“hernanz” · 2017. 7. 10. · separability)in)astronomical)phase)space) 19 coverage, spread...

30
“Hernanz” M. Shara 16 June 2017 the Spanish form of the Old German name Ferdinand, meaning "bold voyager," from the elements farð, meaning "journey" and nanð / nanth, meaning "courage" or "daring.” So… Hernanz = “Courageous Voyager”

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • “Hernanz”  

    M.  Shara  -‐  16  June  2017  

    •  the  Spanish  form  of  the  Old  German  name  Ferdinand,  meaning  "bold  voyager,"  from  the  elements  farð,  meaning  "journey"  and  nanð  /  nanth,  meaning  "courage"  or  "daring.”  

    •  So…  Hernanz  =  “Courageous  Voyager”  

  • Margarita  …  personally  tesNng  eAstrogam  in  2019  

    M.  Shara  -‐  16  June  2017  

  • A  few  memorable  quotes…  

    •  It  was  a  nice  insNtute…with  a  beach…and  biologists  •  Maybe  some  of  these  models  are  fake  •  I  think  the  curtains  are  making  a  comment  about  these  slides  

    •  We  don’t  need  atmospheres…all  novae  are  black  bodies  

    •  This  morning  there  was  the  suggesNon  to  do  trial  by  combat  (for  observing  Nme)  

    •  There  is  a  proposal  to  change  the  name  of      Messier  31  to  MarNnHenze  31  

    M.  Shara  -‐  7  June  2017  

  • A.  Coc  -‐  Boldest  PredicNon  

    •  Classical  Novae  will  soon  become  the  first  explosive  sites  for  which  all  nucleosynthesis  is  based  on  experimental  data  

    M.  Shara  -‐  7  June  2017  

  • What  is  the  Common  Theme  of  this  CelebraNon?  And  of  

    Margarita’s  Career?  

    •  Extreme  physics/Collapsed  macer/γ  rays  •  ExploraNon  of  new  physical  regimes  •  Daring  PredicNons  

    !            DISCOVERY  IN  ASTROPHYSICS  

    M.  Shara  -‐  7  June  2017  

  • So…  

    • “Let  me  talk  about  the  details…and  …I’ll  stop  at  some  point”  

    M.  Shara  -‐  16  June  2017  

  • Overview  

    *What  is  an  Astronomical  “Discovery”?      

    *ScienNfic  Discovery  PotenNal  =    

    SDP  of  Surveys/Telescopes  of  2020+  

    Including  eXTP/LOFT    EASTROGAM  

    M.  Shara  -‐  7  June  2017  

  • Understanding  what  comprises  a  major  discovery…and  how  astronomers  make  “discoveries”…  

    is  essenNal  to  furthering  the  discovery  process  

    cf    MarNn  Harwit    “Cosmic  Discovery”    Basic  Books    1981  

    Astronomical  Discoveries  

    M.  Shara  -‐  7  June  2017  

  • What  Is  A  Major  Astronomical  “Discovery”?    Part  1  

    A  new  “class  of  object”  –  differing  by  a  factor  of  >1000x  in  at  least  one  parameter  from  the  next  most  similar  object  

    Same  Class  of  Object  K  dwarf  star  (0.5  Msun,  0.1  Lsun)        =  G  dwarf  star  (1.0  Msun,  1  Lsun)      

    Not  the  Same  Class  of  Object  Red  Giant  Star  ≠  White  Dwarf  Star  ≠  Neutron  Star    Densi4es  &  sizes  differ  by  >  3  orders  of  magnitude      M.  Shara  -‐  7  June  2017  

  • 33  “Discoveries”  unNl  1961  (adapted  from  Harwit)  

    Pre  telescope  

    1600s  

    1700s  

    1800s  

    1900-‐1961  

    M.  Shara  -‐  16  June  2017  

  • 36  “Discoveries”  1961-‐2017  

    1961-‐1980  

    1981-‐2017  

    M.  Shara  -‐  16  June  2017  

  • What  Is  A  Major  Astronomical  “Discovery”?    Part  2  

    A  new  astronomical  or  physical  process  

    Masers  Neutrino  oscillaNons  (“solar  neutrino  problem”)  AccreNon  onto  compact  objects  (X-‐ray  astronomy)    

    Stellar  mergers/promiscuity  (Blue  stragglers,  Red  Novae,  “impossible”  binaries  in  globular  clusters)  

    Jets…  and      

    NOVA  γ  RAYS  M.  Shara  -‐  16  June  2017  

  • The  Rate  of  Astronomical  Discoveries  is  AcceleraNng  

    •  ~1000  BCE-‐  1609        ~5  Discoveries  •  1609-‐1961                          ~29  Discoveries  •  1961-‐2017        ~36  Discoveries  

