antoine deza, mcmaster tamás terlaky, lehigh yuriy zinchenko, calgary feng xie, mcmaster

55
Antoine Deza, McMaster Tamás Terlaky, Lehigh Yuriy Zinchenko, Calgary Feng Xie, McMaster Hyperplane arrangements with large average diameter P 1 P 2 P 3 P 4 P 6 P 5

Upload: aelwen

Post on 19-Mar-2016

38 views

Category:

Documents


1 download

DESCRIPTION

Antoine Deza, McMaster Tamás Terlaky, Lehigh Yuriy Zinchenko, Calgary Feng Xie, McMaster. Hyperplane arrangements with large average diameter. P 2. P 1. P 4. P 6. P 5. P 3. Polytopes & Arrangements : Diameter & Curvature. Motivations and algorithmic issues. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Antoine Deza, McMasterTamás Terlaky, Lehigh

Yuriy Zinchenko, CalgaryFeng Xie, McMaster

Hyperplane arrangements with large average diameter

P1

P2

P3

P4

P6 P5

Page 2: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Motivations and algorithmic issues

Diameter (of a polytope) :

lower bound for the number of iterationsfor the simplex method (pivoting methods)

Curvature (of the central path associated to a polytope) :

large curvature indicates large number of iterationsfor (path following) interior point methods

Page 3: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Polytope P defined by n inequalities in dimension d

n = 5 : inequalities d = 2 : dimension

polytope : bounded polyhedron

Page 4: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Polytope P defined by n inequalities in dimension d

n = 5 : inequalities d = 2 : dimension

Page 5: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

P

Polytope P defined by n inequalities in dimension d

n = 5 : inequalities d = 2 : dimension

Page 6: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

vertex c1

vertex c2

Diameter (P): smallest number such that any two vertices (c1,c2) can be connected by a path with at most (P) edges

P

n = 5 : inequalities d = 2 : dimension(P) = 2 : diameter

Page 7: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Diameter (P): smallest number such that any two vertices can be connected by a path with at most (P) edges

Hirsch Conjecture (1957): (P) ≤ n - d

P

n = 5 : inequalities d = 2 : dimension(P) = 2 : diameter

Page 8: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(P): total curvature of the primal central path of maxcTx : xP

c

P

n = 5 : inequalities d = 2 : dimension

Page 9: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(P): total curvature of the primal central path of maxcTx : xP

c

P

n = 5 : inequalities d = 2 : dimension

c(P): redundant inequalities count

Page 10: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(P): total curvature of the primal central path of maxcTx : xP

(P): largest total curvature c(P) over of all possible c

c

P

n = 5 : inequalities d = 2 : dimension

Page 11: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(P): total curvature of the primal central path of maxcTx : xP

(P): largest total curvature c(P) over of all possible c

Continuous analogue of Hirsch Conjecture: (P) = O(n)

c

P

n = 5 : inequalities d = 2 : dimension

Page 12: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(P): total curvature of the primal central path of maxcTx : xP

(P): largest total curvature c(P) over of all possible c

Continuous analogue of Hirsch Conjecture: (P) = O(n)

c

P

n = 5 : inequalities d = 2 : dimension

Dedieu-Shub hypothesis (2005): (P) = O(d)

Page 13: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(P): total curvature of the primal central path of maxcTx : xP

(P): largest total curvature c(P) over of all possible c

Continuous analogue of Hirsch Conjecture: (P) = O(n)

c

P

n = 5 : inequalities d = 2 : dimension

Dedieu-Shub hypothesis (2005): (P) = O(d) D.-T.-Z. (2008) polytope C such that: (C) ≥ (1.5)d

Page 14: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

• start from the analytic center• follow the central path• converge to an optimal solution• polynomial time algorithms for linear optimization : number of iterations

n : number of inequalities L : input-data bit-length

( )O nL

analytic center

centralpathoptimal

solution

Polytopes & Arrangements : Diameter & CurvatureCentral path following interior point methods

