > Enter Displacement Value = 0 > Ok

11. Apply Loads

Preprocessor > Loads > Define loads > Apply > Structural > Force / Moment > On Nodes > using mouse select All the nodes of the line except first and last nodes > Ok > pull down select FY > Enter Force / Moment Value = - 0.25 > Ok

12. Solving the system Solution > Solve > Current LS > Ok

VIEWING THE RESULTS

13. Deformation plot

General Postproc > Plot Results > Deformed Shape > select Def + undeformd > Ok

14. Deflection plot

General Postproc > Plot Results > Contour Plot > nodal Solu > select DOF Solution > select Displacement Vector sum > Ok

15. Stress

General Postproc > List Results > Element Solution > select Stress > select Von Mises stress > Ok > Close

Page 64: Ansys Record

64 

 

 

Fig. (vi) Shear Force Diagram 

 

Fig. (vii) Bending Moment Diagram 

Page 65: Ansys Record

65 

 

16. Shear Force Plot

General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num right side Enter SMISC, 6 > Apply > Again pull down left side select By sequence num > right side Enter SMISC, 19 > Ok > Close

General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS6 > select LabJ Elem table item at node J SMIS19 > Ok

17. Bending Moment Plot

General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num right side Enter SMISC, 3> Apply > Again pull down left side select By sequence num > right side Enter SMISC, 16 > Ok > Close

General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS3> select LabJ Elem table item at node J SMIS16 > Ok

RESULT:

Displacement vector sum =

Von Mises Stress =

Shear force =

Maximum bending moment =

Page 66: Ansys Record

66 

 

 

 

Fig. (i) Problem Representation 

 

 

 

Fig. (ii) Modeling and Meshing 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 67: Ansys Record

67 

 

Ex. No. : 09 STRESS ANALYSIS OF FIXED BEAM WITH POINT LOAD AT THE CENTRE

Date:

AIM:

To determine Maximum Displacement, Maximum Stress, Maximum Shear force and Maximum Bending Moment using ANSYS software.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Stress Analysis of Cantilever Beam

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points > Ok > Close

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3> Ok

4. Define Section Type

Preprocessor > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line >using mouse pick Key points 1 and 2 > Ok

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

Page 68: Ansys Record

68 

 

 

Fig. (iv) Displacement Vector Sum 

 

 

Fig. (v) Von Mises stress 

 

Page 69: Ansys Record

69 

 

8. Mesh the model

Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Static Ok.

10. Apply Constrain

Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select key point 1 and 2 > Ok > select All DOF > Enter Displacement Value = 0 > Ok

11. Apply Loads

Preprocessor > Loads > Define loads >Apply > Structural > Force /Moment > On Nodes >using mouse select Mid point of the line > Ok > pull down select FY > Enter Force / Moment Value = -100 > Ok

12. Solving the system Solution > Solve > Current LS > Ok

Viewing the Results

13. Deformation plot

General Postproc > Plot Results > Deformed Shape > select Def + undeformd > Ok

14. Deflection plot

General Postproc > Plot Results > Contour Plot > nodal Solu > select DOF Solution > select Displacement Vector sum > Ok

15. Stress

General Postproc > List Results > Element Solution > select Stress > select Von Mises stress > Ok > Close

Page 70: Ansys Record

70 

 

 

Fig. (vi) Shear Force Diagram 

 

Fig. (vii) Bending Moment Diagram 

Page 71: Ansys Record

71 

 

16. Shear Force Plot

General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num right side Enter SMISC, 6 > Apply > Again pull down left side select By sequence num > right side Enter SMISC, 19 > Ok > Close

General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS6 > select LabJ Elem table item at node J SMIS19 > Ok

17. Bending Moment Plot

General Postproc > Element Table > Define Table > Add > pull down left side select By sequence num right side Enter SMISC, 3> Apply > Again pull down left side select By sequence num > right side Enter SMISC, 16 > Ok > Close

General Postproc > Plot Results > Contour Plot > Line Elem Res > select LabI Elem table item at node I SMIS3> select LabJ Elem table item at node J SMIS16 > Ok

RESULT:

Displacement vector sum =

Von Mises Stress =

Shear force =

Maximum bending moment =

Page 72: Ansys Record

72 

 

Fig. (i) Problem Representation 

Page 73: Ansys Record

73 

 

Ex. No. : 10 STRESS ANALYSIS OF A PLATE WITH A CIRCULAR HOLE

Date :

(a) Analysis

AIM:

To determine the maximum displacement and maximum stress of a given plate with a circular hole using ANSYS software. PROCEDURE:

1. Enter the title of the analysis Utility Menu > File > Select Change Title> Enter New Title > Stress Analysis of a Plate with Hole > Ok

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element Preprocessor > Element Type > Add/Edit/Delete >structural mass > solid > Quad4node 182 > Ok > options > pull down K3 plane stress and select plane strs w/thk.> Ok > close

Options > pull down K3 plane stress and select plane strs w/thk.> Ok > close

3. Define Real constants

Preprocessor > Real Constants > Add/Edit/Delete>Add>Ok>Enter THK = 20 >Ok >Close

4. Define Material Properties Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 200000 and Enter PRXY = 0.3 > Ok > Close

5. Modeling

a. Create the main rectangular shape Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners > WP X=0, WP Y=0, Width = 200 and Height = 100.

Page 74: Ansys Record

74 

 

 

 

Fig. (ii) Modelling and Meshing 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 75: Ansys Record

75 

 

b. Create the circle Preprocessor > Modeling > Create > Areas > Circle > Solid Circle > WP X= 100, WP Y=50 and Radius = 20

c. Numbering Areas Utility Menu >plot controls > Numbering> pick Areas

d. Subtraction Now we want to subtract the circle (2) from the rectangle (1). Prior to this operation, your image should resemble the following:

Modeling > Operate > Booleans > Subtract > Areas > Enter 1 > Ok > Enter 2 > Ok

6. Mesh Size

Preprocessor > Meshing > Size Cntrls > Manual Size > Areas > All Areas

7. Mesh the model Preprocessor > Meshing > Mesh > Areas > Free > Click on ‘Pick All’

Solution Phase: Assigning Loads and Solving You have now defined your model. It is now time to apply the load(s) and constraint(s) and solve the resulting system of equations.

1. Define Analysis Type o Ensure that a Static Analysis will be performed o Preprocessor >Loads > Analysis Type > New Analysis > select Static > Ok.

