antibiotici beta lattamici. classi di antibiotici beta-lattamici 1) penicilline 2) cefalosporine 3)...

41
ANTIBIOTICI BETA LATTAMICI

Upload: arcangelo-cioffi

Post on 02-May-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

ANTIBIOTICI BETA LATTAMICI

Page 2: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,
Page 3: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,
Page 4: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,
Page 5: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Classi di Antibiotici beta-lattamici

1) Penicilline

2) Cefalosporine

3) Monobactami

4) Carbapenemi

Amoxicillina, Ampicillina, Azlocillina, Bacampacillina, Carbenicillina, Cloxacillina, Dicloxacillina, Flucoxacillina, Piperacillina, Ticarcillina

1a Cefalessina2a Cefamandolo3a Cefotaxima4a cefepime5a Ceftobiprolo

Aztreonam

Imipenem

Page 6: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Inibitori beta-lattamasi

Acido clavulanico

Page 7: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Meticillina

Farmaco di riferimento nel determinare la sensibilità batterica

Page 8: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Aztreonam

Monobactami

Page 9: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Imipenem

Carbapenemi

Porzione in comune

Page 10: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Penicillinasi

Amidasi 6-aminopenicillanico

Acido penicilloico

Page 11: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,
Page 12: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Spettro di azione delle Penicilline:

Staphylococcus, Streptococcus, Enterococcus,

ActinobacteriaNocardia

Polmoniti, Endocarditi, Meningiti

Faringite, Scarlattina, Polmonite

Endocardite, Infezione tratto urinario

Lesioni toraciche

Page 13: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Meccanismo di azione beta lattamici

Page 14: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,
Page 15: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Lo stafilococco aureus può causare intossicazione da cibo, polmoniti, batteriemia, impetigo, follicoliti e osteomieliti nell’uomo, mastiti artriti e infezioni del tratto urinario negli animali. Lo stafilococco è la principale causa di infezioni nosocomiali del sistema nervoso centrale e l’aureus è il più comune agente della batteriemia.

Page 16: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Acute bacterial meningitis caused by Streptococcus pneumoniae resistant to the antimicrobian agents and their serotypes

La resistenza allo streptococco pneumonie da parte delle penicilline è dovuta ad una minor affinità di queste alla parete cellulare di questo batterio in particolare alle penicillin binding proteins. C’è una progressiva riduzione della sensibilità alla penicillina ed altri beta lattamici che causa il bisogno diaumentare le dosi per inibire la crescita batterica.

Page 17: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Spettro di azione delle Penicilline:

Bacillus anthracis (G+),

Pseudomonas (G-),

Neisseria gonorrhoeae (G-),

Listeria (G+)

Treponema pallidum Sifilide

Polmonite

Infezioni Tratto Urinario

Gonorrea

Meningite, Endocardite, Batteriemia

Page 18: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Farmacocinetica

Page 19: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Treponema pallidum

Page 20: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Colorazione di Gram

Distingue gram positivi da gram negativi

Nata per distinguere la polmonite da streptococco (gram + e quella da klebsiella (bacillo gram -)

Page 21: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Pseudomonas aeruginosa (gram negativo)

Page 22: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Lo Pseudomonas aeruginosa (P.A.)è un batterio gram negativo di cui è nota la sua la sua versatilità ambientale, l’abilità di causare la malattia in particolari individui suscettibili e di resistere agli antibiotici. La complicazione più seria in cui è coinvolto è la fibrosi cistica e porta ad infezione respiratoria diffusa.

Lo P. A. può produrre un numero considerevole di proteine tossiche le quali non solo causano un esteso danno tissutale ma anche interferiscono con il sistema immunitario. Queste proteine possono uccidere le cellule entrandovici o portare danni al tessuto

connettivo.

Page 23: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Penicilline antipseudomonas

Antibiotico

MIC (microgrammi/ml)

Pseudomonas E.Coli

Carbenicillina32 8

Piperacillina4 2

Ticarcillina32 8

Mezlocillina32 2

Page 24: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,
Page 25: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Sintomi della Gonorrea

La gonorrea è causata dal batterio Neisseria gonorrhoeae.Il periodo di incubazione è di 10/20 giorni con comparsa dei sintomi tra il 15 e il 20 giorno dopo l’infezione. Un piccolo numero di persone sono asintomatici per tutta la vita. Tra il 30 e il 60% delle persone con gonorrea hanno la malattia in uno stato subclinico. Nelle donne questa malattia si può manifestare con perdite uterine, difficoltà di urinare, alterazione del ciclo mestruale o sanguinamento dopo rapporto sessuale. La cervice pu; apparire in varie forme; da normale ad stremamente infiammata con pus. Infezioni dell’uretra e della cervice sono frequenti. L’infezione si trasmette per via vaginale, orale e anale. Gli uomini hanno solo un 20% di probabilità di infettarsi per via sessuale mentre le donne per il 50%. Una madre affetta da gonorrea può trasferirla al nascituro durante il parto producendogli oftalmia neonatale.