: central path parameter xP : Ax ≥ b

max ln( )ii

x Ax b cc

Page 15: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

total curvature

C2 curve : [a, b] Rd parameterized by its arc length t (note: (t) = 1)

curvature at t : )()( 2

2

tt

t

y = sin (x)

total curvature

Polytopes & Arrangements : Diameter & Curvature

Page 16: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

C2 curve : [a, b] Rn parameterized by its arc length t (note: (t) = 1)

curvature at t :

total curvature :

total curvature

)()( 2

2

tt

t

b

a

dttK )(

y = sin (x)

total curvature

Polytopes & Arrangements : Diameter & Curvature

Page 17: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Arrangement A defined by n hyperplanes in dimension d

n = 5 : hyperplanes d = 2 : dimension

Page 18: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Simple arrangement: n d and any d hyperplanes intersect at a unique distinct point

n = 5 : hyperplanes d = 2 : dimension

Page 19: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

For a simple arrangement, the number of bounded cells I =1

nd

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

P1

P2

P3

P4

P6 P5

Page 20: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(A) : average value of c(Pi) over the bounded cells Pi of A:

c(A) = with I =1

( )i

ii

P

I

c

I1

nd

c

P1

P3

P2

P6

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

c(Pi): redundant inequalities count

P5

P4

Page 21: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(A) : average value of c(Pi) over the bounded cells Pi of A:

(A) : largest value of c(A) over all possible c

P1

P3

P2

P6

c

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

P5

P4

Page 22: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

c(A) : average value of c(Pi) over the bounded cells Pi of A:

(A) : largest value of c(A) over all possible c

Dedieu-Malajovich-Shub (2005): (A) ≤ 2 d

P1

P3

P2

P6

c

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

P5

P4

Page 23: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

(A) : average diameter of a bounded cell of A:

P1

P3

P2

P6

P4

P5

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

A : simple arrangement

Page 24: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

(A) : average diameter of a bounded cell of A:

(A) = with I =1

( )i

ii

P

I

I

P1

P3

P2

P6

1

nd

P4

P5

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

(A): average diameter ≠ diameter of A ex: (A)= 1.333…

Page 25: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

(A) : average diameter of a bounded cell of A:

(A) = with I =1

( )i

ii

P

I

I

P1

P3

P2

P6

1

nd

P4

P5

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

(Pi): only active inequalities count

Page 26: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

P1

P3

P2

P6

P4

P5

n = 5 : hyperplanes d = 2 : dimension I = 6 : bounded cells

(A) : average diameter of a bounded cell of A:

Conjecture [D.-T.-Z.]: (A) ≤ d (discrete analogue of Dedieu-Malajovich-Shub result)

Page 27: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

(P) ≤ n - d (Hirsch conjecture 1957)

(A) ≤ d (conjecture D.-T.-Z. 2008) (A) ≤ 2 d (Dedieu-Malajovich-Shub 2005)

(P) ≤ 2 n (conjecture D.-T.-Z. 2008)

Page 28: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

• for unbounded polyhedra• Hirsch conjecture is not valid• central path may not be defined

Page 29: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

• for unbounded polyhedra• Hirsch conjecture is not valid• central path may not be defined

• Hirsch conjecture (P) ≤ n - d implies that (A) ≤ d

• Hirsch conjecture holds for d = 2, (A) ≤ 2

• Hirsch conjecture holds for d = 3, (A) ≤ 3

• Barnette (1974) and Kalai-Kleitman (1992) bounds imply

• (A) ≤

• (A) ≤

11

nn

1nn

11

nn

log2

4 21

1

dn

nd ndd

n

21 5 21 2 3

dndn d

Page 30: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

• bounded cells of A* : ( n – 2) (n – 1) / 2 4-gons and n - 2 triangles

n = 6 d = 2

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

Page 31: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

dimension 2

(A) ≥ 2 -

2 / 2( 1)( 2)

n

n n

Page 32: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

dimension 2

(A) = 2 -

maximize(diameter) amounts tominimize( #external edge + #odd-gons)