2. Apply Constraints As shown previously, the left end of the plate is fixed.

Preprocessor > Define Loads > Apply > Structural > Displacement > On Lines > Using Mouse Select the left end vertical line of the plate > click on 'Apply' in the window > Ok

This location is fixed which means that all DOF's are constrained. Therefore, select 'All DOF' by clicking on it and enter '0' in the Value field as shown above.

You will see some blue triangles in the graphics window indicating the displacement constraints.

Page 76: Ansys Record

76 

 

 

Fig. (iv) Displacement Vector Sum 

 

 

Page 77: Ansys Record

77 

 

Fig. (v) Von Mises stress 

3. Apply Loads

o As shown in the diagram, there is a load of 20N/mm distributed on the right hand side of the plate. Calculate the pressure on the plate end by dividing the distributed load by the thickness of the plate (1 N/mm2).

Solution > Define Loads > Apply > Structural > Pressure > On Lines > Using Mouse Select the right end vertical line of the plate > click on 'Apply' in the window

o Fill in the "Apply PRES on lines" window as shown below > Ok.

The pressure is uniform along the surface of the plate; therefore the last field is left blank. The pressure is acting away from the surface of the plate, and is therefore defined as a negative pressure.

4. Solving the System Solution > Solve > Current LS > Ok.

5. Deformation

General Postproc > Plot Results > Deformed Shape > select Def + undeformd > Ok

6. Deflection General Postproc > Plot Results > Contour plot > Nodal Solution > Nodal Solution > pick DOF solution > select Displacement Vector Sum > In the bottom of the window select Deformed shape with Undeformed model > Ok.

7. Stresses

General Postproc > Plot Results > Nodal Solution > pick Stress > select Von Mises Stress > In the bottom of the window select Deformed shape with Undeformed model > Ok.

RESULT:

Displacement vector sum =

Page 78: Ansys Record

78 

 

Von mises stress =

(b). Model Problem

Aim:

To determine the stiffness matrix for the CST element as shown in figure. Assume plane stress conditions. Take E = 2.1x105 N/mm2, µ = 0.25 and t = 10 mm.

Page 79: Ansys Record

79 

 

Page 80: Ansys Record

80 

 

Page 81: Ansys Record

81 

 

Page 82: Ansys Record

82 

 

Page 83: Ansys Record

83 

 

Page 84: Ansys Record

84 

 

Fig. (i) Problem Representation 

Page 85: Ansys Record

85 

 

Ex. No. : 11 STRESS ANALYSIS OF SIMPLE BRACKET

Date:

(a) Analysis

AIM:

To determine the maximum displacement and maximum stress of a given simple bracket using ANSYS software. PROCEDURE

1. Defining the Problem

Utility Menu > File > Change Title>Stress Analysis of Simple Bracket

ANSYS Main Menu > preferences > turn on Structural

2. Define Type of element Preprocessor > Element Type > Add/Edit/Delete >structural mass > solid > Quad4node 182 > Ok > options > pull down plane stress and select plane stress with thick.> pull down No Extra output and select Nodal Stress > Ok > close

3. Define Real constants

Preprocessor > Real Constants > Add/Edit/Delete>Add>Ok>Enter THK = 20 >Ok > Close

4. Define Material Properties Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > EX = 200000 and PRXY = 0.3 > Ok > Close

5. Modeling

a. Create the main rectangular shape

Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners (X=0,Y=0, WIDTH= 80, HEIGHT =100)

b. Create the circular end on the right hand side

Preprocessor > Modeling > Create > Areas > Circle > Solid Circle> X=80,Y=50 and R=50 > Ok

Page 86: Ansys Record

86 

 

 

Fig. (ii) Modeling and Meshing 

Page 87: Ansys Record

87 

 

 

Fig. (iii) Loading and Boundary Conditions 

c. Now create a second and third circle for the left hand side using the following dimensions:

Preprocessor > Modeling > Create > Areas > Circle > Solid Circle> X=0,Y=20 and R=20 > Ok

Preprocessor > Modeling > Create > Areas > Circle > Solid Circle> X=0,Y=80 and R=20 > Ok

d. Create a rectangle on the left hand end to fill the gap between the two small circles.

Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners (X= -20, Y=20, WIDTH= 20, HEIGHT =60)

e. We now want to add these five discrete areas together to form one area. Modeling > Operate > Booleans > Add > Areas > Pick All

f. Create the Bolt Holes

We now want to remove the bolt holes from this plate. i. Create the three circles with the parameters given below:

Page 88: Ansys Record

88 

 

Preprocessor > Modeling > Create > Areas > Circle > Solid Circle

parameter circle 1 circle 2 circle 3WP X 80 0 0 WP Y 50 20 80

radius 30 10 10

g. Numbering Areas Ansys utility menu > Plot controls > Numbering > Areas Area numbers > Turn

On

h. Subtract object ( Simple Bracket) from Three Holes Preprocessor > Modeling > Operate > Booleans > Subtract > Areas > Enter ‘6’ (Simple Bracket) > Apply>1,2,3 > OK

6. After Modeling is done save the model in a new folder Ansys utility menu > plot controls > write metafile > invert white/black

 

Fig. (iv) Displacement Vector Sum 

 

Page 89: Ansys Record

89 

 

 

Fig. (v) Von Mises stress 

7. Mesh Size Preprocessor > Meshing > Size Cntrls > Manual Size > Areas > All Areas > element edge length > 5

8. Mesh Preprocessor > Meshing > Mesh > Areas > Free > Pick All

9. After meshing is done save the meshed model on a previous new folder Ansys utility menu > plot controls > write metafile > invert white/black

Solution Phase: Assigning Loads and Solving

10. Define Analysis Type

Solution' > 'New Analysis' and select 'Static'.

11. Apply Constraints As illustrated, the plate is fixed at both of the smaller holes on the left hand side.

a. Solution > Define Loads > Apply > Structural > Displacement > On Nodes In the dial box, select circle option. Now Pick center of circle and drag upto outer surface as shown figure.> ok > select All DOF , Enter Displacement value = 0 and Repeat for Second small circle.

12. Apply Loads As shown in the diagram, there is a single vertical load of 1000N, at the bottom of the large bolt hole. Apply this force to the respective keypoint

Page 90: Ansys Record

90 

 

Solution > Define Loads > Apply > Structural > Force/Moment > On Keypoints> just pick one point on bottom of large circle > Ok > pull down FY > Enter force value = -1000.