    M.  Shara  -‐  16  June  2017  

  • Hard  Choices  

    •  OpNon  1:              OpNon  2:  

    M.  Shara  -‐  16  June  2017  

  • Astronomical  Discovery  Part  3  

     TELESCOPE/DETECTOR  1,000x  “becer”  

    !  DISCOVERY  

    *Since  WWII:  Highly  novel  technologies  from  physics,    And/or  military–  (IR,  satellites,UV,  X-‐ray…)  Probe  new  observaNonal  “phase-‐space”  

    UHURU…HST…SWIFT…Chandra…Fermi  HESS…LSST…JWST…  SKA…  

    Equally  true  of  eASTROGAM,  LOX,  JPAS/JPLUS,  CTA,  HiSCORE  M.  Shara  -‐  16  June  2017  

  • Astronomical  Phase  Space  5  INFORMATION  CARRIERS:    (E.M.,  GRAVITY,  NEUTRINOS,COSMIC  RAYS)  +METEORITES,  LUNAR/MARTIAN/COMET  SAMPLES  

    NON-‐”SAMPLE”  CARRIERS’  7  PARAMETERS:  

    ANGULAR  RESOLUTION  TEMPORAL  RESOLUTION      WAVELENGTH  RANGE  SENSITIVITY    AREAL  COVERAGE  POLARIZATION  CONTRAST  

    M.  Shara  -‐  16  June  2017  

  •  2D  CUT  #1:  ANGULAR  RESOLUTION  VS.  WAVELENGTH  

    BS  

    M.  Shara  -‐  16  June  2017  

  • 2D  cut  #2  TEMPORAL  RESOLUTION  vs.  WAVELENGTH  

    M.  Shara  -‐  16  June  2017  

  • Astronomical  Phase  Space  (from  Djorgovski  2011)  

    
 15


    The dimensionality of the OPS is given by the number of characteristics that can be defined for a given type of observations, although some of them may not be especially useful and could be ignored in a particular situation. For example, time domain axes make little sense for the observations taken in a single epoch. Along some axes, the coverage may be intrinsically discrete, rather than continuous. An observation can be just a single point along some axis, but have a finite extent in others. In some cases, polar coordinates may be more appropriate than the purely Cartesian ones.

    Some parts of the OPS may be excluded naturally, e.g., due to quantum limits, diffraction limits, opacity and turbulence of the Earth’s atmosphere or the Galactic ISM on some wavelengths, etc.; see Harwit (1975, 2003). Others are simply not accessible in practice, due to limitations of the available technology, observing time, and funding.

    We can thus, in principle, measure a huge amount of information arriving from the universe, and so far we have sampled well only a relatively limited set of sub-volumes of the OPS in general, much better along some axes than others: we have fairly good coverage in the visible, NIR, and radio; more limited X-ray and FIR regimes; and very poor at higher energies still. The discrimination becomes sharper if we also consider their angular resolution, etc.

    Figure 1. A schematic illustration of the Observable Parameter Space (OPS). All axes of the OPS corresponding to independent measurements are mutually orthogonal. Every astronomical observation, surveys included, carves out a finite hypervolume in this parameter space. Left: Principal axes of the OPS, grouped into four domains; representing such high-dimensionality parameter spaces on a 2D paper is difficult. Right: A schematic representation of a particular 3D representation of the OPS. Each survey covers some solid angle (Ω), over some wavelength range (λ), and with some dynamical range of fluxes (F). Note that these regions need not have orthogonal, or even planar boundaries.

    M.  Shara  -‐  16  June  2017  

  • Separability  in  Astronomical  Phase  Space  

    
 19


    coverage, spread among a number of surveys, that covers as much of the accessible OPS hypervolume as possible and affordable.

    The OPS and the PPS may overlap in some of the axes, and new discoveries may be made in the OPS alone, typically on the basis of the shapes of the spectral energy distributions. This generally happens when a new wavelength window opens up, e.g., some blue “stars” turned out to be a new phenomenon of nature, quasars, when they were detected as radio sources; and similar examples can be found in every other wavelength regime. The unexpectedness of such discoveries typically comes from some hidden assumptions, e.g., that all star-like objects will have a thermal emission in a certain range. When astronomical sources fail to meet our expectations, discoveries are made. Improvements in angular resolution or depth can also yield discoveries, simply by inspection. Of course, noticing something that appears new or unusual is just the first step, and follow-up observations and interpretative analysis are needed.