Page 26: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Antibiotici che possono essere usati in caso di gonorrea

Amoxicillina 2 g più probenecid 1 g orale Ampicillina 2 to 3 g più probenecid 1 g orale

Azitromicina 2 g orale

Cefixime 400 mg orale Cefotaxime 500 mg per iniezione muscolare

Cefoxitin 2 g per iniezione muscolare , plus probenecid 1 g orale Cefpodoxime (Vantin) 400 mg orale

Ceftriaxone (Rocephin) 125 to 250 mg per iniezione muscolare

Ciprofloxacina 500 mg orale Levofloxacina 250 mg orale

Ofloxacina 400 mg orale

Spectinomicina 2 g per iniezione muscolare

Penicilline

Macrolidi

Cefalosporine

Chinolonici

Aminociclitolo

Page 27: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Indicazioni Terapeutiche per le Penicilline:

Endocarditi battericheGonorreaMeningitePolmoniti

Ascessi polmonariSifilide

Setticemia

Page 28: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Antibiotic-induced liver toxicity: mechanisms, clinical features and causality assessment.Robles M, Toscano E, Cotta J, Lucena MI, Andrade RJ.SourceLiver Unit, Gastroenterology Service and Department of Medicine, Vírgen de Victoria University Hospital, University of Málaga, Spain.AbstractAntibiotics are the therapeutic agents most often associated with hepatotoxicity. However, this is mainly due to the widespread prescription of these drugs. The relative risk of antibiotic-related hepatotoxicity is low. Causality assessment of suspected drug-induced liver injury (DILI) related to antibiotics can be difficult, particularly because some cases occur long after the drug has been stopped. Among the penicillins, amoxicillin clavulanate is the most associated with hepatotoxicity and is the most frequent cause of DILI-related hospitalisations. Flucloxacillin ranks as the second highest cause of DILI in many countries. The severity of antibiotic-induced DILI varies widely, with the hepatitis-like (hepatocellular) damage tending to be more severe that than cholestatic/mixed type. The pattern is strongly influenced by age. Recently telithromycin (a new generation macrolide) has been linked with DILI, with a typical pattern, which includes abrupt commencement of fever, abdominal pain, jaundice and, in some cases, ascites. Antibiotic-induced DILI appears, in most instances, to be idiosyncratic. Genetic-association studies have recently identified genotypes related to flucloxacillin and possibly to amoxicillin-clavulanate hepatotoxicity.

Page 29: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Imipenem

Carbapenemi

Porzione in comune

Page 30: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

CarbapenemiA questa classe appartengono: l’imipenem, il meropenem, l’ertapenem, e il doripenem.Questi agenti hanno il più vasto spettro antibatterico rispetto agli altri beta lattamici. Sono resistenti alle beta lattamasi.Sono attivi contro i gram positivi e negativi con l’eccezione di quelli intracellulari come le clamidie.

Essi provvedono ad una maggiore copertura nei confronti dei batteri gram negativi rispetto agli altri beta lattamici e sono stabili nei confronti delle beta lattamasi e nei confronti di batteri multiresistenti.

Page 31: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Carbapenems versus other beta-lactams in treating severe infections in intensive care: a systematic review of randomised controlled trials.Edwards SJ, Clarke MJ, Wordsworth S, Emmas CE.

Carbapenems have not been comprehensively compared in clinical trials with fourth-generation cephalosporins (4GC) and antipseudomonal penicillins (APP) in the treatment of severe infections (SI) and febrile neutropenia (FN).

Of the 265 papers identified, 12 were appropriate for meta-analysis (four 4GC and eight APP). The results showed that carbapenems are associated with a significant reduction in all-cause mortality compared to APP in the treatment of SI, and withdrawals due to adverse events (RR 0.65, 95% CI: 0.45 to 0.96; p=0.03) are also less common. When compared in the treatment of FN, carbapenems are associated with a significant increase in clinical response during the initial 72 h of treatment (RR 1.37, 95% CI: 1.09 to 1.74; p=0.008) and bacteriologic response (RR 1.73, 95% CI: 1.03 to 2.89; p=0.04). For all other outcomes, including all comparisons with 4GC, there were no significant differences between treatments. The use of carbapenems rather than APP could reduce mortality and, by simplifying treatment decisions, reduce the time before patients receive appropriate antibiotic treatment.