13. Solving the System

Solution > Solve > Current LS > Ok > Close

POST-PROCESSING: VIEWING THE RESULTS

14. Deflection General Postproc > Plot Results > Contour Plot > Nodal Solu ... > DOF solution, > displacement vector sum.> Ok

15. Von Mises Stress

General Postproc > Plot Results > Contour Plot > Nodal Solu ... > Stress > Von Mises Stress > Ok

RESULT:

Displacement vector sum =

Von mises stress = (b). Model Problem

Aim:

To determine the element stresses σx, σy, τxy, σ1, and σ2

and the principle angle θp . For the plane stress element as shown in the figure, the nodal displacements are u1 = 2 mm, u2 = 0.5 mm, u3 = 3 mm, v1 = 1 mm, v2 = 0 mm and v3 = 1 mm. Take E = 210x103 N/mm2, µ = 0.25 and t = 10 mm.

Page 91: Ansys Record

91 

 

Page 92: Ansys Record

92 

 

Page 93: Ansys Record

93 

 

Page 94: Ansys Record

94 

 

Page 95: Ansys Record

95 

 

Page 96: Ansys Record

96 

 

Page 97: Ansys Record

97 

 

 

 

 

 

 

Fig. (i) Problem Representation 

Page 98: Ansys Record

98 

 

Ex. No. : 12. STRESS ANALYSIS OF SIMPLE RECTANGULAR L - BRACKET

Date:

(a) Analysis

AIM:

To determine the maximum displacement and maximum stress of a given L - bracket using ANSYS software.

PROCEDURE Step 1: Set the analysis title

Utility Menu > Change title > Stress Analysis of Rectangular L – Bracket > ok

Step 2: Set preferences

Main Menu > Preferences > Structural > ok

Step 3: Define the material properties.

Main Menu > Preprocessor > Material Props > Material Models > Structural > Linear >

Elastic > Isotropic > EX 30000000 and PRXY 0.27 > ok >

Step 3: Define the element types

Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > solid > 8 node

Quad plane 82 > ok

Options > choose plane stress with thickness > ok > close

Step 4: Define the Real constants

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > ok > Enter the

thickness 0.5 > ok > close

Page 99: Ansys Record

99 

 

 

Fig. (ii) Modelling and Meshing 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 100: Ansys Record

100 

 

Step 5: Create the Geometry

Create rectangle

Main Menu> Preprocessor> Modeling> Create> Areas> Rectangle> By Dimensions >

Enter the Dimensions > ok

Coordinates Rectangle 1 Rectangle 2

X1 0 4

X2 6 6

Y1 -1 -1

Y2 1 -3

Change plot controls and replot

Utility Menu > Plot ctrls > Numbering > turn on area number > ok

Create the circle

Main Menu> Preprocessor> Modeling> Create> Areas> Circle> Solid Circle

Add areas

Main Menu > Preprocessor > Modeling > Operate > Booleans > Add > Areas > Pick All

Create line fillet

Utility Menu > Plot Ctrls > Numbering > Turn on line numbering > ok > close

Main Menu > Preprocessor > Modeling > Create > Lines > Line Fillet > Pick the two

lines > ok > Enter the fillet radius 0.4 > ok > close

Utility Menu > Plot > Lines

Dimensions Circle 1 Circle 2

Wp x 0 5

Wp y 0 -3

Radius 1 1

Page 101: Ansys Record

101 

 

 

Fig. (iv) Displacement Vector Sum 

 

Page 102: Ansys Record

102 

 

Fig. (v) Von Mises stress 

Create fillet area

Main Menu > Preprocessor > Modeling > Create > Area > Arbitrary > By lines > Pick

the Fillet line > ok

Utility Menu > Plot > Area

Add areas together

Main Menu > Preprocessor > Modeling > Operate > Booleans > Add > Area > Pick All

Create first pin hole

Main Menu> Preprocessor> Modeling> Create> Areas> Circle> Solid Circle > Enter the

Coordinates > ok

Coordinates Circle 3 Circle 4

Wp x 0 5

Wp y 0 -3

Radius 0.4 0.4

Subtract pin holes from bracket

Main Menu> Preprocessor> Modeling> Operate> Booleans> Subtract> Areas > Pick

Main Object > ok > second and third circle > ok

Step 6: Mesh the Area

Main Menu > Preprocessor > Meshing > Mesh Tool > Set Global size control > Enter 0.5

> ok > Choose Area Meshing > click > Pick All

Step 7: Apply Boundary conditions and loads

Constraints

Main Menu > Solution > Define Loads > Apply > Structural > Displacement > On Lines

> Pick the four lines around left hand hole > ok > select All DOF > Enter the value 0 > ok >

close

Page 103: Ansys Record

103 

 

Utility Menu > Plot lines

Pressure load

Main Menu > Solution > Define Loads > apply > Structural > Pressure > On Lines > Pick

line defining bottom left part of the circle > Apply > Enter 50 for VALUE > Enter 500 for

optional value > Apply > Pick line defining bottom right part of the circle > Apply > Enter 500

for VALUE > Enter 50 for optional value > ok

Step 8: solve the Problem

Main Menu > Solution > Solve > Current LS > ok > close

Step 9: Review the Results

Main Menu > General Postproc > Read Results > First set

Deformed shape

Main Menu > General Postproc > Plot Results > Deformed Shape > choose Def +

undeformed > ok

Displacement vector sum

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solution > select

DOF Solution > select Displacement vector sum > ok.

Von Mises Stresses

Main Menu > General Postproc > Plot Results > Nodal Solution > stress > select von

Mises Stress

RESULT:

Displacement vector sum =

Von mises stress =

Page 104: Ansys Record

104 

 

(b). Model Problem

Aim:

To determine the element stresses σx, σy, τxy, σ1, and σ2

and the principle angle θp . For the plane strain element as shown in the figure, the nodal displacements are u1 = 0.005 mm, u2 = 0 mm, u3 = 0.005 mm, v1 = 0.002 mm, v2 = 0 mm and v3 = 0 mm. Take E = 210x103 N/mm2, µ = 0.25 and t = 10 mm.

Page 105: Ansys Record

105 

 

Page 106: Ansys Record

106 

 

Page 107: Ansys Record

107 

 

Page 108: Ansys Record

108 

 

Page 109: Ansys Record

109 

 

Page 110: Ansys Record

110 

 

 

Fig. (i) Problem Representation 

Page 111: Ansys Record

111 

 

Ex. No. : 13 STRESS ANALYSIS OF AN AXISYMMETRIC COMPONENT WITH LONGITUDINAL LOAD

Date :

(a) Analysis

AIM:

To determine the maximum displacement and longitudinal stress of a given steel tube using ANSYS softare.

PROCEDURE:

The model will be that of a closed tube made from steel. Point loads will be applied at the Point loads will be applied at the center of the top and bottom plate to make an analytical verification simple to calculate. A 3/4 cross section view of the tube is shown figure.