    Figure 3. A simple illustration of a physical parameter space (PPS), viewed from two different angles. Families of dynamically hot stellar systems are shown in the parameter space whose axes are logs of effective radii, mean surface brightness, and the central velocity dispersion in he case of ellipticals, and the maximum rotational speed in the case of spirals. In the panel on the left, we see an edge-on view of the Fundamental Plane (FP) for elliptical galaxies (Djorgovski & Davis 1987). On the right we see a clear separation of different families of objects, as first noted by Kormendy (1985). They form distinct clusters, some of which represent correlations of their physical parameters that define them as families in an objective way. This galaxy parameter space (Djorgovski 1992ab) is a powerful framework for the exploration of such correlations, and their implications for galaxy evolution. Data for ellipticals are from La Barbera et al. (2009), and for dwarf spheroidals and globulars are compiled from the literature.

    Sometimes we expect to find objects in some region of the parameter space. For example, most quasars (especially the high-redshift ones) and brown dwarfs are found in particular regions of the color space, on the basis of an assumed (correct) model of their spectral energy distributions.

    M.  Shara  -‐  16  June  2017  

    Size  Velocity  dispersion  Surface  brightness  

  • Improved  Angular  ResoluNon  and  Higher  Contrast…1000x  

    M.  Shara  -‐  16  June  2017  

  • SNIa  –    The  expansion  of  the  

    universe  is  acceleraNng  -‐    Dark  Energy  

    Improved  Temporal/SynopNc  ResoluNon    and            SensiNvity/Precision…1000x  

       MicroTransits  –  3,000  TransiNng  Exoplanets  –    

     Planets  are  ubiquitous  

    M.  Shara  -‐  16  June  2017  

  • Discoveries  Part  4  

    M.  Shara  -‐  16  June  2017  

  • Discovery  Part  5  

    Serendipity  in  Discovery?  Many  discoveries  were  not  predicted  but  discovered  serendipitously.  e.g.  Cosmic  Microwave  Background  RadiaNon,  Dark  Macer,  Large  Scale  Structure  

    Others  were  predicted  and  long-‐sought  in  large,  carefully  planned  surveys  

    e.g.  GravitaNonal  RadiaNon,  Brown  Dwarfs,  Exoplanets,  GravitaNonal  Lensing…and  

    M.  Shara  -‐  16  June  2017  

  • Key  Lessons  for  Discoveries  

    •  Work  with  the  most  innovaNve  telescopes/instruments  available  

    •  Start  using  them  as  soon  as  they  come  online  •  Be  alert  to  unexpected  objects/outliers  •  Collaborate  with  a  variety  of  physicists/engineers/astronomers/IT  experts    

    RESULT  =  “Discoveries”  

    M.  Shara  -‐  16  June  2017  

  • QuesNon:Which  Telescopes  Will  Be  100-‐1000x  “Becer”  Than  ALL  Others  By  2022?  

    •  SKA  –  sensiNvity  AND  angular  resoluNon  AND  wavelength  coverage  

    •  JWST  –  IR  sensiNvity  AND  angular  resoluNon  •  LSST  –  temporal  resoluNon  and  sensiNvity  and  areal  coverage  

    •  CTA  –  sensiNvity  and  wavelength  coverage  •  LIGO,  ICECUBE  –  new  physics  regimes  •  And…TESS,  Gaia,  Euclid,  eRosita,  WFIRST…  

    Answer:  All  of  them…        including  eASTROGRAM  

    M.  Shara  -‐  16  June  2017  

  • Figures  of  Merit  for  ScienNfic  Discovery  PotenNal=SDP  

    Etendue  =  A  x  Ω (Primary  Area  x  solid  angle)  does  NOT  measure  SDP

    **Single-‐pass  surveys  !  SDP=  How  deep  x  How  wide  x  wavelength  baseline  

    **MulN-‐pass  surveys  SDP  =How  deep  x  How  wide  x  How  oyen  x  How  long  x  Wavelength  baseline  

    M.  Shara  -‐  7  June  2017  

  • NOVA  γ  RAYS’  PLEDGE  

    M.  Shara  -‐  16  June  2017  

    *We  believe  Margarita,  that  they  exist  *We  will  do  all  in  our  power  to  prove  it  *We  will  never  rest  unNl  their  existence  is  demonstrated  …  Then  we  will  argue  like  cats  and  dogs  about  what  they  REALLY  tell  us  

  • Margarita  has  ALWAYS  followed  these  principles  rigorously...  

    M.  Shara  -‐  7  June  2017  

    …and  taken  Nme  to  smell  the  flowers  along  the  way  

  • Happy  Birthday,  Margarita!  

    •  Per  molts  anys!      •  Moltes  felicitats!    

    M.  Shara  -‐  7  June  2017