2 / 2( 1)( 2)

n

n n

Page 33: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

dimension 3

(A) ≤ 3 +

and A* satisfies

(A*) = 3 -

24(2 16 21)3( 1)( 2)( 3)

n n

n n n

6 / 2 261 ( 1)( 2)( 3)

nn n n n

A*

Page 34: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

dimension d

A* satisfies

(A*) ≥ d

A* cyclic arrangement

- -1

/n d nd d

A* mainly consists of cubical cells

Page 35: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

dimension d

A* satisfies

(A*) ≥ n

Haimovich’s probabilistic analysis of shadow-vertex simplex method - Borgwardt (1987) Ziegler (1992) combinatorics of (pseudo) hyperplane addition to A* (Bruhat order) Forge – Ramírez Alfonsín (2001) counting k-face cells of A*

- -1

/n d nd d

Page 36: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & CurvatureLinks, low dimensions and substantiation

dimension 2 (A) =

dimension 3 (A) asympotically equal to 3 dimension d d ≤ (A) ≤ d ?

[D.-Xie 2008]

- -1

/n d nd d

Haimovich’s probabilistic analysis of shadow-vertex simplex method - Borgwardt (1987) Ziegler (1992) combinatorics of (pseudo) hyperplane addition to A* (Bruhat order) Forge – Ramírez Alfonsín (2001) counting k-face cells of A*

2 / 2( 1)( 2)

n

n n

Page 37: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

bounded / unbounded cells (sphere arrangements)?

simple / degenerate arrangements? pseudo-hyperplanes / underlying oriented matroid ?

Is it the right setting?(forget optimization and the vector c)

Page 38: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d Holt-Klee (1998)

Fritzsche-Holt (1999) Holt (2004)

Links, low dimensions and substantiation

Page 39: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Links, low dimensions and substantiation

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d Holt-Klee (1998)

Fritzsche-Holt (1999) Holt (2004)

Is the continuous analogue true?

Page 40: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Links, low dimensions and substantiation

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d Holt-Klee (1998)

Fritzsche-Holt (1999) Holt (2004)

Is the continuous analogue true? yes

Page 41: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Links, low dimensions and substantiation

( ) such that lim inf

c

nP

nP

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d Holt-Klee (1998)

Fritzsche-Holt (1999) Holt (2004)

•continuous analogue of tightness:• for n ≥ d ≥ 2 D.-T.-Z. (2008)

Page 42: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

slope: careful and geometric decrease

( ) such that liminf

c

nP

nP

Page 43: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

slope: careful and geometric decrease

( ) such that liminf

c

nP

nP

Page 44: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d

• continuous analogue of tightness:

• for n ≥ d ≥ 2 P such that (P) = Ω(n) D.-T.-Z. (2008)

Links, low dimensions and substantiation

Page 45: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d

• continuous analogue of tightness:• for n ≥ d ≥ 2 P such that (P) = Ω(n) D.-T.-Z. (2008)

• Hirsch special case n = 2d (for all d) is equivalent to the general case (d-step conjecture) Klee-Walkup (1967)

Links, low dimensions and substantiation

Page 46: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Links, low dimensions and substantiation

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d

• continuous analogue of tightness:• for n ≥ d ≥ 2 P such that (P) = Ω(n) D.-T.-Z. (2008)

• Hirsch special case n = 2d (for all d) is equivalent to the general case (d-step conjecture) Klee-Walkup (1967)

Is the continuous analogue true?