Preprocessing: Defining the Problem

1. Defining the Problem Utility Menu > File > Change Title>Stress Analysis of Axisymmetric component

ANSYS Main Menu > preferences > turn on Structural

2. Define Type of element Preprocessor > Element Type > Add/Edit/Delete >structural mass > solid > Quad4node 182 > Ok > options > pull down K3 and select Axismmetric.> Ok > close

3. Define Material Properties Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > EX = 200000 and PRXY = 0.3 > Ok

4. Modeling (a).Create Areas

Preprocessor > Modeling > Create > Areas > Rectangle > By Dimensions For an axisymmetric problem, ANSYS will rotate the area around the y-axis at x=0. Therefore, to create the geometry mentioned above, we must define a U-shape.

Rectangle X1 X2 Y1 Y2

1 0 20 0 5

2 15 20 0 100

3 0 20 95 100

Page 112: Ansys Record

112 

 

(b) Add Areas Together Preprocessor > Modeling > Operate > Booleans > Add > Areas > Pick All

 

Fig. (ii) Modeling and Meshing 

 

 

Page 113: Ansys Record

113 

 

Fig. (iii) Loading and Boundary Conditions 

5. Define Mesh Size Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > All Areas > Enter 2 For this example we will use an element edge length of 2mm.

6. Mesh the model Preprocessor > Meshing > Mesh > Areas > Free > click 'Pick All' Your model should know look like this:

Solution Phase: Assigning Loads and Solving 7. Define Analysis Type

Solution > Analysis Type > New Analysis > Static 8. Apply Constraints

a. Solution > Define Loads > Apply > Structural > Displacement > Symmetry B.C. > On Lines Pick the two edges on the left, at x=0, as shown below.

b. Solution > Define Loads > Apply > Structural > Displacement > On Nodes > select two nodes at the mid point of the model as shown below > In the window pick Apply > select Uy and Enter displacement value = 0 > Ok

9. Apply Loads a. Solution > Define Loads > Apply > Structural > Force/Moment > On Keypoints

Pick the top left corner of the area and click OK. Apply a load of 100 in the FY direction.

b. Solution > Define Loads > Apply > Structural > Force/Moment > On Keypoints Pick the bottom left corner of the area and click OK. Apply a load of -100 in the FY direction.

10. Solve the System Solution > Solve > Current LS

Postprocessing: Viewing the Results

11. Deflection General Postproc > Plot Results > Contour Plot > Nodal Solu ... > DOF solution, > displacement vector sum.> Ok

12. Von mises stress General Postproc > Plot Results > Contour Plot > Nodal Solu ... > Stress > Von Mises Stress > Ok

13. Plotting the Elements as Axisymmetric Utility Menu > PlotCtrls > Style > Symmetry Expansion > 2-D Axi-symmetric... The following window will appear. By clicking on 3/4 expansion you can produce the figure shown at the beginning of this tutorial.

Page 114: Ansys Record

114 

 

 

Fig. (iv) Displacement Vector Sum 

 

Page 115: Ansys Record

115 

 

Fig. (v) Von Mises stress 

RESULT:

Displacement vector sum =

Von mises stress =

Page 116: Ansys Record

116 

 

(b). Model Problem

Aim:

To determine stiffness matrix for the axisymmetric elements as shown in figure. Take E = 2.1x105 N/mm2 and µ = 0.25.

Page 117: Ansys Record

117 

 

Page 118: Ansys Record

118 

 

Page 119: Ansys Record

119 

 

Page 120: Ansys Record

120 

 

Page 121: Ansys Record

121 

 

Page 122: Ansys Record

122 

 

Page 123: Ansys Record

123 

 

 

 

Fig. (i) Problem Representation 

Page 124: Ansys Record

124 

 

EX.NO.14: STRESS ANALYSIS OF AXISYMMETRIC

COMPONENT WITH CIRCUMFERENTIAL LOAD

DATE:

(a) Analysis

AIM:

To perform axisymmetric analysis of long cylinder under circumferential load using

ANSYS software.

PROCEDURE:

Step 1: Set the Analysis title

Utility Menu > File > Change Title > Axisymmetric Tube > ok

Step 2: Define the Type of Elements

Main Menu > Preprocessor > Element Type > Add/Edit/Delete > solid > Quad 8 node

183 > ok

Options > Element behavior K3 select Axisymmetric > ok

Step 3: Define the Material Properties

Main Menu > Preprocessor > Material Props > Material Models > Structural > Linear >

Elastic > Isotropic > Young's modulus EX: 200000 and Poisson's Ratio PRXY: 0.3 > ok

Step 4: Create the Geometry

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By Dimensions

> Enter the Dimensions > ok

Rectangle X1 X2 Y1 Y2

1 0 20 0 10

Main Menu > Preprocessor > Modeling > Operate > Booleans > Add > Areas > Pick All

Step 5: Define the Mesh Size

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > All Areas >

Enter element edge length of 2mm > ok

Page 125: Ansys Record

125 

 

Step 6: Mesh the frame

Main Menu > Preprocessor > Meshing > Mesh > Areas > Free > Pick All

Main Menu > Preprocessor > Meshing > Mesh tool > Mesh > Pick All

Step 7: Define Analysis Type

Main Menu > Solution > Analysis Type > New Analysis > Static > ok

Step 8: Apply Boundary conditions and loads

Apply Constraints

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >

Symmetry B.C. > On Lines > Pick the two edges on the left, at x=0

Utility Menu > Select > Entities > Select Nodes and By Location from the scroll

down menus > Click Y coordinates > Enter 50 into the input box > ok

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >

On Nodes > Pick All > Constrain the model in the y-direction y=50 > ok

Apply Loads

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment >

On Key points > Pick the top left corner of the area > ok > Apply a load of 2 in the

FX direction > ok

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment >

On Key points > Pick the bottom left corner of the area > ok > Apply a load of -2

in the FX direction > ok

Step 9: Solve the System

Main Menu > Solution > Solve > Current LS > ok > close

10: Reviewing the Results

Determine the Stress Through the Thickness of the Tube

Utility Menu > Select > Entities > Select Nodes > By Location > Y coordinates

and type 45, 55 in the Min,Max box > ok

General Postproc > List Results > Nodal Solution > Stress > Von mises stress

Plotting the Elements as Axisymmetric

Page 126: Ansys Record

126 

 

Utility Menu > PlotCtrls > Style > Symmetry Expansion > 2-D Axi-symmetric >

clicking on 3/4 expansion

Displacement

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solution > select

DOF Solution > select Displacement vector sum > ok.