Page 32: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Un esempio:Nella esacerbazione acuta della bronchite cronica

First-Line : Amoxicillin, ampicillin,pivampicillin, TMP/SMX, and doxycycline were considered tobe first-line antibiotics for the management of patients with AECB (acute exacerbations of chronic bronchitis).

and Second-Line Antibiotics:Amoxicillin/clavulanic acid, macrolides (ie,roxithromycin, clarithromycin, and azithromycin), second-generation or third-generation cephalosporins (ie, cefaclor), and quinolones were considered to be advanced or second-line antibiotics for this indication according to published guidelines.

Page 33: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Monobactami

Aztreonam possiede una forte attività nei confronti dei batteri gram-negativi compreso lo Pseudomonas aeruginosa.

Non è attivo nei confronti dei gram positivi o gli anaerobi.

E’ efficace nei confronti di un gran numero di batteri tra I quali: IlCitrobacter, l’Enterobacter, l’E coli, l’Haemophilus, la Klebsiella, il Proteus, e le specie di Serratia.

Attualmente si sta studianto la somministrazione di aztreonam per via inalatoria come lisinato nel trattamento della fibrosi cistica polmonare.

Page 34: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

KlebsiellaPolmonitiInfezioni del tratto urinarioSetticemiaSpondilite anchilosante

Serratia

Responsabile delle infezioni nosocomiali (S. marcescens)

Page 35: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Proteus

E’ un batterio a forma di bastoncino ed ha alte capacità di produrre ureasi che rappresenta il modo di riconoscerlo.

L’ureasi idrolizza l’urea in ammoniaca e perciò alcalinizza maggiormente le urine.

L’alcalinizzazione può portare a formazione di cristalli che possono precipitare nei tubuli.

Questo batterio può essere trovato nei calcoli renali e questi possono ricominciare l’infezione se non eliminati. Questi calcoli possono portare anche a morte renale.Il proteus può anche causare infezioni nelle ferite, setticemia e polmoniti sopratutto nei pazienti ospedalizzati.

Page 36: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Cephalosporin use in treatment of patients with penicillin allergies.DePestel DD, Benninger MS, Danziger L, LaPlante KL, May C, Luskin A, Pichichero M, Hadley JA.Department of Clinical Sciences, College of Pharmacy, University of Michigan Hospitals and Health Centers, University of Michigan, Ann Arbor 48109, USA.

OBJECTIVE: To review the evidence that supports the use of certain cephalosporins in penicillin-allergic patients. DATA SYNTHESIS: Physicians may now prescribe certain cephalosporins in patients with a history of a nonserious, non-life-threatening penicillin reaction. Exclusions include type I anaphylaxis, Stevens-Johnson syndrome, toxic epidermal necrolysis, angioedema, and other potentially life-threatening responses to medication. Recent reports demonstrate that a considerable body of literature describing the cross-reactivity between cephalosporins and penicillin was established based on nonallergic adverse reactions or in vitro studies rather than on clinically relevant immune-mediated reactions. Oral rechallenge and skin testing data support the relationship of the beta-lactam side-chain structures of these drugs as a predictor of cross-reactivity. CONCLUSION: Recent data suggest that the incidence of cross-reactivity among penicillins and cephalosporins is lower than historically reported. Pharmacists should be aware that cephalosporin cross-reactivity in a penicillin-allergic patient is not necessarily a class effect. Dispensing should be evaluated based on the type of allergic manifestations and the drug prescribed.

Page 37: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Tossicità da beta lattamici

Page 38: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Tossicità da beta lattamici