Page 47: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Links, low dimensions and substantiation

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d

• continuous analogue of tightness:• for n ≥ d ≥ 2 P such that (P) = Ω(n) D.-T.-Z. (2008)

• Hirsch special case n = 2d (for all d) is equivalent to the general case (d-step conjecture) Klee-Walkup (1967)

Is the continuous analogue true? yes

Page 48: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Links, low dimensions and substantiation

• Hirsch conjecture is tight • for n > d ≥ 7 P such that (P) ≥ n - d

• continuous analogue of tightness:• for n ≥ d ≥ 2 P such that (P) = Ω(n) D.-T.-Z. (2008)

• Hirsch special case n = 2d (for all d) is equivalent to the general case (d-step conjecture) Klee-Walkup (1967)

•continuous analogue of d-step equivalence:• (P) = O(n) (P) = O(d) for n = 2d D.-T.-Z. (2008)

Page 49: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

(P) ≤ n - d Hirsch conjecture (1957) (P) < n – d Holt-Klee (1998)

(A) ≤ d conjecture D.-T.-Z. (2008) (A) ≤ 2 d Dedieu-Malajovich-Shub (2005)

(P) ≤ 2 n conjecture D.-T.-Z. (2008) (P)=Ω(n) D.-T.-Z (2008)

holds for n = 2 and n = 3

holds for n = 2 and n = 3

(P) ≤ n – d (P) ≤ d for n = 2d Klee-Walkup (1967)(P) = O(n) (P) = O(d) for n = 2d D.-T.-Z. (2008)

redundant inequalities counts for (P)

Page 50: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

(P) ≤ n - d Hirsch conjecture (1957) (P) < n – d Holt-Klee (1998)

(A) ≤ d conjecture D.-T.-Z. (2008) (A) ≤ 2 d Dedieu-Malajovich-Shub (2005)

(P) ≤ 2 n conjecture D.-T.-Z. (2008) (P)=Ω(n) D.-T.-Z (2008)

holds for n = 2 and n = 3

holds for n = 2 and n = 3

(P) ≤ n – d (P) ≤ d for n = 2d Klee-Walkup (1967)(P) = O(n) (P) = O(d) for n = 2d D.-T.-Z. (2008)

redundant inequalities counts for (P)

Page 51: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

c

Want: (P) = O(n), n (P) = O(d) for n = 2d, d

Clearly (P) K n, n (P) K n for n = 2d, d

Need (P) K n, n (P) n for n = 2d, d

Case (i) d < n < 2d

e.g., P with n=3, d=2

P P with n=4, d=2 c(P) c(P) 2 d< 2 n

Polytopes & Arrangements : Diameter & CurvatureProof of a continuous analogue of Klee-Walkup result (d-step conjecture)

A4

Page 52: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Want: (P) = O(n), n (P) = O(d) for n = 2d, d

Need (P) K n, n (P) n for n = 2d, d

Case (ii) 2d < n

e.g., P with n=5, d=2

P P with n=6, d=3 c(P) (P) 2 (d + 1) … < 2 (n - d) < 2 n

Polytopes & Arrangements : Diameter & Curvature

c

c

Proof of a continuous analogue of Klee-Walkup result (d-step conjecture)

Page 53: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Motivations, algorithmic issues and analogies

Diameter (of a polytope) :

lower bound for the number of iterationsfor the simplex method (pivoting methods)

Curvature (of the central path associated to a polytope) :

large curvature indicates large number of iterationfor (central path following) interior point methods

we believe:

polynomial upper bound for (P) ≤ d (n – d) / 2

Page 54: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

bounded / unbounded cells (sphere arrangements)?

simple / degenerate arrangements? pseudo-hyperplanes / underlying oriented matroid ?

Is it the right setting?(forget optimization and the vector c)

thank you

Page 55: Antoine Deza, McMaster Tamás Terlaky, Lehigh   Yuriy Zinchenko, Calgary Feng Xie, McMaster

Polytopes & Arrangements : Diameter & Curvature

Motivations, algorithmic issues and analogies

Diameter (of a polytope) :

lower bound for the number of iterationsfor the simplex method (pivoting methods)

Curvature (of the central path associated to a polytope) :

large curvature indicates large number of iterationfor (central path following) interior point methods

we believe:

polynomial upper bound for (P) ≤ d (n – d) / 2

thank you