Stresses

Main Menu > General Postproc > Plot Results > Nodal Solution > stress > select von

Mises Stress

Result

Thus the axisymmetric analysis of long cylinder under circumferential load using ANSYS software is performed.

Page 127: Ansys Record

127 

 

(b). Model Problem

Aim:

To determine the element stresses σr, σθ, σz, and τrz.. For the axisymmetric element as shown in the figure, the nodal displacements are u1 = 0.05 mm, u2 = 0.02 mm, u3 = 0 mm, w1 = 0.03 mm, w2 = 0.02 mm and w3 = 0 mm. Take E = 2.1x103 N/mm2 and µ = 0.25.

Page 128: Ansys Record

128 

 

Page 129: Ansys Record

129 

 

Page 130: Ansys Record

130 

 

Page 131: Ansys Record

131 

 

Page 132: Ansys Record

132 

 

Page 133: Ansys Record

133 

 

 

 

Fig. (i) Problem Representation 

 

Fig. (ii) Modeling and Meshing 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 134: Ansys Record

134 

 

Ex. No. : 15 MODE FREQUENCY ANALYSIS OF CANTILEVER BEAM

Date:

(a) Analysis

AIM:

To determine first three natural frequencies of Cantilever Beam using ANSYS software.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Mode Frequency Analysis of Cantilever Beam

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points > Ok > Close

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3 Enter Density DENS = 7830 > Ok

4. Define Section Type

Preprocessor > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line >pick Key points 1 and 2 > Ok

Page 135: Ansys Record

135 

 

 

Fig. (iv) First Mode Shape 

 

Fig. (v) Second Mode Shape 

 

Page 136: Ansys Record

136 

 

Fig. (vi) Third Mode Shape 

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

8. Mesh the model

Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Modal > Ok.

10. Define Mode Extraction Method Preprocessor > Loads > Analysis Type > Analysis Options > select Reduced Method > Enter No. of modes to extract = 3 > No. of modes to expand = 3 > Ok

Enter Frequency range 0 To 2500

Enter No. of modes to print = 3 > Ok

11. Define Master DOFs Preprocessor > Loads > Master DOFs > User Selected > Define > using mouse select All nodes except first and last node > Ok > Lab-1 and Lab-2 select UY > Ok

12. Apply Constrain

Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select left key point 1 > Ok > select All DOF > Enter Displacement Value = 0 > Ok

13. Solving the system Solution > Solve > Current LS > Ok

VIEWING THE RESULTS

14. List First Three Fundamental Frequencies

General Postproc > List Results > Detailed Summary

THREE MODE SHAPES

15. Deformation plot

General Postproc > Read Results > First Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

Page 137: Ansys Record

137 

 

General Postproc > Read Results > Next Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

General Postproc > Read Results > Next Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

RESULT:

First natural frequency =

Second natural frequency =

Third natural frequency =

Page 138: Ansys Record

138 

 

(b). Model problem

Aim:

To determine 1. Jacobian Matrix, 2.Strain-Displacement Matrix and 3.Element stresses for the four noded rectangular elements. Take E = 2.1x103 N/mm2 and µ = 0.25, ε = 0, η = 0 and u = [0, 0, 0.003, 0.004, 0.006, 0.004, 0, 0] T. Assume plane stress condition.

Page 139: Ansys Record

139 

 

Page 140: Ansys Record

140 

 

Page 141: Ansys Record

141 

 

Page 142: Ansys Record

142 

 

Page 143: Ansys Record

143 

 

 

 

Fig. (i) Problem Representation 

 

Fig. (ii) Modelling and Meshing 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 144: Ansys Record

144 

 

Ex. No. : 16 MODE FREQUENCY ANALYSIS OF SIMPLY SUPPORTED BEAM

Date:

AIM:

To determine the first three natural frequencies of simply supported Beam using ANSYS software.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Mode Frequency Analysis of Simply Supported Beam

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points > Ok > Close

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3 Enter Density DENS = 7830

4. Define Section Type

Preprocessor > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line > pick Key points 1 and 2 > Ok

Page 145: Ansys Record

145 

 

 

Fig. (iv) First Mode Shape 

 

Fig. (v) Second Mode Shape 

 

Fig. (vi) Third Mode Shape 

Page 146: Ansys Record

146 

 

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

8. Mesh the model

Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Modal > Ok.

10. Define Mode Extraction Method Preprocessor > Loads > Analysis Type > Analysis Options > select Reduced Method > Enter No. of modes to extract = 3 > No. of modes to expand = 3 > Ok

Enter Frequency range 0 To 2500

Enter No. of modes to print = 3 > Ok

11. Define Master DOFs Preprocessor > Loads > Master DOFs > User Selected > Define > using mouse select All nodes except first and last node > Ok > Lab-1 select UX and Lab-2 select UY > Ok

12. Apply Constrain

Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select left key point 1 and select right key point 2 > Ok > select UX and UY > Enter Displacement Value = 0 > Ok

13. Solving the system Solution > Solve > Current LS > Ok

VIEWING THE RESULTS

14. List First Three Fundamental Frequencies

General Postproc > List Results > Detailed Summary

THREE MODE SHAPES

15. Deformation plot

General Postproc > Read Results > First Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

Page 147: Ansys Record

147 

 

General Postproc > Read Results > Next Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

General Postproc > Read Results > Next Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

RESULT:

First natural frequency =

Second natural frequency =

Third natural frequency =

Page 148: Ansys Record

148 

 

 

 

Fig. (i) Problem Representation 

 

Fig. (ii) Modeling and Meshing 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 149: Ansys Record

149 

 

Ex. No. :17 MODE FREQUENCY ANALYSIS OF FIXED BEAM

Date:

AIM:

To determine first three natural frequencies of fixed Beam using ANSYS software.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Mode Frequency Analysis of Fixed Beam

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points > Ok > Close

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3 Enter Density DENS = 7830 > Ok

4. Define Section Type

Preprocessor > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line >pick Key points 1 and 2 > Ok

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

Page 150: Ansys Record

150 

 

 

Fig. (iv) First Mode Shape 

 

Fig. (v) Second Mode Shape 

 

Fig. (vi) Third Mode Shape 

Page 151: Ansys Record

151 

 

8. Mesh the model

Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Modal > Ok.