Page 39: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Acc Chem Res. 2008 Jan;41(1):11-20.Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.Lu H, Tonge PJ.SourceDepartment of Chemistry and Institute for Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, USA.AbstractThe modern age of drug discovery, which had been slowly gathering momentum during the early part of the twentieth century, exploded into life in the 1940s with the isolation ofpenicillin and streptomycin. The immense success of these early drug discovery efforts prompted the general view that many infectious diseases would now be effectively controlled and even eradicated. However this initial optimism was misplaced, and pathogens such as multidrug-resistant Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus present a major current threat to human health. Drug resistance arises through the unrelenting pressure of natural selection, and there is thus a continuing need to identify novel drug targets and develop chemotherapeutics that circumvent existing drug resistance mechanisms. In this Account, we summarize current progress in developing inhibitors of FabI, the NADH-dependent enoyl reductase from the type II bacterial fatty acid biosynthesis pathway (FAS-II), a validated but currently underexploited target for drug discovery. The FabI inhibitors have been divided into two groups, based on whether they form a covalent adduct with the NAD (+) cofactor. Inhibitors that form a covalent adduct include the diazaborines, as well as the front-line tuberculosis drug isoniazid. The NAD adducts formed with these compounds are formally bisubstrate enzyme inhibitors, and we summarize progress in developing novel leads based on these pharmacophores. Inhibitors that do not form covalent adducts form a much larger group, although generally these compounds also require the cofactor to be bound to the enzyme. Using structure-based approaches, we have developed a series of alkyl diphenyl ethers that are nanomolar inhibitors of InhA, the FabI from M. tuberculosis, and that are active against INH-resistant strains of M. tuberculosis. This rational approach to inhibitor development is based on the proposal that high-affinity inhibition of the FabI enzymes is coupled to the ordering of a loop of amino acids close to the active site. Compounds that promote loop ordering are slow onset FabI inhibitors with increased residence time on the enzyme. The diphenyl ether skeleton has also been used as a framework by us and others to develop potent inhibitors of the FabI enzymes from other pathogens such as Escherichia coli, S. aureus, and Plasmodium falciparum. Meanwhile chemical optimization of compounds identified in high-throughput screening programs has resulted in the identification of several classes of heteroaromatic FabI inhibitors with potent activity both in vitro and in vivo. Finally, screening of natural product libraries may provide useful chemical entities for the development of novel agents with low toxicity. While the discovery that not all pathogens contain FabI homologues has led to reduced industrial interest in FabI as a broad spectrumtarget, there is substantial optimism that FabI inhibitors can be developed for disease-specific applications. In addition, the availability of genome sequencing data, improved methods for target identification and validation, and the development of novel approaches for determining the mode of action of current drugs will all play critical roles in the road ahead and in exploiting other components of the FAS-II pathway.

Page 40: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Recent Pat Antiinfect Drug Discov. 2007 Jan;2(1):73-7.Linezolid in children: recent patents and advances.Velissariou IM.SourceResearch Fellow in Pediatric Infectious Diseases and Pulmonology, P and A Kyriakou Children's Hospital, Athens, Greece. [email protected] is the first approved member of a new generation of antibiotics, the synthetic oxazolidinones, to become available, with a broad spectrum of in vitro activity against Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. It has an excellent bioavailability both intravenously and orally and a very good safety profile both in adults and in children. With regards to its antimicrobial action, linezolid has a predominantly bacteriostatic action, rather than a bacteriocidal effect and is active against Gram-positive bacteria that are resistant to other antibiotics. Linezolid is currently showing great promise for the treatment of multi-resistant Gram-positive infections, both in the community and in a hospital setting. Clinical indications so far include skin and soft tissue infections, community-acquired or nosocomial pneumonia due to MRSA, VRE bacteremia and community-acquired pneumonia due to penicillin-resistant Streptococcus pneumoniae. We anticipate that this new generation of antimicrobial agents will provide adequate cover in the future for infections that cause significant treatment failures so far, such as VRE- associated endocarditis, bone and joint multi-drug resistant infections and possibly central nervous system infections, both in adult and children populations. Some patents on linezolid are also discussed in this review.

Page 41: ANTIBIOTICI BETA LATTAMICI. Classi di Antibiotici beta-lattamici 1) Penicilline 2) Cefalosporine 3) Monobactami 4) Carbapenemi Amoxicillina, Ampicillina,

Pharmacotherapy. 2008 Apr;28(4):458-68.Telavancin: an antimicrobial with a multifunctional mechanism of action for the treatment of serious gram-positive infections.Leonard SN, Rybak MJ.SourceAnti-Infective Research Laboratory, Pharmacy Practice 4148, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.AbstractTelavancin is a once-daily lipoglycopeptide antibiotic structurally derived from vancomycin. It has broad-spectrum activity against gram-positive bacteria, including strains with reduced susceptibility to vancomycin. Telavancin's multifunctional mechanism of action, including inhibition of peptidoglycan synthesis and disruption of membrane potential, account for this enhanced activity as well as rapid bactericidal properties. In vitro activity has been demonstrated against a wide range of gram-positive pathogens such as multidrug-resistant Streptococcus pneumoniae, as well as methicillin-resistant, glycopeptide-intermediate, and vancomycin-resistant Staphylococcus aureus. The agent also displays activity against many gram-positive anaerobic organisms. Predictable linear pharmacokinetics have been demonstrated over a wide range of doses, with the most common adverse effects being taste disturbance and nausea. Clinical experience with telavancin in phase II and III studies for complicated skin and skin structure infections has shown it to have similar efficacy and tolerability compared with vancomycin and antistaphylococcal penicillins, and recently telavancin received an approvable letter from the United States Food and Drug Administration for this indication. Telavancin appears to be a promising agent for the treatment of serious infections caused by gram-positive pathogens, including drug-resistant pathogens. Further clinical experience will clarify its role in therapy.