10. Define Mode Extraction Method Preprocessor > Loads > Analysis Type > Analysis Options > select Reduced Method > Enter No. of modes to extract = 3 > No. of modes to expand = 3 > Ok

Enter Frequency range 0 To 2500

Enter No. of modes to print = 3 > Ok

11. Define Master DOFs Preprocessor > Loads > Master DOFs > User Selected > Define > using mouse select All nodes except first and last node > Ok > Lab-1 and Lab-2 select UY > Ok

12. Apply Constrain

Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select left key point 1 and right key point 2 > Ok > select All DOF > Enter Displacement Value = 0 > Ok

13. Solving the system Solution > Solve > Current LS > Ok

VIEWING THE RESULTS

14. List First Three Fundamental Frequencies

General Postproc > List Results > Detailed Summary

THREE MODE SHAPES

15. Deformation plot

General Postproc > Read Results > First Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

Page 152: Ansys Record

152 

 

General Postproc > Read Results > Next Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

General Postproc > Read Results > Next Set > Plot Results > Deformed Shape > select Def + Undeformed > Ok

RESULT:

First natural frequency =

Second natural frequency =

Third natural frequency =

Page 153: Ansys Record

153 

 

 

 

Fig. (i) Problem Representation 

 

Fig. (ii) Modeling and Meshing 

 

 

 

Fig. (iii) Loading and Boundary Conditions 

Page 154: Ansys Record

154 

 

Ex. No. : 18. HARMONIC ANALYSIS OF A CANTILEVER BEAM

Date:

AIM:

To perform harmonic analysis of Fixed Beam using ANSYS software and also plot Amplitude Vs Frequency graph.

PROCEDURE

1. Defining the Problem Utility Menu > File > Change Title>Mode Frequency Analysis of Fixed Beam

ANSYS Main Menu > preferences > turn on Structural > Ok

2. Define Type of element

Preprocessor > Element Type > Add/Edit/Delete > Add >Beam > 2 node 188> Ok > Options > pull down K3 select Cubic Form > pull down K7 select All Section points > pull down K9 select All Section points > Ok > Close

3. Define Material Properties

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > Enter EX = 2.068E11 and PRXY = 0.3 Enter Density DENS = 7830 > Ok

4. Define Section Type

Preprocessor > Beam > Common sections > Pull down Sub- Type in the window > select square section > Enter B = 0.01 and H = 0.01 > Preview > Ok

5. Modeling

Preprocessor > Modeling > Create > Key points > In Active CS > Key point number 1 > X= 0, Y= 0 and Z = 0 > Apply > Key point number 2> X= 1, Y= 0 and Z Ok

6. Form a Line

Preprocessor > Modeling > Create > Lines > Lines > Straight Line >pick Key points 1 and 2 > Ok

7. Define Mesh Size

Preprocessor > Meshing > size cntrls > Manual size > Lines > All Lines> Enter No. of Element divisions = 20 > Ok

Page 155: Ansys Record

155 

 

 

Fig. (iv) Graph – Frequency Vs. Displacement 

 

Fig. (v) Graph – Frequency Vs. Displacement (Modified) 

Page 156: Ansys Record

156 

 

8. Mesh the model

Preprocessor > Meshing > Mesh > Lines > Pick All

9. Define Analysis Type Preprocessor > Loads > Analysis Type > New Analysis > select Harmonic > Ok.

10. Define Solution Method Preprocessor > Loads > Analysis Type > Analysis Options > select Full > DOF printout format select Real + imaginary > Ok

Equation Solver > pull down select Sparse solver > Ok

11. Apply Constrain

Preprocessor > Loads > Define loads >Apply > Structural > Displacement > On Key Points >select left key point 1 > Ok > select All DOF > Enter Displacement Value = 0 > Ok.

12. Apply Loads

Preprocessor > Loads > Define loads >Apply > Structural > Force / Moment > On Key Points >select right key point 2 > Ok > select FY > Real part of force/mom = 100 and Imag part of force/mom = 0 > Ok.

13. Set the frequency range

Solution > Load Step Opts > Time/Frequency > Freq and Substeps > Enter Harmonic freq range 0 To 100 > Enter Number of substeps = 100 > select Stepped b.c.

14. Solving the system Solution > Solve > Current LS > Ok

VIEWING THE RESULTS

TimeHist Postpro > Time History Variables – file .rst window should pop up as shown.

Select Add (the green '+' sign in the upper left corner) from this window and the following window should appear

Page 157: Ansys Record

157 

 

Nodal Solution > DOF Solution > Y-Component of displacement. Click OK.

o Graphically select right key point 2 when prompted and click OK. The 'Time History Variables' .

2. List Stored Variables

o In the 'Time History Variables' window click the 'List' button, 3 buttons to the left of 'Add'

3. Plot UY vs. frequency

o In the 'Time History Variables' window click the 'Plot' button, 2 buttons to the left of 'Add'

Note that we get peaks at frequencies of approximately 8.3 and 51 Hz. This corresponds with the predicted frequencies of 8.311 and 51.94Hz.

To get a better view of the response, view the log scale of UY.

o Select Utility Menu > PlotCtrls > Style > Graphs > Modify Axis

o As marked by an 'A' in the above window, change the Y-axis scale to 'Logarithmic'

o Select Utility Menu > Plot > Replot

This is the response at node 2 for the cyclic load applied at this node from 0 - 100 Hz.

RESULT:

Thus the harmonic analysis of Fixed Beam using ANSYS software is performed and graph between Amplitude Vs Frequency also plotted.

Page 158: Ansys Record

158 

 

 

Fig. (i) Problem Representation 

 

 

 

Fig. (ii) Modelling and Meshing 

 

 

Fig. (iii) Thermal stress 

Page 159: Ansys Record

159 

 

Ex. No. : 19 THERMAL STRESS ANALYSIS OF A 2D COMPONENT – STATIC

Date :

(a) Analysis

AIM: To determine the thermal stress of a given component using FEA based ANSYS software. PROCEDURE:

A steel link, with no internal stresses, is pinned between two solid structures at a

reference temperature of 273 K. One of the solid structures is heated to a temperature of 348 K. As heat is transferred from the solid structure into the link, the link will attempt to expand. However, since it is pinned this cannot occur and as such, stress is created in the link. A steady-state solution of the resulting stress will be found to simplify the analysis. Loads will not be applied to the link, only a temperature change of 348 K. The link is steel with a modulus of elasticity of 200 GPa, a thermal conductivity of 60.5 W/m*K and a thermal expansion coefficient of 12e-6 /K. Preprocessing: Defining the Problem

Although the geometry must remain constant, the element types can change. For instance, thermal elements are required for a thermal analysis while structural elements are required to determine the stress in the link. It is important to note, however that only certain combinations of elements can be used for a coupled physics analysis. For a listing, see Chapter 2 of the ANSYS Coupled-Field Guide located in the help file. The process requires the user to create all the necessary environments, which are basically the preprocessing portions for each environment, and write them to memory. Then in the solution phase they can be combined to solve the coupled analysis. Thermal Environment - Create Geometry and Define Thermal Properties

1. Enter Title Utility Menu > File > Change Title > Enter Thermal Stress Analysis

2. Open preprocessor menu ANSYS Main Menu > Preprocessor > Turn on Thermal

3. Define the Type of Element Preprocessor > Element Type > Add/Edit/Delete > Link > 3D conduction 33 > Ok > Close

4. Define Real Constants Preprocessor > Real Constants > Add/Edit/Delete > Add > Enter Area = 4e-4 > Ok > Close

5. Define Element Material Properties

Page 160: Ansys Record

160 

 

Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic > KXX = 60.5

6. Modeling - Define Keypoints Preprocessor > Modeling > Create > Keypoints > In Active CS > Key point number 1, X=0, Y=0 and Z=0 > Apply Preprocessor > Modeling > Create > Keypoints > In Active CS > Key point number 2, X=1, Y=0 and Z=0 > Ok

7. Create Lines Preprocessor > Modeling > Create > Lines > Lines > Straight Line > pick Key point number 1 and 2 > Ok

8. Define Mesh Size Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > All Lines > Enter No. of element divisions = 20

9. Mesh the frame Preprocessor > Meshing > Mesh > Lines > click 'Pick All'

10. Write Environment (The thermal environment (the geometry and thermal properties) is now fully described and can be written to memory to be used at a later time). Preprocessor > Physics > Environment > Write In the window that appears, enter the TITLE Thermal and click OK.

11. Clear Environment Preprocessor > Physics > Environment > Clear > OK (Doing this clears all the information prescribed for the geometry, such as the element type, material properties, etc. It does not clear the geometry however, so it can be used in the next stage, which is defining the structural environment).

Structural Environment - Define Physical Properties

Since the geometry of the problem has already been defined in the previous steps, all that is required is to detail the structural variables.

12. Switch Element Type Preprocessor > Element Type > Switch Elem Type > Choose Thermal to Struc from the scroll down list. > Close (This will switch to the complimentary structural element automatically. In this case it is LINK 8. For more information on this element, see the help file. A warning saying you should modify the new element as necessary will pop up. In this case, only the material properties need to be modified as the geometry is staying the same).

13. Define Element Material Properties

Page 161: Ansys Record

161 

 

Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > EX = 200e9 and PRXY = 0.3 Preprocessor > Material Props > Material Models > Structural > Thermal Expansion > Secant Coefficient > Isotropic > ALPX = 12e-6 > Ok > Close

14. Write Environment The structural environment is now fully described. Preprocessor > Physics > Environment > Write In the window that appears, enter the TITLE Struct

Solution Phase: Assigning Loads and Solving 15. Define Analysis Type

Solution > Analysis Type > New Analysis > select Static > Ok 16. Read in the Thermal Environment

Solution > Unabridged Menu > Physics > Environment > Read > Choose Thermal and click OK.

(If the Physics option is not available under Solution, click Unabridged Menu at the bottom of the Solution menu. This should make it visible).

17. Apply Constraints Solution > Define Loads > Apply > Thermal > Temperature > On Key points > select Keypoint 1> Ok > select TEMP > Enter TEMP value = 348 > Ok

18. Solve the System Solution > Solve > Current LS > Ok

19. Close the Solution Menu Main Menu > Finish (It is very important to click Finish as it closes that environment and allows a new one to be opened without contamination. If this is not done, you will get error messages).

20. Plot Temperature

General Postproc > Plot Results > Contour Plot > Nodal Solu > DOF solution > Nodal Temperature > Ok

(The thermal solution has now been obtained. If you plot the steady-state temperature on the link, you will see it is a uniform 348 K, as expected. This information is saved in a file labelled Jobname.rth, were .rth is the thermal results file. Since the jobname wasn't changed at the beginning of the analysis, this data can be found as file.rth. We will use these results in determing the structural effects).

21. Read in the Structural Environment Solution > Physics > Environment > Read > Choose struct and click OK.

Page 162: Ansys Record

162 

 

22. Apply Constraints

Solution > Define Loads > Apply > Structural > Displacement > On Key points > select Key point 1 > Ok > select All DOF > Enter displacement value = 0 > Ok Solution > Define Loads > Apply > Structural > Displacement > On Key points > select Key point 2 > Ok > select UX > Enter displacement value = 0 > Ok

23. Include Thermal Effects Solution > Define Loads > Apply > Structural > Temperature > From Therm Analy (As shown below, enter the file name as file.rth. This couples the results from the solution of the thermal environment to the information prescribed in the structural environment and uses it during the analysis).

24. Define Reference Temperature

Preprocessor > Loads > Define Loads > Settings > Enter Reference Temp = 273 > Ok

25. Solve the System Solution > Solve > Current LS > Ok

Postprocessing: Viewing the Results 1. Get Stress Data

Since the element is only a line, the stress can't be listed in the normal way. Instead, an element table must be created first. General Postproc > Element Table > Define Table > Add Fill in the window as shown below.

2. List the Stress Data

General Postproc > Element Table > List Elem Table > COMPSTR > OK

The following list should appear. Note the stress in each element: -0.180e9 Pa, or 180 MPa in compression as expected.

RESULT:

Thermal stress =

Page 163: Ansys Record

163 

 

(b). Model Problem Aim: To determine the steady state temperature distribution within the wall. The brick wall thickness 30 cm, k = 0.7 W/moC. The inner surface is at 28oC and the outer surface is exposed to cold air at -15oC. The heat transfer coefficient associated with the outside surface is = h 40 w/m2oC.

Page 164: Ansys Record

164 

 

Page 165: Ansys Record

165 

 

Page 166: Ansys Record

166 

 

Page 167: Ansys Record

167 

 

Page 168: Ansys Record

168 

 

 

 

Fig. (i) Problem Representation 

 

Fig. (ii) Modeling and Meshing 

Page 169: Ansys Record

169 

 

Ex. No. : 20 CONDUCTIVE HEAT TRANSFER ANALYSIS OF A 2D COMPONENT

Date:

(a) Analysis

AIM: To perform conductive heat transfer analysis of a given 2D component using ANSYS software and plot temperature distribution.

PROCEDURE:

1. Defining the Problem File > clear and start new> do not read file >ok> yes File > change title> conductive 2D thermal analysis ANSYS Main Menu > preferences > turn on thermal

2. Define the Type of Element Preprocessor > Element Type > Add/Edit/Delete... > click 'Add' > Select Thermal Mass Solid > Quad 4Node 55

3. Element Material Properties Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic > KXX = 10 (Thermal conductivity)

4. Modeling Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners > X=0, Y=0, Width=1, Height=1

5. After modeling is done save the model on a new folder Ansys utility menu > plot controls > write metafile > invert white/black

6. Mesh Size Preprocessor > Meshing > Size Cntrls > Manual Size > Areas > All Areas > 0.05

7. Mesh Preprocessor > Meshing > Mesh > Areas > Free > Pick All

8. After meshing is done save the meshed model on a previous new folder Ansys utility menu > plot controls > write metafile > invert white/black > Save

Solution Phase: Assigning Loads and Solving 9. Define Analysis Type

Solution > Analysis Type > New Analysis > Steady-State > ok

10. Apply Constraints For thermal problems, constraints can be in the form of Temperature, Heat Flow, Convection, Heat Flux, Heat Generation, or Radiation. In this example, all 4 sides of the block have fixed temperatures.

Page 170: Ansys Record

170 

 

Solution > Define Loads > Apply > Thermal > Temperature > On lines > using cursor select top horizontal line > ok

 

Fig. (iii) Loading and Boundary Conditions 

 

Page 171: Ansys Record

171 

 

Fig. (iv) Temperature Distribution 

Fill the window in as shown to constrain the side to a constant temperature of 500 Solution > Define Loads > Apply > Thermal > Temperature > On lines > using cursor select bottom horizontal line , left vertical line and right vertical line > ok

Fill the window in as shown to constrain the side to a constant temperature of 100

Orange triangles in the graphics window indicate the temperature contraints. 11. After boundary condition and loading is done save the same on a previous new folder

Ansys utility menu > plot controls > write metafile > invert white/black > Save

12. Solve the System Solution > Solve > Current LS

Postprocessing: Viewing the Results 1. Results Using ANSYS

Plot Temperature General Postproc > Plot Results > Contour Plot > Nodal Solu ... > DOF solution, Temperature TEMP

13. Save the same on a previous new folder

Ansys utility menu > plot controls > write metafile > invert white/black > Save

14. Ansys utility menu > plot controls > animate > deformed results > dof solution > nodal temp

RESULT:

Thus the conductive heat transfer analysis of a given 2D component using ANSYS software is performed.

Page 172: Ansys Record

172 

 

(b). Model Problem

Aim:

To determine the temperature at the mid-point of the of rod. A steel rod of diameter d = 2 cm , length l = 5 cm and thermal conductivity K = 50 W/moC is exposed at one end to a constant temperature along of 320oC. The other end is in ambient air at temperature 20oC with a convection coefficient of h = 100 W/m2oC.

Page 173: Ansys Record

173 

 

Page 174: Ansys Record

174 

 

Page 175: Ansys Record

175 

 

Page 176: Ansys Record

176 

 

Page 177: Ansys Record

177 

 

 

 

Fig. (i) Problem Representation 

 

Fig. (ii) Modeling and Meshing 

Page 178: Ansys Record

178 

 

Ex. No. : 21 CONVECTIVE HEAT TRANSFER ANALYSIS OF A 2D COMPONENT

Date :

(a). Analysis

AIM:

To perform convective heat transfer analysis of a given 2D component using ANSYS software and plot temperature distribution. PEROCEDURE:

1. Defining the Problem File > clear and start new > do not read file > ok > yes File > change title> convective 2D thermal analysis ANSYS Main Menu > preferences > turn on thermal

2. Define the Type of Element Preprocessor > Element Type > Add/Edit/Delete... > click 'Add' > Select Thermal Mass Solid > Quad 4Node 55

3. Element Material Properties Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic > KXX = 10 (Thermal conductivity)

4. Modeling Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners > X=0, Y=0, Width=1, Height=1

5. After modeling is done save the model on a new folder Ansys utility menu > plot controls > write metafile > invert white/black

6. Mesh Size Preprocessor > Meshing > Size Cntrls > Manual Size > Areas > All Areas > 0.05

7. Mesh Preprocessor > Meshing > Mesh > Areas > Free > Pick All

8. After meshing is done save the meshed model on a previous new folder Ansys utility menu > plot controls > write metafile > invert white/black

9. Define Analysis Type Loads > Analysis Type > New Analysis > Steady-State > ok 10. Apply Conduction Constraints

In this example, all 2 sides of the block have fixed temperatures, while convection occurs on the other 2 sides.

1. Solution > Define Loads > Apply > Thermal > Temperature > On Lines 2. Select the top line of the block and constrain it to a constant value of 500

Page 179: Ansys Record

179 

 

3. Using the same method, constrain the left vertical line of the block to a constant value of 100

11.  

12. Fig. (iii) Loading and Boundary Conditions 

13.  

14.  

15. Fig. (iv) Temperature Distribution 

Page 180: Ansys Record

180 

 

16. Apply Convection Boundary Conditions

1. Solution > Define Loads > Apply > Thermal > Convection > On Lines 2. Select the right vertical line of the block.

The following window will appear:

3. Fill in the window as shown. This will specify a convection of 10 W/m2*C and an ambient temperature of 100 degrees Celcius. Note that VALJ and VAL2J have been left blank. This is because we have uniform convection across the line.

17. Apply Insulated Boundary Conditions 1. Solution > Define Loads > Apply > Thermal > Convection > On Lines 2. Select the bottom line of the block. 3. Enter a constant Film coefficient (VALI) of 0. This will eliminate convection

through the side, thereby modeling an insulated wall. Note: you do not need to enter a Bulk (or ambient) temperature.You should obtain the following:

18. After boundary condition and loading is done save the same on a previous new

folder Ansys utility menu > plot controls > write metafile > invert white/black > Save

19. Solve the System Solution > Solve > Current LS > Ok > Close

Plot Temperature General Postproc > Plot Results > Contour Plot > Nodal Solu ... > DOF solution, Temperature TEMP

20. save the same on a previous new folder

Ansys utility menu > plot controls > write metafile > invert white/black > Save

21. Animate The Nodal Temperature Ansys utility menu > plot controls > animate > deformed results > dof solution > nodal temp

RESULT:

Thus, the convective heats transfer analysis of a given 2D component using ANSYS software is performed.

Page 181: Ansys Record

181 

 

(b). Model Problem Aim: To determine the element stiffness matrix and load vector for the element shown in fig., when the edge 2-3 experiences convection heat loss.

.

Page 182: Ansys Record

182 

 

Page 183: Ansys Record

183 

 

Page 184: Ansys Record

184 

 

Page 185: Ansys Record

185